

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm (3s.) **v. 30** 1 (2012): **21–33**. ISSN-00378712 in press doi:10.5269/bspm.v30i1.13013

Operation approaches on *b*-open sets and applications

C. Carpintero, N. Rajesh and E. Rosas

ABSTRACT: In this paper, we introduce the concept of an operation γ on a family of *b*-open sets in a topological space (X, τ) . Using this operation γ , we introduce the concept of *b*- γ -open sets and study some of their properties.

Key Words: Topological spaces, b-open set, γ -open set, γ -b-open set

Contents

1	Introduction and Preliminaries	21
2	b - γ -Open sets	22
3	Separation axioms	28
4	b - (γ, β) -continuous functions	30

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Andrijevic [1] introduce a class of generalized open sets in a topological space, so- called bopen sets. The class of b-open sets is contained in the class of semi preopen sets and contains all semi open sets and preopen sets. Kasahara [4] defined the concept of an operation on topological spaces and introduce the concept of γ -closed graphs of a function. Ogata [5] introduce the notions of γ -open sets in a topological space and C. K. Bass, B. M. Uzzil Afsan and M. K. Ghosh [2] introduce the notion of γ - β openess and investigatd its fundamental properties. In this paper, we introduce the concept of an operation γ on a family of b-open sets in a topological space (X, τ) . Using this operation γ , we introduce the concept of b- γ -open sets and study some of their properties. The closure and the interior of A of a topological space (X, τ) are denoted by Cl(A) and Int(A), respectively. A subset A of X is said to be b-open [1] $A \subset \operatorname{Int}(\operatorname{Cl}(A)) \cup \operatorname{Cl}(\operatorname{Int}(A))$. The complement of a b-open is called b-closed [1]. The intersection of all b-closed sets containing A is called the b-closure [1] of A and is denoted by $b \operatorname{Cl}(A)$. The family of all b-open sets of (X, τ) is denoted by BO(X). The b- θ -closure [6] of A, denoted by $b \operatorname{Cl}_{\theta}(A)$, is defined to be the set of all $x \in X$ such that $A \cap b \operatorname{Cl}(U) \neq \emptyset$ for every b-open set U containing x. A subset A is called b- θ -closed [6] if and only if $A = b \operatorname{Cl}_{\theta}(A)$.

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54A05,54A10,54A20,54A40,54D10,54D30

2. $b-\gamma$ -Open sets

Definition 2.1 Let $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ be a mapping satisfying the following property: $V \subset \gamma(V)$ for any $V \in BO(X, \tau)$. We call the mapping γ an operation on $BO(X, \tau)$. We denote $V^{\gamma} = \gamma(V)$ for any $V \in BO(X, \tau)$.

Definition 2.2 Let (X, τ) be a topological space and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. A nonempty set A of X is called a b- γ -open set of (X, τ) if for each point $x \in A$, there exists a b-open set U containing x such that $U^{\gamma} \subset A$. The complement of a γ -open set is called γ -closed in (X, τ) . We suppose that the empty set is b- γ -open for any operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$. We denote the set of all b- γ -open sets of (X, τ) by $\gamma BO(X)$ (or shortly $\gamma BO(X)$).

Example 2.3 A subset A is a b-id-open set of (X, τ) if and only if A is b-open in (X, τ) . The operation $id : BO(X, \tau) \to \mathcal{P}(X)$ is defined by $V^{id} = V$ for any set $V \in BO(X, \tau)$; this operation is called the identity operation on $BO(X, \tau)$. Therefore, we have that $BO(X, \tau)_{id} = BO(X, \tau)$.

Example 2.4 The operation $b \operatorname{Cl} : BO(X, \tau) \to \mathcal{P}(X)$ is defined by $V^{b \operatorname{Cl}} = b \operatorname{Cl}(V)$ for any subset $V \in BO(X)$. A nonempty set A is b- $b \operatorname{Cl}$ -open in (X, τ) if and only if, by definition, for each $x \in U \ U^{b \operatorname{Cl}} \subset A$; if and only if for each point $x \in X \setminus A$, there exists a subset $V \in BO(X, \tau)$ such that $x \in V$ and $V^{b \operatorname{Cl}} \cap (X \setminus A) = \emptyset$; if and only if $b \operatorname{Cl}_{\theta}(X \setminus A) \subset X \setminus A$, where $b \operatorname{Cl}_{\theta}(B) = \{z \in X : b \operatorname{Cl}(W) \cap B \neq \emptyset$ for any subset $W \in BO(X, \tau)$ such that $z \in W\}$ for a subset B of (X, τ) and so A is b- θ -open set in X. Then we have the following: a nonempty set A is b- $b \operatorname{Cl}$ -open in (X, τ) if and only if A is b- θ -open in (X, τ) .

Example 2.5 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Define an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } b \in A \\ b \operatorname{Cl}(A) & \text{if } b \notin A \end{cases}$$

Then we have $\gamma BO(X) = \{\emptyset, X, \{a, b\}\}.$

Theorem 2.6 Let $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ be any operation on $BO(X, \tau)$. Then

- (i) Every b- γ -open set of (X, τ) is b-open in (X, τ) .
- (ii) An arbitrary union of b- γ -open sets is b- γ -open.

