

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) v. 30 1 (2012): 45-52. ISSN-00378712 IN PRESS doi: 10.5269 / bspm.v30i1.13015

Somewhat (γ, β) -semicontinuous functions

C. Carpintero, N. Rajesh and E. Rosas

ABSTRACT: In this paper, some new classes of functions are introduce and study by making use of γ -semiopen sets and γ -semiclosed sets.

Key Words: Topological spaces, γ -open set, γ -semiopen set.

Contents

1	Introduction	45
2	Preliminaries	45
3	Somewhat (γ, β) -continuous functions	46
4	$\gamma\text{-}\mathbf{semiresolvable}$ spaces and $\gamma\text{-}\mathbf{semiirresolvable}$ spaces	50

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Andrijevic 1 introduce a class of generalized open sets in a topological space, so called *b*-open sets. Kasahara [4] defined the concept of an operation on topological spaces and introduced the concept of γ -closed graphs of a function. Ogata [5] introduced the notion of γ -open sets in a topological space (X, τ) . Gentry and Hoyle [3] introduced the concepts of somewhat continuous functions and Santhileela and Balasubramanian [7] introduced the concepts of somewhat semicontinuous functions and somewhat semiopen functions. In this paper, some new classes of functions are introduce and study by making use of γ -semiopen sets and γ -semiclosed sets.

2. Preliminaries

Definition 2.1 [4] Let (X, τ) be a topological space. An operation γ on the topology τ is a function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2 A subset A of a topological space (X, τ) is said to be γ -open set [5] if for each $x \in A$ there exists an open neighborhood U of x such that $U^{\gamma} \subset A$. The complement of a γ -open set is called a γ -closed set. τ_{γ} denotes the set of all γ -open sets in (X, τ) .

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05,54A10,54A20,54A40,54D10,54D30

Definition 2.3 [5] Let A be subset of a topological space (X, τ) . Then

- (i) the τ_{γ} -closure of A is defined as intersection of all γ -closed sets containing A. That is, τ_{γ} -Cl $(A) = \cap \{F : F \text{ is } \gamma\text{-closed and } A \subset F\}.$
- (ii) the τ_{γ} -interior of A is defined as union of all γ -open sets contained in A. That is, τ_{γ} -Int $(A) = \bigcup \{U : U \text{ is } \gamma\text{-open and } U \subset A\}.$

Definition 2.4 Let (X, τ) be a topological space. A subset A of X is said to be γ -semiopen [6] if $A \subset \tau_{\gamma}$ -Cl $(\tau_{\gamma}$ -Int(A)). γ -SO (X, τ) denotes the set of all γ -semi open subsets in (X, τ) .

Definition 2.5 [6] Let A be subset of a topological space (X, τ) . Then

- (i) the τ_{γ} -semiclosure of A is defined as intersection of all γ -semiclosed sets containing A. That is, τ_{γ} -s $\operatorname{Cl}(A) = \cap \{F : F \text{ is } \gamma\text{-semiclosed and } A \subset F\}$.
- (ii) the τ_{γ} -semiinterior of A is defined as union of all γ -semiopen sets contained in A. That is, τ_{γ} -s Int(A) = $\cup \{U : U \text{ is } \gamma \text{-semiopen and } U \subset A\}$.

3. Somewhat (γ, β) -continuous functions

Throughout this paper (X, τ) , (Y, σ) and (Z, η) are three topological spaces and $\gamma : \tau \to \mathcal{P}(X)$, $\beta : \sigma \to \mathcal{P}(Y)$ and $\alpha : \eta \to \mathcal{P}(Z)$ be operation on τ , σ and η , respectively. Also, the sets $\tau_{\gamma}, \sigma_{\beta}, \gamma$ -SO (X, τ) and β -SO (Y, σ) are fundamental in order to define a new class of functions.

Definition 3.1 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be somewhat (γ, β) -semicontinuous if for $U \in \sigma_{\beta}$ and $f^{-1}(U) \neq \emptyset$, there exists a γ -semiopen set, say, V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(U)$.

Example 3.2 Let $X = Y = \{a, b, c\}$ and $\tau = \sigma = \{\emptyset, X, \{a\}, \{a, b\}\}$. Let $\gamma = \beta$: $\sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ \operatorname{Cl}(A) & \text{if } b \in A. \end{cases}$$

Then the function $f: (X, \tau) \to (X, \sigma)$ defined as: f(a) = a, f(b) = c and f(c) = b is somewhat (γ, β) -semicontinuous.

