

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) v. 30 1 (2012): 35-43. ISSN-00378712 in press doi:10.5269/bspm.v30i1.13014

Solidity and some double sequence spaces

N.Subramanian and P.Thirunavakarasu

ABSTRACT: In this paper we investigate the solidity (normality) of the sequence spaces $c_A^2, \ell_A^2, \Lambda_A^2$ and Γ_A^2 .

Key Words: entire sequence, analytic sequence, double sequence.

Contents

1	Introduction	35
2	Definitions and Preliminaries	36
3	Main Results	37

1. Introduction

Throughout w, Γ and Λ denote the classes of all, entire and analytic scalar valued single sequences respectively.

We write w^2 for the set of all complex sequences (x_{mn}) , where $m, n \in N$ the set of positive integers. Then w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich[2]. Later on it was investigated by Hardy[3], Moricz[4], Moricz and Rhoades[5], Basarir and Solankan[1], Tripathy[6], Colak and Turkmenoglu[7], Turkmenoglu[8], and many others.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p \tag{1}$$

The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence. (s_{mn}) is called convergent, where $s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, ...)$ (see[9]). A sequence $x = (x_{mn})$ is said to be double analytic if $mn |x_{mn}|^{1/m+n} < \infty$. The vector space of all double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if

 $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . Let $\phi = \{all finite sequences\}$. Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 40A05,40C05,40D05.

section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \delta_{ij}$ for all $m, n \in N$,

$$\delta_{mn} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \\ \cdot & & & & \\ \cdot & & & & \\ 0, & 0, & \dots 1, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

with 1 in the $(m, n)^{th}$ position and zero other wise. An FK-space(or a metric space)X is said to have AK property if (δ_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$. An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in N)$ are also continuous. If X is a sequence space, we give the following definitions:

$$\begin{array}{l} (\mathrm{i})X' = \mathrm{the\ continuous\ dual\ of\ }X;\\ (\mathrm{ii})X^{\alpha} = \left\{ a = (a_{mn}): \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty,\ for\ each\ x \in X \right\} \\ (\mathrm{iii})X^{\beta} = \left\{ a = (a_{mn}): \sum_{m,n=1}^{\infty} a_{mn}x_{mn}\ is\ convegent,\ for\ each\ x \in X \right\} \\ (\mathrm{iv})X^{\gamma} = \left\{ a = (a_{mn}): m, n \geq 1 \ \left| \sum_{m,n=1}^{M,N} a_{mn}x_{mn} \right| < \infty,\ for\ each\ x \in X \right\}; \\ (\mathrm{v})let\ X\ beanFK - space \supset \phi;\ then\ X^{f} = \left\{ f(\delta_{mn}): f \in X' \right\}; \\ (\mathrm{vi})X^{\Lambda} = \left\{ a = (a_{mn}): mn \ |a_{mn}x_{mn}|^{1/m+n} < \infty,\ for\ each\ x \in X \right\}; \\ X^{\alpha}.X^{\beta}, X^{\gamma}\ \mathrm{are\ called}\ \alpha - (or\ K\"othe\ - \ Toeplitz) \mathrm{dual\ of\ }X, \beta - (or\ generalized\ - K\"othe\ - \ Toeplitz) \mathrm{dual\ of\ }X, \gamma - \mathrm{dual\ of\ }X, \Lambda - \mathrm{dual\ of\ }X \ respectively. \end{array}$$

2. Definitions and Preliminaries

Let w^2 denote the set of all complex double sequences. A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{mn} |x_{mn}|^{1/m+n} < \infty$. The vector space of all prime sense double analytic sequences will be denoted by Λ^2 . A sequence $x = (x_{mn})$ is called prime sense double entire sequence if $|x_{mn}|^{1/m+n} \to 0$ as $m, n \to \infty$. The double entire sequences will be denoted by Γ^2 . The space Λ^2 and Γ^2 is a metric space with the metric

$$d(x,y) = \sup_{mn} \left\{ \left| x_{mn} - y_{mn} \right|^{1/m+n} : m, n : 1, 2, 3, \dots \right\}$$
(2)

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 .

 c^2 = the space of all double convergent sequences.

 ℓ^2 =the space of all sequences $x = \{x_{mn}\}$ such that $\sum_{m,n=1}^{\infty} |x_{mn}|$ converges.

Let $A = (a_{mn}^{jk}) (m, n, j, k = 1, 2, 3, \cdots)$ be an infinite matrix. Given a sequence $x = \{x_{mn}\}$ we write formally

$$y_{mn} = A_{mn}(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn}^{jk} x_{mn}(j, k = 1, 2, \cdots)$$

The sequence $\{y_{mn}\} = \{A_{mn}(x)\}$ will be denoted by Ax or y. Let X be a sequence space and let X_A be the set of all those sequences $x = \{x_{mn}\}$ for which $Ax \in X$.

The set of all matrices transforming X into X will be denoted by (X, X). We recall the following :

A sequence space X is called solid (or normal) if and only if $\Lambda^2 X \subset X$. Any matrix in (c^2, c^2) is called a conservative matrix. A conservative matrix which preserves the limit is said to be a Toeplitz matrix.