Proof: (i). Suppose that $A \in \gamma BO(X)$. Let $x \in A$. Then, there exists a *b*-open set U(x) containing x such that $U(x)^{\gamma} \subset A$. Then, $\cup \{U(x) : x \in A\} \subset \cup \{U(x)^{\gamma} : x \in A\} \subset A$ and so $A = \cup \{U(x) : x \in A\} \in BO(X, \tau)$. (ii). Let $x \in \cup \{A_i : i \in J\}$, where J is any index set, then $x \in A_i$ for some $i \in J$. Since A_i is *b*- γ -open set, there exists a *b*-open set U containing x such that $U^{\gamma} \subset A_i \subset \cup \{A_i : i \in J\}$. Hence $\cup \{A_i : i \in J\}$ is a *b*- γ -open set. \Box

Remark 2.7 The following example shows that the converse of Theorem 2.6 (i) and (ii) is not true in general.

Example 2.8 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. Let $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ be an operation defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \in A, \\ A \cup \{b\} & \text{if } b \notin A, \end{cases}$$

Then the set $\{a\}$ is b-open but not b- γ -open in (X, τ) .

The following example shows that the intersection of two b- γ -open sets need not be b- γ -open.

Example 2.9 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Define an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A \neq \{a\},\\ \{a,b\} & \text{if } A = \{a\} \end{cases}$$

Then $\{a, b\}$ and $\{a, c\}$ are b- γ -open sets but their intersection $\{a\}$ is not b- γ -open.

Definition 2.10 Let (X, τ) be a topological space and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. Then (X, τ) is said to be b- γ -regular if for each point $x \in X$ and for every b-open set V containing x, there exist a b-open set U containing x such that $U^{\gamma} \subset V$.

Theorem 2.11 Let (X, τ) be a topological space and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. Then the following statements are equivalent:

- (i) $BO(X, \tau) = \gamma BO(X)$.
- (ii) (X, τ) is a b- γ -regular space.
- (iii) For every $x \in X$ and for every b-open set U of (X, τ) containing x, there exists a b- γ -open set W of (X, τ) such that $x \in W$ and $W \subset U$.

Proof: (i) \Rightarrow (ii): Let $x \in X$ and V a *b*-open set containing x. It follows from assumption that V is a *b*- γ -open set. This implies that there exists a *b*-open set U containing x such that $U^{\gamma} \subset V$. Hence, (X, τ) is *b*- γ -regular. (ii) \Rightarrow (iii): Let $x \in X$ and U a *b*-open set containing x. Then by (ii), there is a *b*-open set W containing x and $W \subset W^{\gamma} \subset U$. By using (ii) for the set W, it is shown that W is *b*- γ -open. Hence W is a *b*- γ -open set containing x such that $W \subset U$. (iii) \Rightarrow (i): By (iii) and Theorem 2.6 (iii), it follows that every *b*-open set is *b*- γ -open, that is, $BO(X, \tau) \subset \gamma BO(X)$. It follows from Theorem 2.6 (i) that the converse inclusion $\gamma BO(X) \subset BO(X, \tau)$ holds.

Definition 2.12 An operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ is called b-regular if for each point $x \in X$ and for every pair of b-open sets say, U and V containing $x \in X$, there exists a b-open set W such that $x \in W$ and $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$.

Example 2.13 The operation γ defined in Example 2.5 is b-regular.

Theorem 2.14 For an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$, the following properties holds:

- (i) Let γ be a b-regular operation. If A and B are b- γ -open in (X, τ) , then $A \cap B$ is also b- γ -open in (X, τ) .
- (ii) If γ is a b-regular operation, then $\gamma BO(X)$ is a topology on X.

Proof: Let $x \in A \cap B$. Since A and B are b- γ -open sets, there exist b-open sets U, V such that $x \in U$, $x \in V$ and $U^{\gamma} \subset A$ and $V^{\gamma} \subset B$. By b-regularity of γ , there exists a b-open set W containing x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma} \subset A \cap B$. Therefore, $A \cap B$ is a b- γ -open set. (ii). It is proved by (i) above and Theorem 2.6 (iii). \Box

Definition 2.15 Let A be subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. Then the τ_{γ} -b-closure of A is defined as the intersection of all b- γ -closed sets containing A. That is, τ_{γ} -b Cl $(A) = \cap \{F : F \text{ is } b - \gamma \text{-closed and } A \subset F\}$.

Definition 2.16 Let A be subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. A point $x \in X$ is in the $b\operatorname{Cl}_{\gamma}$ -closure of a set A if $U^{\gamma} \cap A \neq \emptyset$ for each b-open set U containing x. The $b\operatorname{Cl}_{\gamma}$ -closure of A is denoted by $b\operatorname{Cl}_{\gamma}(A)$.

Theorem 2.17 Let A be subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. Then for a point $x \in X$, $x \in \tau_{\gamma}$ -bCl(A) if and only if there exists a b- γ -open set V of X containing x such that $V \cap A \neq \emptyset$.