Definition 3.3 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be:

- (i) (γ, β) -semicontinuous [2] if for each $U \in \sigma_{\beta}$, there exists a γ -semiopen set V in X such that $V \subset f^{-1}(U)$.
- (ii) (γ, β) -continuous [2] if $f^{-1}(V)$ is γ -closed for each β -closed subset V of Y.

Example 3.4 Let $X = Y = \{a, b, c\}$ and $\tau = \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ be an operation defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ \operatorname{Cl}(A) & \text{if } b \in A, \end{cases}$$

Let $\beta : \sigma \to P(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} \operatorname{Cl}(A) & \text{if } b \notin A, \\ A & \text{if } b \in A. \end{cases}$$

Then the function $f: (X, \tau) \to (X, \sigma)$ defined as: f(a) = c, f(b) = b and f(c) = ais (γ, β) -semicontinuous and $g: (X, \tau) \to (X, \sigma)$ defined as: g(a) = a, g(b) = c and g(c) = b is (γ, β) -continuous.

It is clear that every (γ, β) -semicontinuous function is somewhat (γ, β) -continuous but the converse is not true in general as shown by the following example.

Example 3.5 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\beta : \sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ \operatorname{Int}(\operatorname{Cl}(A)) & \text{if } b \in A, \end{cases} \text{ and } A^{\beta} = \begin{cases} A & \text{if } c \in A, \\ A \cup \{c\} & \text{if } c \notin A. \end{cases}$$

Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is somewhat (γ, β) -semicontinuous but not (γ, β) -semicontinuous.

Proposition 3.6 If $f : (X, \tau) \to (Y, \sigma)$ is somewhat (γ, β) -continuous and $g : (Y, \sigma) \to (Z, \eta)$ is (β, α) -continuous, then $g \circ f : (X, \tau) \to (Z, \eta)$ is somewhat (γ, α) -continuous.

Proof: Clear.

Definition 3.7 A subset M of a topological space (X, τ) is said to be γ -semidense (resp. γ -dense) in X if there is no proper γ -semiclosed (resp. γ -closed) set C in X such that $M \subset C \subset X$.

Proposition 3.8 For a surjective function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is somewhat (γ, β) -semicontinuous.
- (ii) If C is a β -closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper γ -semiclosed subset D of X such that $D \supset f^{-1}(C)$.
- (iii) If A is a γ -semiopen subset of Y such that $f^{-1}(A) \neq X$, then there is a proper γ -semiopen subset B of X such that $f^{-1}(A) = B$.

(iv) If M is a γ -semidense subset of X, then f(M) is a β -dense subset of f(X).

Proof: (i) \Rightarrow (ii): Let C be a β -closed subset of Y such that $f^{-1}(C) \neq X$. Then $Y \setminus C$ is a β -open set in Y such that $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C) \neq \emptyset$. By (i), there exists a γ -semiopen set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$. This means that $X \setminus V \supset f^{-1}(C)$ and $X \setminus V = D$ is a proper γ -semiclosed set in X. (ii) \Rightarrow (i): Let $U \in \sigma_{\beta}$ and $f^{-1}(U) \neq X$. Then $Y \setminus U$ is γ -closed and $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U) \neq \emptyset$. By (ii), there exists a proper γ -semiclosed set D such that $D \supset f^{-1}(Y \setminus U)$. This implies that $X \setminus D \subset f^{-1}(U)$ and $X \setminus D$ is γ -semiopen and $X \setminus D \neq \emptyset$.

(ii) \Leftrightarrow (iii): Clear.

(ii) \Rightarrow (iv): Let M be a γ -semidense set in X. Suppose that f(M) is not γ -dense in Y. Then there exists a proper β -closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper γ -semiclosed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is β -dense in X.

(iv) \Rightarrow (ii): Suppose (ii) is not true. This means that there exists a β -closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper γ -semiclosed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is γ -semidense in X. But by (iv), $f(f^{-1}(C)) = C$ must be β -dense in Y, which is a contradiction to the choice of C.

Definition 3.9 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be somewhat (γ, β) -semiopen provided that if $U \in \tau_{\gamma}$ and $U \neq \emptyset$, then there exists β -semiopen set V in Y such that $V \neq \emptyset$ and $V \subset f(U)$.

