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1. Introduction

This manuscript is an expanded version of a talk delivered on occasion of the
Summer School of Mathematics held at Universidade Estadual de Maringá - UEM,
Brazil, on March 1-5, 2010. The authors are grateful to the organizers for their
kind invitation to the event. The second named author is also grateful for the
worm hospitality offered by his colleagues in the UEM during his stay in Maringá.

The non-abelian tensor product G ⊗ H of groups G and H was introduced by
Brown and Loday [3,4] following works of Miller [24], Dennis [8] and Lue [21]. It
is defined for any pair of groups G and H where each one acts on the other (on
right)

G × H → G, (g, h) 7→ gh; H × G → H, (h, g) 7→ hg

and on itself by conjugation, in such a way that for all g, g1 ∈ G and h, h1 ∈ H,

g(hg1 ) =

((
gg

−1

1

)h
)g1

and h(gh1) =
((

hh
−1

1

)g)h1

. (1)
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In this situation we say that G and H act compatibly on each other. The non-abelian
tensor product G⊗H is the group generated by all symbols g⊗h, g ∈ G, h ∈ H,
subject to the relations

gg1 ⊗ h = (gg1 ⊗ hg1)(g1 ⊗ h) and g ⊗ hh1 = (g ⊗ h1)(g
h1 ⊗ hh1)

for all g, g1 ∈ G, h, h1 ∈ H.

In particular, as the conjugation action of a group G on itself satisfies (1), then
the tensor square G ⊗ G of a group G may always be defined.

In [4] Brown and Loday presented a topological significance for the non-abelian
tensor product. They showed that the third homotopy group of the suspension of
an Eilenberg-MacLane space K(G, 1) satisfies

π3SK(G, 1) ∼= J2(G),

where J2(G) denotes the kernel of the derived map κ : G ⊗ G → G′, g ⊗ h
κ
7→

[g, h] = g−1h−1gh. Also, the non-abelian tensor product is used to describe the
third relative homotopy group of a triad as a (non-abelian) tensor product of the
second homotopy groups of appropriate subspaces. More specifically, let a CW-
complex X be the union X = A ∪ B of two path-connected CW-subspaces A and
B whose intersection C = A ∩ B is path-connected. Suppose that the canonical
homomorphisms π1(C) → π1(A), π1(C) → π1(B) are surjective. Then, according
to [3],

π3(X,A,B) ∼= π2(A,C) ⊗ π2(B,C),

where the groups π2(A,C) and π2(B,C) act on one another via π1(C).

So, computing G ⊗ H has some topological interest besides its relevance as an
intrinsic group theoretical problem.

In [15,2,7] it is presented the concept of a tensor product modulo q, where
q is a non-negative integer, which generalizes the concept of non-abelian tensor
product and has connections with homology groups, universal q-central extensions
and q-capability of groups.

The purpose of this note is to report on a group construction in connection
with non-abelian tensor products of groups and recent development in non-abelian
tensor products and q-tensor products. The proofs of the results are omitted in
the interest of brevity.

We mention the survey paper by Kappe [19] which contains an account on the
progress in non-abelian tensor products from 1987 up to 1997. Also, Morse [28]
gives a survey on the computation of the non-abelian tensor square of groups. In
this work, we attempt to minimize overlap with these two surveys.

Notation in this survey is fairly standard. For elements x, y, z in a group
G, the conjugate of x by y is xy = y−1xy; and the commutator of x and y is
[x, y] = x−1xy. As usual we write G′ for the derived subgroup of G, Gab for the
abelianized group G/G′, d(G) for the minimal number of generators for G and
exp(G) for the exponent of G.
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2. The commutator approach

The investigation of the non-abelian tensor product from a group theoretical
point of view started with a paper by Brown, Johnson, and Robertson [5]. In
that work the authors compute the non-abelian tensor square of all non-abelian
groups of order up to 30 using Tietze transformations. However, this method is
not appropriate for computing G⊗G for larger groups since we have |G|2 generators
and 2|G|3 relations. Thus it is interesting to look for more effective methods to
computing G ⊗ G.