Proof: Let F be the set of all $y \in X$ such that $V \cap A \neq \emptyset$ for every $V \in \gamma BO(X)$ and $y \in V$. Now to prove the theorem it is enough to prove that $F = \tau_{\gamma} \cdot b \operatorname{Cl}(A)$. Let $x \notin F$. Then there exists a b- γ -open set V containing x such that $V \cap A = \emptyset$. This implies $A \subset X \setminus V$. Hence $\tau_{\gamma} \cdot b \operatorname{Cl}(A) \subset X \setminus V$. It follows that $x \notin \tau_{\gamma} \cdot b \operatorname{Cl}(A)$. Thus, we have that $\tau_{\gamma} \cdot b \operatorname{Cl}(A) \subset F$. Conversely, let $x \notin \tau_{\gamma} \cdot b \operatorname{Cl}(A)$. Then there exists a b- γ -closed set E such that $A \subset E$ and $x \notin E$. Then we have that $x \in X \setminus E$, $X \setminus E \in \gamma BO(X)$ and $(X \setminus E) \cap A = \emptyset$. This implies that $x \notin F$. Hence $F \subset \tau_{\gamma} \cdot b \operatorname{Cl}(A)$.

Theorem 2.18 Let A and B be subsets of a topological space (X, τ) and γ : BO $(X, \tau) \rightarrow \mathcal{P}(X)$ an operation on BO (X, τ) . Then we have the following properties:

24

Operation approaches on b-open sets and applications

- (i) The set $b\operatorname{Cl}_{\gamma}(A)$ is a b-closed set of (X, τ) and $A \subset b\operatorname{Cl}_{\gamma}(A)$.
- (*ii*) $b \operatorname{Cl}_{\gamma}(\emptyset) = \emptyset$ and $b \operatorname{Cl}_{\gamma}(X) = X$.
- (iii) A is b-closed if and only if $b \operatorname{Cl}_{\gamma}(A) = A$.
- (iv) If $A \subset B$, then $b \operatorname{Cl}_{\gamma}(A) \subset b \operatorname{Cl}_{\gamma}(B)$.
- $(v) \ b\operatorname{Cl}_{\gamma}(A) \cup b\operatorname{Cl}_{\gamma}(B) \subset b\operatorname{Cl}_{\gamma}(A \cup B).$
- (vi) If $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ is b-regular, then $b \operatorname{Cl}_{\gamma}(A \cup B) = b \operatorname{Cl}_{\gamma}(A) \cup b \operatorname{Cl}_{\gamma}(B)$ holds.
- (vii) $b \operatorname{Cl}_{\gamma}(A \cap B) \subset b \operatorname{Cl}_{\gamma}(A) \cap b \operatorname{Cl}_{\gamma}(B)$ holds.

Proof: (i). For each point $x \in X \setminus b \operatorname{Cl}_{\gamma}(A)$, then $x \notin b \operatorname{Cl}_{\gamma}(A)$. By Definition 2.16, there exists a b-open set U(x) containing x such that $U(x)^{\gamma} \cap A = \emptyset$. We let $V = \bigcup \{ U(x) : U(x) \in BO(X, \tau), x \in X \setminus bCl_{\gamma}(A) \}$. Then it is shown that $V = X \setminus b \operatorname{Cl}_{\gamma}(A)$ holds. Indeed, for a point $y \in V$, there exists $U(x) \in BO(X, \tau)$ such that $y \in U(x)$ and $U(x)^{\gamma} \cap A = \emptyset$. This shows that $y \notin b \operatorname{Cl}_{\gamma}(A)$ and so $V \subseteq X \setminus b \operatorname{Cl}_{\gamma}(A)$. Conversely, let $y \in X \setminus b \operatorname{Cl}_{\gamma}(A)$, then $y \notin b \operatorname{Cl}_{\gamma}(A)$. Then there exists $U(y) \in BO(X,\tau)$ such that $y \in U(y)$ and $U(y)^{\gamma} \cap A = \emptyset$ and so $y \in$ $U(y) \subseteq V$. Thus, we conclude that $X \setminus b \operatorname{Cl}_{\gamma}(A) \subseteq V$; follows that $V = X \setminus b \operatorname{Cl}_{\gamma}(A)$. Therefore, $b\operatorname{Cl}_{\gamma}(A)$ is b-closed in (X,τ) , because $V \in BO(X,\tau)$. Obviously, by Definition 2.16, we have that $A \subseteq b \operatorname{Cl}_{\gamma}(A)$. (ii), (iv). They are obtained from Definition 2.16. (iii). Suppose that A is b-closed. Then $X \setminus A$ is b-open in (X, τ) . We claim that $b\operatorname{Cl}_{\gamma}(A) \subseteq A$. Let $x \notin A$. There exists a b-open set U containing x such that $U^{\gamma} \subseteq X \setminus A$, that is, $U^{\gamma} \cap A = \emptyset$. Hence by Definition 2.16, we have that $x \notin b\operatorname{Cl}_{\gamma}(A)$ and so $b\operatorname{Cl}_{\gamma}(A) \subseteq A$. By (i), it is proved that $b\operatorname{Cl}_{\gamma}(A) = A$. Conversely, suppose that $b\operatorname{Cl}_{\gamma}(A) = A$. Let $x \in X \setminus A$. Since $x \notin b\operatorname{Cl}_{\gamma}(A)$, there exists a b-open set U containing x such that $U^{\gamma} \cap A = \emptyset$, that is $U^{\gamma} \subseteq X \setminus A$. In consequence, A is b-closed. (v), (vi). They are obtained from (iv). (vi). Let $x \notin$ $b\operatorname{Cl}_{\gamma} \cup b\operatorname{Cl}_{\gamma}(B)$. Then there exist two b-open sets U and V containing x such that $U^{\gamma} \cap A = \emptyset$ and $V^{\gamma} \cap B = \emptyset$. Since γ is a regular operator, by Definition 2.12, there exists a b-open set W containing x such that $W^{\gamma} \subset U^{\gamma} \cap V^{\gamma}$. Thus, we have $W^{\gamma} \cap (A \cup B) \subseteq (U^{\gamma} \cap V^{\gamma}) \cap (A \cup B) \subset (U^{\gamma} \cap A) \cup (V^{\gamma} \cap A) = \emptyset$, that is, $W^{\gamma} \cap (A \cup B) = \emptyset$. Hence, $x \notin b \operatorname{Cl}_{\gamma}(A \cup B)$. This shows that $b \operatorname{Cl}_{\gamma}(A) \cup b \operatorname{Cl}_{\gamma}(B)$ $\supset b \operatorname{Cl}_{\gamma}(A \cup B).$ П