Example 3.10 Let $X = Y = \{a, b, c\}$ and $\tau = \sigma = \{\emptyset, X, \{a\}, \{a, b\}\}$. Let $\gamma = \beta$: $\sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ \operatorname{Cl}(A) & \text{if } b \in A. \end{cases}$$

Then the function $f: (X, \tau) \to (X, \sigma)$ defined as: f(a) = a, f(b) = c and f(c) = b is somewhat (γ, β) -semiopen.

Definition 3.11 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (γ, β) -semiopen [2] provided that if $U \in \tau_{\gamma}$, then there exists a β -semiopen set V in Y such that $V \subset f(U)$.

Clearly every (γ, β) -semiopen function is somewhat (γ, β) -open but the converse is not true in general as the following example shows.

Example 3.12 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{c\}, \{a, b\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\beta : \sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } c \in A, \\ A \cup \{c\} & \text{if } c \notin A, \end{cases} \text{ and } A^{\beta} = \begin{cases} A & \text{if } a \in A, \\ A \cup \{c\} & \text{if } a \notin A. \end{cases}$$

Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = a, f(b) = f(c) = c is somewhat (γ, β) -semiopen but not (γ, β) -semiopen.

Proposition 3.13 For a bijective function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is somewhat (γ, β) -semiopen.
- (ii) If C is a γ -closed subset of X, such that $f(C) \neq Y$, then there is a β -semiclosed subset D of Y such that $D \neq Y$ and $D \supset f(C)$.

Proof: (i) \Rightarrow (ii): Let C be any γ -closed subset of X such that $f(C) \neq Y$. Then $X \setminus C$ is γ -open in X and $X \setminus C \neq \emptyset$. Since f is somewhat (γ, β) -open, there exists β -open set $V \neq \emptyset$ in Y such that $V \subset f(X \setminus C)$. Put $D = Y \setminus V$. Clearly D is β -semiclosed in Y and we claim $D \neq Y$. If D = Y, then $V = \emptyset$, which is a contradiction. Since $V \subset f(X \setminus C)$, $D = Y \setminus V \supset (Y \setminus f(X \setminus C)) = f(C)$. (ii) \Rightarrow (i): Let U be any nonempty γ -open subset of X. Then $C = X \setminus U$ is a γ -closed set in X and $f(X \setminus U) = f(C) = Y \setminus f(U)$ implies $f(C) \neq Y$. Therefore, by (ii), there is a β -semiclosed set D of Y such that $D \neq Y$ and $f(C) \subset D$. Clearly $V = Y \setminus D$ is a β -semiopen set and $V \neq \emptyset$. Also, $V = Y \setminus D \subset Y \setminus f(C) = Y \setminus f(X \setminus U) = f(U)$.

Proposition 3.14 For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is somewhat (γ, β) -semiopen.
- (ii) If A is a β -semidense subset of Y, Then $f^{-1}(A)$ is a γ -dense subset of X.

Proof: (i) \Rightarrow (ii): Suppose A is a β -semidense set in Y. We want to show that $f^{-1}(A)$ is a γ -dense subset of X. Suppose not, then there exists a γ -closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat (γ, β) -semiopen and $X \setminus B$ is γ -open, there exists a nonempty β -semiopen set C in Y such that $C \subset f(X \setminus B)$. Therefore, $C \subset f(X \setminus B) \subset f(f^{-1}(X \setminus A) \subseteq X \setminus A$. That is, $A \subset X \setminus C \subset X$. Now, $X \setminus C$ is a β -semiclosed set and $A \subset X \setminus C \subset X$. This implies that A is not a γ -semidense set in X, which is a contradiction. Therefore, $f^{-1}(A)$ must be γ -dense set in X.

(ii) \Rightarrow (i): Suppose A be a nonempty γ -open subset of X. We want to show that σ_{β} - $s \operatorname{Int}(f(A)) \neq \emptyset$. Suppose σ_{β} - $s \operatorname{Int}(f(A)) = \emptyset$. Then, σ_{β} - $s \operatorname{Cl}(Y \setminus f(A)) = Y$. Therefore, by (ii), $f^{-1}(Y \setminus f(A))$ is γ -dense in X. But $f^{-1}(Y \setminus f(A)) \subseteq X \setminus A$. Now, $X \setminus A$ is γ -closed. Therefore, $f^{-1}(Y \setminus f(A)) \subseteq X \setminus A$ gives σ_{γ} -Cl $(f^{-1}(Y \setminus f(A))) \subseteq X \setminus A$. This implies that $A = \emptyset$, which is contradiction to $A \neq \emptyset$. Therefore, σ_{β} - $s \operatorname{Int}(f(A)) \neq \emptyset$. This proves that f is somewhat (γ, β) -semiopen. \Box

4. γ -semiresolvable spaces and γ -semirresolvable spaces

In this section we define and characterize the spaces γ -semiresolvable and γ -resolvable using the notions of γ -semidense and γ -dense set.