We observe that the defining relations of the tensor product can be viewed as
abstractions of commutator relations; thus in [32] it is considered the following
related construction: Let G and H be groups and ϕ : H → Hϕ an isomorphism
(Hϕ is an isomorphic copy of H, where h 7→ hϕ, for all h ∈ H). Define the group
ν(G) to be

ν(G) := 〈G,Gϕ | [g1, g2
ϕ]g3 = [g1

g3 , (g2
g3)ϕ] = [g1, g2

ϕ]g3
ϕ

, ∀g1, g2, g3 ∈ G〉.

Independently, Ellis and Leonard [13] studied a similar construction.
The motivation for studying ν(G) is the commutator connection:

Proposition 2.1 ( [32, Proposition 2.6]) The map Φ : G ⊗ G → [G,Gϕ], defined
by g ⊗ h 7→ [g, hϕ], ∀g, h ∈ G, is an isomorphism.

This isomorphism is useful to compute the non-abelian tensor square of G in-
side ν(G). We observe that simplified presentations for ν(G) can be obtained from
certain generating sequences of G associated to some subnormal series (see [33],
[23]) to compute a concrete representation of ν(G). Having computed such a rep-
resentation of ν(G), the non-abelian tensor square is then obtained from that as
the subgroup [G,Gϕ].

Many structural aspects of ν(G) relative to G have been investigated so far,
which help in computing ν(G). For instance

Theorem 2.1 ( [32, Proposition 2.4, Theorem A])

(i) If G is a finite π-group, π a set of primes, then ν(G) is a finite π-group;

(ii) If G is nilpotent of class c, then ν(G) is nilpotent of class at most c + 1;

(iii) If G is solvable of derived length d, then ν(G) is solvable of derived length at
most d + 1.

Hence a solvable or nilpotent quotient algorithm can be used to compute ν(G)
whenever G is solvable or nilpotent. Use of this strategy was made to perform com-
putations using different computer algebra systems: for example, Ellis&Leonard
[13] used CAYLEY; Ellis [12] used Magma; McDermott [23] and Rocco [33] used
GAP [38].

Theorem 2.2 ( [33, Theorem 2.1]) Let G be a finite solvable group given by a
power-conjugate presentation with polycyclic generating sequence S = {a1, . . . , an}
and S-relations R (respectively Sϕ-relations Rϕ; see (16) for details). Then
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(i) ν(G) has the presentation

〈a1, . . . , an, aϕ
1 , . . . , aϕ

n | R,Rϕ, [ai, a
ϕ
j ]ak = [ai

ak , (aj
ak)ϕ] = [ai, aj ]

a
ϕ

k ,

1 ≤ i, j, k ≤ n〉.

(ii) The subgroup [G,Gϕ] is generated by the set {[ai, a
ϕ
j ], 1 ≤ i, j ≤ n}.

These results were used with the GAP system [38] to compute ν(G), G ⊗ G
and other invariants of G, for all non-abelian p-groups G of order up to p4, p = 2, 3
(see [33], Table I). McDermott [23] extended these results end those of Ellis and
Leonard [13] by using generating sets associated to other subnormal series of G to
write a number of GAP routines for computing tensor products.

Blyth and Morse extended results in [33] to compute G⊗G for polycyclic groups
G. Their results for polycyclic groups are summarized in the following theorem.

Theorem 2.3 ( [1, Theorem 4]) Let G be a polycyclic group given by a finite pre-
sentation 〈G|R〉 and polycyclic generating set G. Then

(i) ν(G) and [G,Gϕ] are polycyclic.

(ii) ν(G) has a presentation that depends only on G, R and G.

(iii) The subgroup [G,Gϕ] is generated by the set {[g±1, h±ϕ]|g, h ∈ G}.