Theorem 2.19 Let A and B be subsets of a topological space (X, τ) and γ : BO $(X, \tau) \rightarrow \mathcal{P}(X)$ an operation on BO (X, τ) . Then we have the following properties:

- (i) The set τ_{γ} -b Cl(A) is a b- γ -closed set of (X, τ) and $A \subset \tau_{\gamma}$ -b Cl(A).
- (*ii*) τ_{γ} -b Cl(\emptyset) = \emptyset and τ_{γ} -b Cl(X) = X.
- (iii) A is b- γ -closed if and only if τ_{γ} -b Cl(A) = A.

- (iv) If $A \subset B$, then τ_{γ} -b $\operatorname{Cl}(A) \subset \tau_{\gamma}$ -b $\operatorname{Cl}(B)$.
- (v) $\tau_{\gamma} b \operatorname{Cl}(A) \cup \tau_{\gamma} b \operatorname{Cl}(B) \subset \tau_{\gamma} b \operatorname{Cl}(A \cup B).$
- (vi) If $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ is b-regular, then $\tau_{\gamma} b \operatorname{Cl}(A \cup B) = \tau_{\gamma} b \operatorname{Cl}(A) \cup \tau_{\gamma} b \operatorname{Cl}(B)$ holds.
- (vii) τ_{γ} -b Cl $(A \cap B) \subset \tau_{\gamma}$ -b Cl $(A) \cap \tau_{\gamma}$ -b Cl(B) holds.

The proof of the following theorems are obvious and hence omitted.

Theorem 2.20 For a subset A of a topological space (X, τ) and any operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$, the following relations holds.

- (i) $b \operatorname{Cl}(A) \subset b \operatorname{Cl}_{\gamma}(A) \subset \tau_{\gamma} b \operatorname{Cl}(A) \subset \tau_{\gamma} \operatorname{Cl}(A).$
- (*ii*) $b \operatorname{Cl}(A) \subset \operatorname{Cl}(A) \subset \operatorname{Cl}_{\gamma}(A) \subset \tau_{\gamma} \operatorname{-Cl}(A).$

Theorem 2.21 Let A be a subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ an operation on $BO(X, \tau)$. The following properties are equivalent:

- (i) A subset A is b- γ -open in (X, τ) ;
- (*ii*) $b \operatorname{Cl}_{\gamma}(X \setminus A) = X \setminus A;$
- (*iii*) τ_{γ} - $b\operatorname{Cl}(X \setminus A) = X \setminus A;$
- (iv) $X \setminus A$ is b- γ -closed in (X, τ) .

Proof: Clear.

Corollary 2.22 Let A be a subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \rightarrow \mathcal{P}(X)$ an operation on $BO(X, \tau)$. If (X, τ) is b-regular, then $b \operatorname{Cl}(A) = b \operatorname{Cl}_{\gamma}(A) = \tau_{\gamma} - b \operatorname{Cl}(A)$.

In order to find the relationship between τ_{γ} - $b \operatorname{Cl}(A)$, $b \operatorname{Cl}_{\gamma}(A)$ and τ_{γ} - $\operatorname{Cl}(A)$, we introduce the following notions of *b*-open operations:

Definition 2.23 An operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ is called b-open if for each point $x \in X$ and for every b-open set U containing x, there exists a b- γ -open set V containing x such that $V \subset U^{\gamma}$.

Theorem 2.24 Let $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ be an operation on $BO(X, \tau)$ and A be a subset of a topological space (X, τ) . If γ is a b-open operation, then $b \operatorname{Cl}_{\gamma}(A) = \tau_{\gamma} - b \operatorname{Cl}(A)$ and $b \operatorname{Cl}_{\gamma}(b \operatorname{Cl}_{\gamma}(A)) = b \operatorname{Cl}_{\gamma}(A)$ hold and $b \operatorname{Cl}_{\gamma}(A)$ is $b - \gamma$ -closed in (X, τ) .

Proof: By Theorem 2.20 (i) we have $b \operatorname{Cl}_{\gamma}(A) \subset \tau_{\gamma} - b \operatorname{Cl}(A)$. Suppose that $x \notin b \operatorname{Cl}_{\gamma}(A)$. Then there exists a *b*-open set *U* containing *x* such that $U^{\gamma} \cap A = \emptyset$. Since γ is *b*-open, by Definition 2.23, there exists a *b*- γ -open set *V* such that $x \in V \subset U^{\gamma}$ and so $V \cap A = \emptyset$. By Theorem 2.17(i). $x \notin \tau_{\gamma}$ -*b* Cl(*A*). Hence we have that $b \operatorname{Cl}_{\gamma}(A) = \tau_{\gamma}$ -*b* Cl(*A*). Furthermore, using the above result and Theorem 2.19, we have that $b \operatorname{Cl}_{\gamma}(b \operatorname{Cl}_{\gamma}(A)) = \tau_{\gamma}$ -*b* Cl(τ_{γ} -*b* Cl(A)) = τ_{γ} -*b* Cl(*A*) = *b* Cl_{\gamma}(A) and so $b \operatorname{Cl}_{\gamma}(A)$ is *b*- γ -closed in (X, τ) .