Definition 4.1 A topological space (X, τ) is said to be:

- (i) γ -semiresolvable if there exists a γ -semidense set A in (X, τ) such that $X \setminus A$ is also γ -semidense in (X, τ) . Otherwise, (X, τ) is called γ -semirresolvable.
- (ii) γ -resolvable if there exists a γ -dense set A in (X, τ) such that $X \setminus A$ is also γ -dense in (X, τ) . Otherwise, (X, τ) is called γ -irresolvable.

Example 4.2 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Let $\gamma : \tau \to (\mathcal{P}X)$ be an operation defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ \operatorname{Cl}(A) & \text{if } b \in A. \end{cases}$$

Then the space (X, τ) is γ -semiirresolvable and γ -resolvable.

Proposition 4.3 For a topological space (X, τ) , the following statements are equivalent:

- (i) (X, τ) is γ -semiresolvable;
- (ii) (X, τ) has a pair of γ -semidense sets A and B such that $A \subseteq X \setminus B$.

Proof: (i) \Rightarrow (ii): Suppose that $X \setminus B \subset A$ for all γ -semidense sets A and B in X. Then τ_{γ} -Cl($X \setminus B$) $\subset \tau_{\gamma}$ -s Cl(A). Since A is γ -dense, τ_{γ} -s Cl($X \setminus B$) $\subset X$. That is, τ_{γ} -s Cl($X \setminus B$) $\neq X$. In a similar manner, we have τ_{γ} -s Cl($X \setminus A$) $\neq X$ for all γ semidense sets A in X, which is a contradiction to X being a γ -semiresolvable space. Therefore, (X, τ) has a pair of γ -semidense sets A and B such that $A \subseteq X \setminus B$. (ii) \Rightarrow (i): Suppose that (X, τ) is a γ -semiresolvable space. Then for all γ -semidense sets, say, A_i in (X, τ) , we have τ_{γ} -s Cl($X \setminus A_i$) $\neq X$. In particular, τ_{γ} -Cl($X \setminus A_2$) \neq X. That is, there exists a γ -closed set B in (X, τ) such that $X \setminus B \subset C \subset X$. Then $A \subset X \setminus B \subset C \subset X$, which is a contradiction to A being a γ -semidense set in X;

Proposition 4.4 For a topological space (X, τ) , the following statements are equivalent:

(i) (X, τ) is γ -irresolvable;

hence (X, τ) is γ -semiresolvable.

(ii) For all γ -dense sets A in X, τ_{γ} -Int $(A) \neq \emptyset$.

Proof: (i) \Rightarrow (ii): Let A be any γ -dense subset of X. Since (X, τ) is γ -irresolvable, τ_{γ} -Cl $(X \setminus A) \neq X$; follows τ_{γ} -Cl $(X \setminus A) = X \setminus \tau_{\gamma}$ -Int $(A) \neq X$. And therefore, τ_{γ} -Int $(A) \neq \emptyset$. (ii) \Rightarrow (i): Suppose that (X, τ) is a γ -resolvable space. Then by Definition 4.1 (ii),

there exists a γ -dense set A in (X, τ) is a γ -resolvable space. Then by Definition 4.1 (fi), there exists a γ -dense set A in (X, τ) such that $X \setminus A$ is also γ -dense in X. It follows that, τ_{γ} -Cl $(X \setminus A) = X = X \setminus \tau_{\gamma}$ -Int(A), and therefore, τ_{γ} -Int $(A) = \emptyset$, which is a contradiction; hence (X, τ) is γ -irresolvable. \Box

Proposition 4.5 If $\bigcup_{i=1}^{n} A_i = X$, where A_i 's are subsets of X such that τ_{γ} -Int $(A_i) = \emptyset$, then (X, τ) is a γ -resolvable space.