Eick and Nickel [9] gave a polycyclic presentation of ν(G) for G polycyclic and
an algorithm to compute the Schur multiplier and the non-abelian tensor square
of a polycyclic group.

3. G ⊗ H and the group η(G,H)

A construction related to the non-abelian tensor product was introduced by
Ellis and Leonard [13] and played a significant role in their computation of non-
abelian tensor product of finite groups. In [29] it was defined as follows: Let G
and H be groups acting compatibly on each other and Hϕ an extra copy of H,
isomorphic through ϕ : H → Hϕ, h 7→ hϕ, for all h ∈ H. The construction is
defined to be the group

η(G,H) = 〈G,Hϕ | [g, hϕ]g1 = [gg1 , (hg1)ϕ], [g, hϕ]h
ϕ
1 = [gh1 , (hh1)ϕ],

∀g, g1 ∈ G, h, h1 ∈ H〉.

Note that η(G,H) is isomorphic with the group G ∗H/J of [13]. When G = H
and all actions are conjugations, η(G,H) becomes the group ν(G).

It follows from Proposition 1.4 in [16] that there is an isomorphism from the
subgroup [G,Hϕ] of η(G,H) onto the non-abelian tensor product G⊗H, such that
[g, hϕ] 7→ g ⊗ h, for all g ∈ G and h ∈ H. We observe that [G,Hϕ] is a normal
subgroup of η(G,H) and that η(G,H) = ([G,Hϕ] ·G) ·Hϕ, where the dots denote
semidirect products.



Non-abelian Tensor Product 81

One of the themes of research on the non-abelian tensor products has been to
determine which group properties are preserved by non-abelian tensor products. By
using homological arguments, Ellis [10] showed that if G and H are finite groups,
then G⊗H is also finite. Recently, Thomas [35] presented a purely group theoretic
proof of the result by Ellis. In [37,29] it is studied solvability and nilpotency of
G ⊗ H. In [29] it is also given a description of the lower central series and of the
derived series of G ⊗ H. More precisely, let γi(G) (resp. Gi) denote the ith term
of the lower central series (resp. derived series) of an arbitrary group G. If H acts
on G, we write [G,H] for the subgroup 〈g−1gh | g ∈ G,h ∈ H〉 of G. Then

Theorem 3.1 ( [29, Theorem A])

(i) For all i ≥ 2, γi(G ⊗ H) is isomorphic to the subgroup [γi−1([G,H]), [G,H]ϕ]
of η(G,H).

(ii) For all i ≥ 1, (G ⊗ H)i is isomorphic to [[G,H]i−1, [H,G]ϕi−1] of η(G,H).

As a consequence, if [G,H] is nilpotent (resp. solvable), then G⊗H is nilpotent
(resp. solvable). Moravec [25] showed that the tensor product of polycyclic groups
is also polycyclic, generalizing part (i) of Theorem 2.3. Furthermore, he established

Theorem 3.2 ( [26, Theorem 1]) Let M and N be locally finite groups acting
compatibly upon each other. Then the group M ⊗N is locally finite. If furthermore
M and N have finite exponents that are π-numbers, then exp(M ⊗ N) is also a
π-number and can be bounded by a function depending only on exp(M) and exp(N).

In the case when M and N are two normal subgroups of a group G, the group
M⊗N can be replaced with the group η(M,N) in Theorem 3.2 (see [26], Corollary
5).

Write η∗(A,H) to denote the group η(A,H) when A is an abelian H-group
acting trivially on H. If B is any H-subgroup of A, then B ·H means the semidirect
product of B by H. Besides the embedding of G ⊗ H into η(G,H), certain split
extensions can also be embedded into η(G,H).

Proposition 3.1 ( [31, Propositions A,B]) Let A and H be as above

(i) If A and H are finite and (|A|, |H|) = 1, then [A, H] · H is embedded into
η∗(A,H).

(ii) If A is finite and there is a central element h ∈ H such that h acts fixed-point-
free on A, then A · H is embedded into η∗(A,H).