Definition 2.25 A subset A of a topological space (X, τ) is said to be b- γ -generalized closed (for shortly, b- γ -g-closed) in (X, τ) if $b \operatorname{Cl}_{\gamma}(A) \subset U$ whenever $A \subset U$ and U is a b- γ -open set of (X, τ) .

The complement of a b- γ -g-closed set is called a b- γ -g-open set.

Example 2.26 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : BO(X, \tau) \rightarrow P(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ cl(A) & \text{if } b \in A, \end{cases}$$

The collection of b- γ -closed sets in (X, τ) are $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$.

Theorem 2.27 Let $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ be an operation on $BO(X, \tau)$ and A a subset of a topological space (X, τ) . Then the following statements are equivalent:

- (i) A subset A is said to be, b- γ -g-closed in (X, τ));
- (*ii*) τ_{γ} -b Cl({x}) $\cap A \neq \emptyset$ for every $x \in b$ Cl_{γb}(A);
- (iii) $b \operatorname{Cl}_{\gamma}(A) \subset b \tau_{\gamma} \operatorname{-}Ker(A)$ holds, where $b \cdot \tau_{\gamma} \operatorname{-}Ker(A) = \cap \{V : A \subset V, V \in \gamma BO(X)\}$ for any subset A of (X, τ) .

Proof: (i) \Rightarrow (ii): Let A be a b- γ -g-closed set of (X, τ) . Suppose that there exists a point $x \in b \operatorname{Cl}_{\gamma}(A)$ such that τ_{γ} - $b \operatorname{Cl}(\{x\}) \cap A = \emptyset$. By Theorem 2.19(i), τ_{γ} - $b \operatorname{Cl}(\{x\})$ is a b- γ -closed. Put $U = X \setminus \tau_{\gamma}$ - $b \operatorname{Cl}(\{x\})$. Then, we have that $A \subset U$, $x \in U$ and U is a b- γ -open set of (X, τ) . Since A is a b- γ -g-closed set, $b \operatorname{Cl}_{\gamma}(A) \subset U$. Thus, we have $x \notin b \operatorname{Cl}_{\gamma}(A)$. This is a contradiction. (ii) \Rightarrow (iii): Let $x \notin b \operatorname{Cl}_{\gamma}(A)$. By (ii), there exists a point z such that $z \in \tau_{\gamma}$ - $b \operatorname{Cl}(\{x\})$ and $z \in A$. Let $U \in \gamma BO(X)$ be a subset of X such that $A \subset U$. Since $z \in U$ and $z \in \tau_{\gamma}$ - $b \operatorname{Cl}(\{x\})$, we have that $U \cap \{x\} \neq \emptyset$. Namely, we show that $x \in b - \tau_{\gamma}$ -Ker(A). Therefore, we prove that $b \operatorname{Cl}_{\gamma}(A) \subset b$ - τ_{γ} -Ker(A). (iii) \Rightarrow (i): Let U be any b- γ -open set such that $A \subset U$. Let x be a point such that $x \in b \operatorname{Cl}_{\gamma}(A)$. By (iii), $x \in b - \tau_{\gamma} - Ker(A)$ holds. Namely, we have that $x \in U$, because $A \subset U$ and $U \in \gamma BO(X)$.

Theorem 2.28 Let A be a subset of a topological space (X, τ) . Then

(i) A subset A is b- γ -g-closed in (X, τ) , then $b \operatorname{Cl}_{\gamma}(A) \setminus A$ does not contain any nonempty b- γ -closed set.

(ii) If $\gamma : BO(X, \tau) \to P(X)$ be a b-open operation on (X, τ) , then the converse of (i) is true.

Proof: (i). Suppose that there exists a b- γ -g-closed set F such that $F \subset b \operatorname{Cl}_{\gamma}(A) \setminus A$. Then, we have that $A \subset X \setminus F$ and $X \setminus F$ is b- γ -open. It follows from assumption that $b \operatorname{Cl}_{\gamma}(A) \subset X \setminus F$ and so $F \subset (b \operatorname{Cl}_{\gamma}(A) \setminus A) \cap (X \setminus b \operatorname{Cl}_{\gamma}(A))$. Therefore, we have that $F = \emptyset$. (ii). Let U be a b- γ -open set such that $A \subset U$. Since γ is a b-open operation, it follows from Theorem 2.24, that $b \operatorname{Cl}_{\gamma}(A)$ is b- γ -closed in (X, τ) . Thus using Theorem 2.6 (iii), we have that $b \operatorname{Cl}_{\gamma}(A) \cap X \setminus U$, say, F, is a b- γ -closed in (X, τ) . Since $X \setminus U \subset X \setminus, F \subset b \operatorname{Cl}_{\gamma}(A) \setminus A$. Using the assumption of the converse of (i) above, $F = \emptyset$ and hence $b \operatorname{Cl}_{\gamma}(A) \subset U$.