Proof: By hypothesis, we have $\bigcap_{i=1}^{n} (X \setminus A_i) = \emptyset$. Then, there must be at least two nonempty disjoint subsets $X \setminus A_i$ and $X \setminus A_j$ in X. That is, $X \setminus A_i \cup X \setminus A_j \emptyset$. Then $vA_i \subseteq A_j$; follows that, $X = \tau_{\gamma}$ -Cl $(X \setminus A_i) \subseteq \tau_{\gamma}$ -Cl (A_j) . Hence, τ_{γ} -Cl $(A_j) = X$. Therefore, (X, τ) has a γ -dense set A_j such that τ_{γ} -Cl $(X \setminus A_j) = X$. Hence (X, τ) is a γ -resolvable space.

Proposition 4.6 If $f : (X, \tau) \to (Y, \sigma)$ is a somewhat (γ, β) -semiopen function and σ_{β} -s $\operatorname{Int}(A) = \emptyset$ for a nonempty set A in Y, then τ_{γ} - $\operatorname{Int}(f^{-1}(A)) = \emptyset$.

Proof: Let A be a nonempty set in Y such that σ_{β} -s $\operatorname{Int}(A) = \emptyset$. Then σ_{β} s $\operatorname{Cl}(Y \setminus A) = Y \setminus \sigma_{\beta}$ -s $\operatorname{Int}(A) = Y$. Since f is somewhat (γ, β) -semiopen and $Y \setminus A$ is β -dense in Y, using Proposition 3.14, $f^{-1}(Y \setminus A)$ is γ -dense in X. Then, τ_{γ} - $\operatorname{Cl}(f^{-1}(Y \setminus A)) = \tau_{\gamma}$ - $\operatorname{Cl}(X \setminus f^{-1}(A)) = X \setminus \tau_{\gamma}$ - $\operatorname{Int}(f^{-1}(A)) = X$; hence τ_{γ} - $\operatorname{Int}(f^{-1}(A)) = \emptyset$.

Proposition 4.7 Let $f : (X, \tau) \to (Y, \sigma)$ be a somewhat (γ, β) -semiopen function. If X is γ -irresolvable, then Y is β -semiirresolvable.

Proof: Let A be a nonempty set in Y such that $\sigma_{\beta} \cdot s \operatorname{Cl}(A) = Y$. We show that $\sigma_{\beta} \cdot s \operatorname{Int}(A) \neq \emptyset$. Suppose not, then $\sigma_{\beta} \cdot s \operatorname{Cl}(Y \setminus A) = Y$. Since f is somewhat (γ, β) -semiopen and $Y \setminus A$ is β -semidense in Y, we have $f^{-1}(Y \setminus A)$ is γ -dense in X. Then τ_{γ} -Int $(f^{-1}(A)) = \emptyset$. Now, A is β -semidense in Y, $f^{-1}(A)$ is γ -dense in X. Therefore, for the γ -dense set $f^{-1}(A)$, we have σ_{γ} -Int $(f^{-1}(A)) = \emptyset$, which is a contradiction to Proposition 4.4. Hence we must have $\sigma_{\beta} \cdot s \operatorname{Int}(A) \neq \emptyset$ for all β -semidense sets A in Y. Hence by Proposition 4.4, Y is β -semiirresolvable. \Box

References

- 1. D. Andrijevic, On b-open sets, Math. Vesnik. 48(1996)No. 1-2. 59-64
- 2. C. Carpintero, N. Rajesh and E. Rosas, Some functions on topological spaces (under preparation).

C. CARPINTERO, N. RAJESH AND E. ROSAS

- 3. K. R. Gentry and H. B. Hoyle, Somewhat continuous functions, Czeck. Math. Jl. 21 (1971).No. 1, 5-12.
- 4. S.Kasahara, Operation-compact spaces, Math. Japonica 24 (1979), 97 -105.
- 5. H. Ogata, Operations on topological spaces and associated topology, Math. Japon., $36(1)(1991),\,175\text{-}184.$
- 6. G. Sai Sundara Krishnan and K. Balachandran, On $\gamma\text{-semiopen sets}$ in a topological spaces, Bull. Cal. Math. Soc., 98(6), (2006), 517-530.
- 7. D. Santhileela and G. Balasubramanian, Somewhat semicontinuous and somewhat semiopen functions, Bull. Cal. Math. Soc. 94(1)(2002)41-48.

C. Carpintero and E. Rosas Universidad De Oriente Nucleo De Sucre Cumana Venezuela. E-mail address: carpintero.carlos@gmail.com E-mail address: ennisrafael@gmail.com

and

N. Rajesh Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India. E-mail address: nrajesh_topology@yahoo.co.in