Recall that a finite group G containing a proper subgroup H 6= 1 such that
H ∩ Hg = 1 for all g ∈ G \ H is called a Frobenius group. The subgroup H
is called a Frobenius complement. By a celebrated theorem of Frobenius, the set
N = G \ (∪x∈G(H∗)x) is a normal subgroup of G (called its Frobenius kernel) such
that G = NH and N ∩H = 1. We have |H| divides |N | − 1. If |H| = |N | − 1, then
we say that G is a complete Frobenius group; here the kernel N is an elementary



82 I.N. Nakaoka and N.R. Rocco

abelian p-group for some prime p (see for instance [36] for an overview). As a
consequence of the above result, we have

Proposition 3.2 ( [31])

(i) Every Frobenius group with an abelian Kernel A and complement H is embed-
ded into η∗(A,H);

(ii) If F denotes the finite field with q elements GF (q), then the affine group
An(F ) is embedded into η∗(A,GLn(F )), where A ∼= (Fn,+) is the translation
subgroup.

4. Some bounds for |G ⊗ G|

For a finite p-group G of order pn and |G′| = pm, it is proved in [32] that
|G⊗G| divides pn(n−m). Later, McDermott [23], using the orders of the factors of
the lower central series of G, established a bound for |G ⊗ G| which improves the
above bound. He showed that if G is a d−generator p−group of order |G| = pn,
then |G ⊗ G| divides pnd. This result was extended by Ellis and McDermott [14]
to G ⊗ H, where G and H are prime-power groups. Recently, Moravec [27] found
a new bound which improves the previous estimates.

Theorem 4.1 ( [27, Theorem 3.6]) Let G be a finite p-group of exponent pe. If
r = max{d(H) : H ≤ G}, then set m = ⌈log2 r⌉ if p > 2 and m = ⌈log2 r⌉ + 1

otherwise. Then |G ⊗ G| ≤ pr2(2e+m).

Let us denote by I(H) the augmentation ideal of ZZ[H] → ZZ. By considering
groups η(A,B) with appropriate arguments A and B, the first named author es-
tablished in [29] a bound for the order of the non-abelian tensor square of a finite
solvable group G involving the terms of the derived series of G.

Theorem 4.2 ( [29, Theorems B, 3.3])

(i) If G is a finite solvable group of derived length l, then

|G ⊗ G| ≤ |Gab ⊗ZZ Gab|
l−1∏
i=1

(|Gab
i ⊗ZZ Gab

i |2
i−1

· |Gab
i ⊗ZZ[ G

Gi
] I( G

Gi
)|)·

·
l−2∏
i=1

l−1∏
k=i−1

|Gab
k ⊗

ZZ[
Gi
Gk

]
I( Gi

Gk
)|2

i−1

.

(ii) If G is a finite metabelian group (i.e. l = 2), then

|G ⊗ G| divides |Gab ⊗ZZ Gab||G′ ∧ G′||G′ ⊗ZZ[Gab] I(Gab)|.

In the particular case of a finite metabelian group G where |G′| and |Gab| are
coprime we have the precise order of G⊗G in terms of |G′|, |Gab| and the order of
the Gab-stable subgroup of the Schur multiplier M(G′) (see [20] for an overview):

Theorem 4.3 ( [31, Proposition C, Corollary 4])
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(i) Assume G is a metabelian group as above. Then |G⊗G| = n|G′| · |Gab ⊗Gab|,
where n is the order of the Gab-stable subgroup of M(G′).

(ii) If in addition M(G′) = 1 then G ⊗ G ∼= G′ × (Gab ⊗ Gab).