Definition 2.29 A topological space (X, τ) is said to be a b- γ - $T_{1/2}$ space if every b- γ -g-closed set of (X, τ) is b- γ -closed.

Theorem 2.30 Let A be a subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \rightarrow P(X)$ be an operation on (X, τ) , then for each point $x \in X$, $\{x\}$ is b- γ -g-closed or $\{x\}$ is b- γ -g-open set of (X, τ) .

Proof: Suppose that $\{x\}$ is not *b*- γ -closed set. Then $\{x\}$ is not *b*- γ -closed set. Let U be any *b*- γ -open set such that $X \setminus \{x\} \subset U$. Then U = X and so we have that $b \operatorname{Cl}_{\gamma}(X \setminus \{x\} \subset U)$. Therefore, $X \setminus \{x\}$ is a *b*- γ -g-closed set in (X, τ) . \Box

Theorem 2.31 A topological space (X, τ) is said to be a $b - \gamma - T_{1/2}$ space if and only if for each point $x \in X$, $\{x\}$ is $b - \gamma$ -open or $b - \gamma$ -closed in (X, τ) . Then for each point $x \in X$, $\{x\}$ is b-open or b-closed in (X, τ) .

Proof: Suppose that $\{x\}$ is not b- γ -closed set, by Theorem 2.30, $X \setminus \{x\}$ is a b- γ -g-closed. Since (X, τ) is a b- γ - $T_{1/2}$ space, $X \setminus \{x\}$ is b- γ -closed. Hence $\{x\}$ is a b- γ -open set. Conversely, let F be a b- γ -g-closed set in (X, τ) . We shall prove that $b \operatorname{Cl}_{\gamma}(F) = F$. It is sufficient to show that $b \operatorname{Cl}_{\gamma}(F) \subset F$. Assume that there exists a point x such that $x \in b \operatorname{Cl}_{\gamma}(F) \setminus F$. Then by assumption, $\{x\}$ is b- γ -closed or b- γ -open. Case(i): $\{x\}$ is b- γ -closed set. For this case, we have a b- γ -closed set $\{x\}$ such that $\{x\} \subset b \operatorname{Cl}_{\gamma}(F) \setminus F$. This is a contradiction to Theorem 2.28 (i). Case(ii): $\{x\}$ is b- γ -open set. Then we have $x \in b \operatorname{Cl}_{\gamma}(F)$. Since $\{x\}$ is b- γ -open, $\{x\} \cap F = \emptyset$. This is a contradiction. Thus, we have that, $b \operatorname{Cl}_{\gamma}(F) = F$ and so F is b- γ -closed set.

3. Separation axioms

Definition 3.1 A topological space (X, τ) is said to be

(i) $b - \gamma - T_0$ if for any two distinct points $x, y \in X$ there exists b-open set U such that either $x \in U$ and $y \notin U^{\gamma}$ or $y \in U$ and $x \notin U^{\gamma}$.

- (ii) $b \gamma T_1$ if for any two distinct points $x, y \in X$ there exist two b-open sets U and V containing x and y respectively such that $y \notin U^{\gamma}$ and $x \notin V^{\gamma}$.
- (iii) $b \gamma T_2$ if for any two distinct points $x, y \in X$ there exist two b-open sets U and V containing x and y respectively such that $U^{\gamma} \cap V^{\gamma} = \emptyset$.

Theorem 3.2 Let A be a subset of a topological space (X, τ) and $\gamma : BO(X, \tau) \to P(X)$ be a b-open operation on $BO(X, \tau)$. Then (X, τ) is a b- γ - T_0 space if and only if for each pair $x, y \in X$ with $x \neq y$, $b\operatorname{Cl}_{\gamma}(\{x\}) = b\operatorname{Cl}_{\gamma}(\{y\})$ holds.

Proof: Let x and y be any two distinct points of a γ - T'_0 space. Then by definition, we assume that there exists a b-open set U such that $x \in U$ and $y \notin U^{\gamma}$. It follows from assumption that there exists a b-open set S such that $x \in S$ and $S \subset U^{\gamma}$. Hence, $y \in X \setminus U^{\gamma} \subset X \setminus S$. Because $X \setminus S$ is a b- γ -closed set, we obtain that $b \operatorname{Cl}_{\gamma}(\{y\}) \subset X \setminus S$ and so $b \operatorname{Cl}_{\gamma}(\{x\}) \neq b \operatorname{Cl}_{\gamma}(\{y\})$. Conversely, Suppose that $x \neq y$ for any $x, y \in X$. Then we have that, $b \operatorname{Cl}_{\gamma}(\{y\}) \subset t_{\gamma}(\{y\})$. Thus, we assume that there exists $z \in b \operatorname{Cl}_{\gamma}(\{x\})$ but $z \notin b \operatorname{Cl}_{\gamma}(\{y\})$. If $x \in b \operatorname{Cl}_{\gamma}(\{y\})$, then we get $b \operatorname{Cl}_{\gamma}(\{x\}) \subset b \operatorname{Cl}_{\gamma}(\{y\})$. This implies that $z \in b \operatorname{Cl}_{\gamma}(\{y\})$. This contradiction shows that $x \in b \operatorname{Cl}_{\gamma}(\{y\})$. Then there exists a b-open set W such that $x \in W$ and $W^{\gamma} \cap \{y\} = \emptyset$. Thus, we have that $x \in W$ and $y \notin W^{\gamma}$. Hence, (X, τ) is a b- γ - T_0 space.