3. Main Results

Proposition 3.1 If A is a conservative matrix, which fails to sum an analytic sequence, then c_A^2 is not solid.

Proof: The constant sequence

$$e = \begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

is in c_A^2

with 1 in the up to $(m, n)^{th}$ position and zero other wise.

By our hypothesis, there exists a analytic sequence b such that $b \notin c_A^2$. That is $b \cdot e \notin c_A^2$. Therefore, $\Lambda^2 \cdot c_A^2 \not\subset c_A^2$. Showing that c_A^2 is not solid. This completes the proof.

Corollary 3.2 If A is a Toeplitz matrix, then c_A^2 is not solid.

Proposition 3.3 If $A \in (\ell^2, \ell^2)$, then ℓ_A^2 is in general not solid.

Proof: Let

$$A = \begin{pmatrix} 1, & 1, & 0, & 0, & 0, \dots 0, & 0, & 0, \dots \\ 0, & 0, & 1, & 1, & 0, \dots 0, & 0, & 0, \dots \\ \cdot & & & & & & \\ \cdot & & & & & & \\ 0, & 0, & \dots 1, & 1, & 0, & 0, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, & 0, \dots \end{pmatrix}$$

with 1 in the $(m, n)^{th}$ position and 1 in the $(m+1, n+1)^{th}$ position and zero other wise.

That

$$a_{m,2n-1}a_{m,2n} - a_{3m-1,n}a_{2m,2n} = 1, (m, n = 1, 2, 3, \cdots)$$
$$a_{m,2n}a_{m,2n} - a_{3m,n}a_{2m,2n} = 1, (m, n = 1, 2, 3, \cdots)$$
$$a_{mn}^{jk} = 0, \text{ Otherwise.}$$

Then $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{mn}^{jk}| = 1$ for each fixed j, k

Showing that $A \in (\ell^2, \ell^2)$ We note that

 $x \in \ell_A^2$ if and only if $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{m,2n-1}x_{m,2n} - x_{3m-1,n}x_{2m,2n}|$ converges. Take

	$\begin{pmatrix} 1, \\ 1, \end{pmatrix}$	-1, -1,	$1, \\1,$	$^{-1}, \\ -1,$	$\begin{pmatrix} 0, \dots \\ 0, \dots \end{pmatrix}$
x =	. .				
	$\begin{pmatrix} .\\ 1,\\ 0, \end{pmatrix}$	$-1, \\ 0,$	1,0,	$-1, \\ 0,$	0, 0,)

so that $x \in \ell_A^2$. with 1 in the $(m, n)^{th}$ position and -1 in the upto $(m+1, n+1)^{th}$, zero other wise. Take

$$b = x = \begin{pmatrix} 1, & -1, & \dots 1, & -1, & 0, \dots \\ 1, & -1, & \dots 1, & -1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & & \\ 1, & -1, & \dots 1, & -1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}.$$

Then b is in Λ^2 .

with 1 and -1 alternatively up to $(m, n)^{th}$ position and zero other wise. Now

$$y = bx \begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & & \\ \cdot & & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix} = e$$

with 1 up to $(m, n)^{th}$ position and zero other wise.

For e, we have $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |y_{m,2n-1}y_{m,2n} + y_{3m-1,n}y_{2m,2n}| = 2 + 2 + \cdots$

which is a divergent series. Thus $\Lambda^2 \cdot \ell_A^2 \subset \ell_A^2$. Hence ℓ_A^2 is not solid. This completes the proof.

Proposition 3.4 If $A \in (\Lambda^2, \Lambda^2)$, then Λ^2_A is in general, not solid.

Proof: Let

$$A = \begin{pmatrix} -1, & 1, & 0, & 0, & 0, \dots, 0, & 0, \dots \\ 0, & 0, & -1, & 1, & 0, \dots, 0, & 0, \dots \\ \cdot & & & & & & \\ \cdot & & & & & & \\ 0, & 0, & \dots -1, & 1, & 0, & 0, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, & 0, \dots \end{pmatrix}$$

with -1 in the $(m, n)^{th}$ position and 1 in the $(m+1, n+1)^{th}$ position and zero other wise.

Inother words, $A = (a_{mn}^{jk})$ is defined by

 $a_{m,2n-1}a_{m,2n} - a_{3m-1,n}a_{2m,2n} = 1, (m, n = 1, 2, 3, \cdots)$

 $a_{m,2n}a_{m,2n} - a_{3m,n}a_{2m,2n} = 1, (m, n = 1, 2, 3, \cdots)$

 $a_{mn}^{jk} = 0$, Otherwise.

Then $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| a_{mn}^{jk} \right|^{1/m+n} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| (a_{m,2n-1}a_{m,2n} - a_{3m-1,n}a_{2m,2n}) \right| +$

 $|(a_{m,2n}a_{m,2n} - a_{3m,n}a_{2m,2n})| = 2$ for each fixed j, k.