5. q-Tensor product

Let G and H be normal subgroups of some group L and q a non-negative integer.
The definition of the q-tensor product, G⊗qH, of G and H has evolved in papers
[15,2,7]. Let K̂ = {k̂} be a set of symbols, one for each k ∈ G ∩ H (If q = 0 then

K̂ is taken to be the empty set). According to [11], we may define G⊗qH as the

group generated by the symbols g ⊗ h and k̂, for g ∈ G, h ∈ H and k̂ ∈ K̂, subject
to the following relations (for all g, g1 ∈ G, h, h1 ∈ H and k, k1 ∈ G ∩ H):

g ⊗ hh1 = (g ⊗ h1)(g
h1 ⊗ hh1); (2)

gg1 ⊗ h = (gg1 ⊗ hg1)(g1 ⊗ h); (3)

(g ⊗ h)k̂ = g(kq) ⊗ h(kq); (4)

k̂k1 = k̂

q−1∏

i=1

(k ⊗ (k−i
1 )kq−1−i

)k̂1; (5)

[k̂, k̂1] = kq ⊗ kq
1; (6)

[̂g, h] = (g ⊗ h)q. (7)

For q = 0 the 0-tensor product G⊗0H is the non-abelian tensor product G⊗H.
In the particular case where G = H = L it is called the q-tensor square, G⊗qG, of
G.

The q-exterior product of G and H, denoted by G ∧q H, is defined to be the
quotient of G⊗qH by its (normal) subgroup generated by the elements k ⊗ k, for
all k ∈ G∩H. We write g∧h to denote the image in G∧qH of the generator g⊗h.

Let ρ′ : G ∧q H → H be the homomorphism induced by the map ρ : G⊗qH →
H, g ⊗ h 7→ [g, h], k̂ 7→ kq, for all g ∈ G, h ∈ H and k ∈ G ∩ H. We denote by
Hn(G, Zq) the n-th homology group of G with coefficients in the trivial G-module
Zq. Ellis and Rodríguez-Fernández [15] established the following relations between
homology groups of G and q-exterior products.

Theorem 5.1 ( [15, Corollary 2]) Let G be any group. Then

(i) H2(G, Zq) ∼= Ker(ρ′ : G ∧q G → G).

(ii) For any free presentation F/R of G, H3(G, Zq) ∼= Ker(ρ′ : R ∧q F → F ).

The q-exterior square is also related with universal q-central extensions. A q-
central extension is a central extension 1 → Z → E → G → 1 such that every
element of Z has order dividing q. We say that this extension is universal if for
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any other q-central extension 1 → Z ′ → E′ → G → 1, there is a unique morphism
of extensions

1 → Z → E → G → 1
↓ ↓ ↓1

1 → Z ′ → E′ → G → 1.

The existence and the structure of universal q-central extensions were studied by
Brown in [2] (see also Conduché and Rodríguez-Fernández [7]). By using Theo-
rem 5.1, Brown proved that if G is a q-perfect group, that is, G = G′Gq, where
Gq is the subgroup of G generated by the set {gq|g ∈ G}, then universal q-central
extensions of G are isomorphic to the sequence

1 → H2(G, Zq) → G ∧q G
ρ′

→ G → 1.

We remind that the q-centre of a group G is the subgroup Zq(G) of the center
Z(G) consisting of those elements with order dividing q. The group G is said to be
q-capable if there exists a group Q such that Z(Q) = Zq(Q) and G ∼= Q/Z(Q). The
following central subgroup of G, called the q-exterior center of G, was considered
in [11]

Z∧
q (G) = {g ∈ G | 1 = g ∧ x ∈ G ∧q G, ∀x ∈ G}.

This subgroup is useful in deciding whether G is q-capable or not, according to the
next result.

Theorem 5.2 ( [11, Proposition 16 (vii)]) A group G is q-capable if and only if
its q-exterior centre is trivial.

Given normal subgroups G and H of some group L, denote by G♯qH the sub-
group of L generated by commutators [g, h] and q-th powers kq for g ∈ G, h ∈ H
and k ∈ G ∩ H. In the following theorem, we compile some properties of q-tensor
products and q-exterior products found in [7,11].