Theorem 3.3 A space (X, τ) is b- γ - T_1 if and only if every singleton set of X is b- γ -closed.

Proof: The proof follows from the Definition 3.1 (ii).

Remark 3.4 It is clear that $b-\gamma-T_2 \Rightarrow b-\gamma-T_1 \Rightarrow b-\gamma-T_{1/2} \Rightarrow b-\gamma-T_0$. But the reverse implications are not true in general.

Example 3.5 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}\}$. Define an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } b \in A, \\ \operatorname{Cl}(A) & \text{if } b \notin A \end{cases}$$

Then this space is $b - \gamma - T_0$ but not $b - \gamma - T_{1/2}$.

Example 3.6 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Define an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } b \in A, \\ \operatorname{Cl}(A) & \text{if } b \notin A \end{cases}$$

Then this space is $b-\gamma - T_{1/2}$ but not $b-\gamma - T_1$.

Example 3.7 Let $X = \{a, b, c\}$ and τ be the discrete topology on X. Define an operation $\gamma : BO(X, \tau) \to \mathcal{P}(X)$ by

$$A^{\gamma} = \begin{cases} A \cup \{c\} & \text{if } A = \{a\} \text{ or } \{b\}, \\ A \cup \{a\} & \text{if } A = \{c\}, \\ A & \text{if } A \neq \{a\}, \{b\}, \{c\} \end{cases}$$

Then this space is $b-\gamma-T_1$ but not $b-\gamma-T_2$.

4. b- (γ, β) -continuous functions

Definition 4.1 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be b- (γ, β) -continuous if for each $x \in X$ and each b-open set V containing f(x) there exists a b-open set U such that $x \in U$ and $f(U^{\gamma}) \subset V^{\beta}$.

Example 4.2 Let $X = Y = \{a, b, c\}, \tau = \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : BO(X, \tau) \to P(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } b \notin A, \\ cl(A) & \text{if } b \in A, \end{cases}$$

Let $\beta : BO(Y, \sigma) \to P(Y)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} cl(A) & if \ b \notin A, \\ A & if \ b \in A, \end{cases}$$

Then the function $f: (X, \tau) \to (X, \sigma)$ defined as: f(a) = b, f(b) = c and f(c) = a is $b - (\gamma, \beta)$ -continuous.

Theorem 4.3 Let $f : (X, \tau) \to (Y, \sigma)$ be a b- (γ, β) -continuous function. Then the following hold:

- (i) $f(b\operatorname{Cl}_{\gamma}(A)) \subset b\operatorname{Cl}_{\beta}(f(A))$ holds for every subset A of (X, τ) .
- (ii) for every b- β -open set B of (Y, σ) , $f^{-1}(B)$ is b- γ -open in (X, τ) .

Proof: (i). Let $y \in f(b \operatorname{Cl}_{\gamma}(A))$ and V any b- β -open set containing y. Then there exists $x \in X$ and b- γ -open set U such that $f(x) = y, x \in U$ and $f(U^{\gamma}) \subset V^{\beta}$. Since $x \in b \operatorname{Cl}_{\gamma}(A)$, we have $U^{\gamma} \cap A \neq \emptyset$ and hence $\emptyset \neq f(U^{\gamma} \cap A) \subset f(U^{\gamma}) \cap f(A) \subset V^{\beta} \cap f(A)$. This implies $x \in b \operatorname{Cl}_{\beta}(f(A))$. Therefore, we have $f(b \operatorname{Cl}_{\gamma}(A)) \subset b \operatorname{Cl}_{\beta}(f(A))$. (ii). Let B be a b- β -closed set in (Y, σ) . By using (i) we have $f(b \operatorname{Cl}_{\gamma}(f^{-1}(B)) \subset b \operatorname{Cl}_{\gamma}(B) = B$. Therefore, we have $b \operatorname{Cl}_{\gamma}(f^{-1}(B)) = f^{-1}(B)$. Hence $f^{-1}(B)$ is b- γ -open in (X, τ) .

Theorem 4.4 In the above theorem, suppose that (Y, σ) is b- β -regular space. Then $f: (X, \tau) \to (Y, \sigma)$ is b- (γ, β) continuous function. This implies $(ii) \Rightarrow (i)$.

30

Proof: Let $x \in X$ be any point in X and let V be b-open set contain x. Since (Y, σ) is a b- γ -regular space, $V \in \gamma BO(X)$, then $f^{-1}(V) \subset \gamma BO(X)$. Implies there exists a b-open set U such that $U^{\gamma} \subset f^{-1}(V)$ implies $f(U^{\gamma}) \subset V^{\beta}$. Therefore f is b- (γ, β) -continuous. Hence (i) and (ii) are equivalent to each other. \Box

Definition 4.5 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $b - (\gamma, \beta)$ -closed if for any $b - \gamma$ -closed set A of (X, τ) , f(A) is $b - \beta$ -closed in (Y, β) .

Definition 4.6 If f is b-(id, β)-closed, then f(F) is b- β -closed for every b-closed set F of (X, τ) .

Remark 4.7 If f is bijective and $f : (X, \tau) \to (Y, \sigma)$ is b-(id, β)-closed.