Consequently, $A \in (\Lambda^2, \Lambda^2)$ Note that $x \in \Lambda^2_A$ if and only if

$$Ax = \begin{pmatrix} -a_{11} + a_{12}, & -a_{13} + a_{14}, & \dots \\ -a_{21} + a_{22}, & -a_{23} + a_{24}, & \dots \\ \vdots & & & \\ \vdots & & & \\ \vdots & & & \end{pmatrix} \in \Lambda^2$$

we take

$$A = \begin{pmatrix} 1, & 2, & 3, & 4, & \dots \\ 1, & 2, & 3, & 4, & \dots \\ \vdots & & & & \\ \cdot & & & & \\ \cdot & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix} \text{ and } x \in \Lambda_A^2.$$

$$Ax = \begin{pmatrix} -1, & 1, & \dots -1, & 1, & 0, \dots \\ -1, & 1, & \dots -1, & 1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ -1, & 1, & \dots -1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

$$Bx = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \\ \cdot & & & \\ 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$
and
$$A(bx) = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

$$A(bx) = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ \cdot & & & & \\ 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix} \notin \Lambda^2$$

Thus $\Lambda^2 \cdot \Lambda^2_A \not\subset \Lambda^2_A$. Hence Λ^2_A is not a solid space. This completes the proof. \Box

Proposition 3.5 If $A \in (\Gamma^2, \Gamma^2)$, the Γ_A^2 is not necessarily solid.

40

Proof: Let

$$A = \begin{pmatrix} -1, & 1, & 0, & 0, & 0, \dots 0, & 0, \dots \\ 0, & 0, & -1, & 1, & 0, \dots 0, & 0, \dots \\ \cdot & & & & & \\ \cdot & & & & & \\ 0, & 0, & \dots -1, & 1, & 0, & 0, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, & 0, \dots \end{pmatrix}$$

writing $\{t_{mn}\}\$ for the transform of $\{x_{mn}\}\$, so that

 $t_{mn} = -(x_{m,2n-1}x_{m,2n} - x_{3m-1,n}x_{2m,2n}) + (x_{m,2n}x_{m,2n} - x_{3m,n}x_{2m,2n}), (m, n = 1, 2, 3, \cdots)$ We can verify directly that

$$|x_{mn}|^{1/m+n} \to 0 \Rightarrow |t_{mn}|^{1/m+n} \to 0 \ (m, n \to \infty)$$

For if $\eta < 1$, then $|a + b|^{\eta} < |a|^{\eta} + |b|^{\eta}$ so that

$$|t_{mn}|^{1/m+n} < |x_{m,2n-1}x_{m,2n} - x_{3m-1,n}x_{2m,2n}|^{1/m+n} + |x_{m,2n}x_{m,2n} - x_{3m,n}x_{2m,2n}|^{1/m+n}$$
(3)

Since $|x_{mn}|^{1/m+n} \to 0 \ (m, n \to \infty)$, we have $|x_{mn}| < 1$ for sufficiently large m, n. Supposing that m, n is large enough for

$$\begin{aligned} |x_{m,2n-1}x_{m,2n} - x_{3m-1,n}x_{2m,2n}| < 1, |x_{m,2n}x_{m,2n} - x_{3m,n}x_{2m,2n}| < 1. \end{aligned}$$

Hence if $|x_{mn}|^{1/m+n} \to 0$, then $|t_{mn}|^{1/m+n} \to 0 \ (m,n \to \infty)$.

It is now trivial that

$$\begin{pmatrix} 1, & 1, & \dots 1, & 1, & 0, \dots \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ \cdot & & & & & \\ \cdot & & & & & \\ 1, & 1, & \dots 1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

belongs to Γ_A^2 but

does not.

Here we have

$$b = \begin{pmatrix} -1, & 1, & \dots -1, & 1, & 0, \dots \\ -1, & 1, & \dots -1, & 1, & 0, \dots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & & \\ -1, & 1, & \dots -1, & 1, & 0, \dots \\ 0, & 0, & \dots 0, & 0, & 0, \dots \end{pmatrix}$$

in Λ^2

So Γ_A^2 is not solid. This completes the proof.

,

References

- M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
- 2. Bromwich, An introduction to the theory of infinite series $Macmillan\ and\ Co.Ltd.$, New York, 1965.
- 3. G.H.Hardy, On the convergence of certain multiple series, *Proc. Camb. Phil. Soc.*, **19** (1917), 86-95.
- 4. F.Moricz, Extention of the spaces c and c_0 from single to double sequences, Acta. Math. Hungerica, 57(1-2), (1991), 129-136.
- F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, **104**, (1988), 283-294.
- B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
- 7. R.Colak and A.Turkmenoglu. The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).
- A.Turkmenoglu, Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1), (1999), 23-31.
- 9. T.Apostol, Mathematical Analysis, Addison-wesley, London, 1978.
- Erwin Kreyszig, Introductory Functional Analysis with Applications, by John wiley and sons Inc., 1978.

Solidity and some double sequence spaces

N.Subramanian and P.Thirunavakarasu Department of Mathematics, SASTRA University, Thanjavur-613 401, India and PG and Research Department of Mathematics, Periyar EVR College, Trichy-620 023, India. E-mail address: nsmaths@yahoo.com E-mail address: ptavinash@yahoo.com E-mail address: ptavinash1967@gmail.com 43