Theorem 5.3 Suppose that G and H are normal subgroups of a group L and let
q be a non-negative integer.

(i) ( [7] ) For r ≥ 1 there is an exact sequence

G ⊗qr H
φ
→ G ⊗r H → G ∩ H/G♯qH → 1,

where the homomorphism φ is defined by g ⊗ h 7→ g ⊗ h and k̂ 7→ k̂q for all
g ∈ G, h ∈ H and k ∈ G ∩ H;

(ii) ( [7] ) If G ∩ H = G♯qH, then G ⊗q H ∼= G ∧q H;

(iii) ( [7] ) If [G,H] = 1, then G ⊗q H ∼= (G/G♯qG) ⊗Z (H/H♯qH);

(iv) ( [11]) If F/R is a free presentation of G, then G ∧q G ∼= F ′F q/Rq[R,F ].
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6. The group ηq(G,H)

A construction related to the q-tensor product was introduced by Ellis in [11].
Using a slightly different approach, in [6] it was defined in the following manner:
Let G and H be normal subgroups of some larger group L and suppose that all
actions are given by conjugation in L. As in Section 5, for q ≥ 1 put K = G ∩ H
and let K̂ = {k̂ | k ∈ K} be a set of symbols, one for each element of K (for

q = 0, K̂ is defined to be the empty set). Let F (K̂) be the free group over K̂

and η(G,H) ∗ F (K̂) be the free product of η(G,H) and F (K̂). As G and Hϕ are
embedded into η(G,H), the elements of G (respectively of Hϕ) can be identified

with their respective images in η(G,H) ∗ F (Ĝ). Let J denote the normal closure

in η(G,H) ∗ F (K̂) of the following elements, for all k̂, k̂1 ∈ K̂, g ∈ G and h ∈ H :

g−1 k̂ g (k̂g)−1; (8)

(hϕ)−1 k̂ hϕ (k̂h)−1; (9)

(k̂)−1[g, hϕ] k̂ [gkq

, (hkq

)ϕ]−1; (10)

(k̂)−1 k̂k1 (k̂1)
−1(

q−1∏

i=1

[k, (k−i
1 )ϕ]k

q−1−i

)−1; (11)

[k̂, k̂1] [kq, (kq
1)

ϕ]−1; (12)

[̂g, h] [g, hϕ]−q. (13)

The construction is defined to be the factor group

ηq(G,H) := (η(G,H) ∗ F (K̂))/J.

It is clear that if R denotes the set of the relators corresponding to (8), . . . , (13)
and S = {[g, hϕ]g1 [gg1 , (hg1)ϕ]−1, [g, hϕ]h

ϕ
1 [gh1 , (hh1)ϕ]−1 | g, g1 ∈ G, h, h1 ∈ H},

then the group ηq(G,H) has the presentation:

ηq(G,H) = 〈G,Hϕ, K̂ | S,R〉. (14)

Also, if q = 0, then η0(G,H) coincides with the group η(G,H).
According to [6] the elements g ∈ G and hϕ ∈ Hϕ can be identified with their

respective images in ηq(G,H). Let K denote the subgroup of ηq(G,H) generated by

the images of K̂. The relators (10) imply that K normalizes the subgroup [G,Hϕ]
in ηq(G,H) and hence Υq(G,H) = [G,Hϕ]K is a normal subgroup of ηq(G,H). It
follows from [11, Theorem 8] (see also [6]) that Υq(G,H) is isomorphic to G⊗q H,
for any q ≥ 0. Furthermore, ηq(G,H) = Hϕ · (G · Υq(G,H)).

When G = H = L we write νq(G) and Υq(G) to denote ηq(G,G) and Υq(G,G),
respectively. We remark that the properties for ν(G) given by Theorem 2.1 and
part (i) of Theorem 2.3 also hold for νq(G), according to [6, Theorem 2.8].

Now let G 6= {1} be a polycyclic group. By [34] such group has a consistent
power-conjugate presentation, that is, G has a consistent presentation in the form

G = 〈a1, . . . , an | pcr(G)〉, (15)
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where pcr(G) is the set of the following power-conjugate relations:

aai

j = a
e(i,j,i+1)
i+1 · · · ae(i,j,n)

n , for 1 ≤ i < j ≤ n,

a
a
−1

i

j = a
f(i,j,i+1)
i+1 · · · af(i,j,n)

n , for 1 ≤ i < j ≤ n, (16)

ari

i = a
l(i,i+1)
i+1 · · · al(i,n)

n , for i ∈ I.

In [6] it is showed that for a polycyclic group G, the defining relations of
the group νq(G) can be defined only in the polycyclic generators of G, with the
exception of the relation (11).

Theorem 6.1 ( [6, Corollaries 3.5, 3.6]) Let G be a polycyclic group given by a

consistent power-conjugate presentation as in (15), and Ĝ = {ĝ |g ∈ G}. Then

(i) νq(G) has the presentation

νq(G) =
〈
a1, . . . , an, aϕ

1 , . . . , aϕ
n, Ĝ | pcr(G), pcr(Gϕ),

[ai, a
ϕ
j ]a

γ

k = [a
a

γ

k

i , (a
a

γ

k

j )ϕ] = [ai, a
ϕ
j ](a

γ

k
)ϕ

, âi
a

γ

k =
̂
(a

a
γ

k

i ),

âi
(aγ

k
)ϕ

=
̂
(a

a
γ

k

i ), [ai, a
ϕ
j ]â

γ

k = [a
a

γq

k

i , (a
a

γq

k

i )ϕ],

ĝh = ĝ (

q−1∏

i=1

[g, (hϕ)−i]g
q−1−i

) ĥ, [âα
i , âβ

j ] = [aαq
i , (aβq

j )ϕ],

̂
[aα

i , aβ
j ] = [aα

i , (aβ
j )ϕ]q, 1 ≤ i, j, k ≤ n, ∀ ĝh, ĝ, ĥ ∈ Ĝ

〉
, where

α =

{
1 if o(ai) < ∞,

±1 if o(ai) = ∞,
β =

{
1 if o(aj) < ∞,

±1 if o(aj) = ∞,
γ =

{
1 if o(ak) < ∞,

±1 if o(ak) = ∞;

(ii) Υq(G) is generated by

{[ai, a
ϕ
i ], [ai, a

ϕ
j ][aϕ

j , ai], [a
α
i , (aϕ

j )β ], âk, for 1 ≤ i < j ≤ n, 1 ≤ k ≤ n},

where α =

{
1 if o(ai) < ∞,

±1 if o(ai) = ∞,
and β =

{
1 if o(aj) < ∞,

±1 if o(aj) = ∞;

(iii) The subgroup ∆q(G) = 〈[g, gϕ]|g ∈ G〉 of νq(G) is generated by the set

{[ai, a
ϕ
i ], [ai, a

ϕ
j ][aϕ

j , ai], for 1 ≤ i < j ≤ n}.

For G a polycyclic group given by a pc-presentation, Theorem 6.1 considerably
reduces the number of generators and relators of νq(G) when compared with the
presentation (14). Furthermore, when G is finite it is useful to perform efficient
computer computations of νq(G) and of its subgroups Υq(G) and ∆q(G) (and,
consequently, of the q−exterior square of G since G ∧q G ∼= Υq(G)/∆q(G)). In
fact, with the help of the GAP system [38], in [6] it is computed |νq(G)|, G ⊗q G
and G ∧q G for the non-abelian groups G of orders up to 14 and q ∈ {2, 3, 4, 5}.
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Recently, Martins [22] extended results in [9] and described an algorithm for
computing a polycyclic presentation of the q-multiplier, the second homology group
with coefficients in Zq, the q-exterior square and the q-tensor square of a polycyclic
group given by a polycyclic presentation, for any q ≥ 0.
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