Theorem 4.8 If f is b- (γ, β) -continuous and b- (id, β) -closed then,

- (i) For every b- γ -g-closed set A of (X, τ) , the image f(A) is b- β -g-closed.
- (ii) For every b- β -g-closed set B of (Y, σ) , $f^{-1}(B)$ is b- γ -g-closed.

Proof: (i) Let V be b- β -open set in (Y, σ) such that $f(A) \subset V$ then by the Theorem ?? (ii), $f^{-1}(V)$ b- γ -open. Since A is a b- γ -g-closed and $A \subset f^{-1}(V)$ implies $b\operatorname{Cl}_{\gamma}(A) \subset f^{-1}(V)$. Hence $f(b\operatorname{Cl}_{\gamma}(A)) \subset V$. Therefore, $f(b\operatorname{Cl}_{\gamma}(A)) b$ - β -closed and f is b- (id, β) -closed. Therefore, $b\operatorname{Cl}_{\beta}(f(A)) \subset b\operatorname{Cl}_{\beta}(f(b\operatorname{Cl}_{\gamma}(A))) = f(b\operatorname{Cl}_{\gamma}(A)) \subset V$. Hence f(A) is b- β -g-closed. (ii) Let U be b- γ -open set in (X, τ) such that $f^{-1}(B) \subset U$. Let $F = b\operatorname{Cl}_{\gamma}(f^{-1}(B)) \cap U$, then F is b-closed in (X, τ) . Since f is b- (id, β) -closed. Therefore $b\operatorname{Cl}_{\beta}(f(A)) \subset U$. Therefore $f^{-1}(B)$ is b- γ -g-closed in (X, τ) .

Theorem 4.9 If $f : (X, \tau) \to (Y, \sigma)$ is b- (γ, β) -continuous and b- (id, β) -closed. Then

- (i) If f is injective and (Y, σ) is $b \beta T_{1/2}$, then (X, τ) is $b \gamma T_{1/2}$.
- (ii) If f is surjective and (X, τ) is b- γ - $T_{1/2}$, then (Y, σ) is b- β - $T_{1/2}$.

Proof: (i) Let A be a b- γ -g-closed set of (X, τ) . Then by assumption f(A) is b- β -g-closed. Since (X, τ) is b- γ - $T_{1/2}$, f(A) is b- β -closed. Therefore, $f^{-1}(f(A))$ is b- γ -closed. This implies that A is b- γ -closed. (ii) Let B is a b- β -g-closed set in (Y, σ) . Then $f^{-1}(B)$ is b- γ -closed. Since (X, τ) is b- γ - $T_{1/2}$, $f^{-1}(B)$ is b- γ -closed. Therefore, $B(=f(f^{-1}(B)))$ is b- β -closed in (Y, σ) . Hence (Y, σ) is a b- β - $T_{1/2}$ space.

Definition 4.10 A graph G(f) of $f : (X, \tau) \to (Y, \sigma)$ is called b- γ -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$ there exists b-open sets U and V contains x and y, respectively such that $(U \times V^{\gamma}) \cap G(f) = \emptyset$.

Definition 4.11 An operation $\rho : BO(X \times Y, \tau \times \sigma) \to P(X \times Y)$ is said to be b-associated with γ and β , if $(U \times V)^{\rho} = U^{\gamma} \times V^{\beta}$ holds for each b-open set U in (X, τ) and V in (Y, σ) .

Remark 4.12 In [3] we can find examples of operators that satisfying the above Definition.

Definition 4.13 The operation $\rho : BO(X \times Y, \tau \times \sigma) \to P(X \times Y)$ is said to be b-regular with respect to γ and β , if for each point $(x, y) \in X \times Y$ and each b-open set W containing (x, y), there exist b-open sets U in (X, τ) and V in (Y, σ) such that $x \in U, y \in V$ and $U^{\gamma} \times V^{\beta} \subset W^{\rho}$.

Theorem 4.14 Let $\rho : BO(X \times X) \to P(X \times X)$ be a b-associated operation with γ and β . If $f : (X, \tau) \to (Y, \sigma)$ is a b- (γ, β) -continuous and (Y, σ) is b- γ - T_2 space, then the set $A = \{(x, y) \in X \times Y : f(x) = f(y)\}$ is a b- ρ -closed set of $(X \times X, \tau \times \sigma)$.

Proof: We have to show that $b \operatorname{Cl}_{\rho}(A) \subset A$. Let $(x; y) \in (X \times X) \setminus A$. Then, there exist two *b*-open set $U, V \in BO(Y)$ such that $f(x) \in U$, $f(y) \in V$ and $U^{\beta} \cap V^{\beta} = \emptyset$. Moreover, for U and V there exist $W, S \in BO(X)$ such that $x \in W$, $y \in S$ and $f(W^{\gamma} \subset U^{\beta}$ and $f(S^{\gamma} \subset V^{\beta})$. Therefore, we have $(x, y) \in W^{\gamma} \times S^{\gamma} = (W \times S)^{\rho} \cap A = \emptyset$. This shows that $(x, y) \notin b \operatorname{Cl}_{\gamma}(A)$.

Theorem 4.15 Let $\rho : BO(X \times Y, \tau \times \sigma) \to P(X \times Y)$ be an associated with γ and β . If $f : (X, \tau) \to (Y, \sigma)$ is $b \cdot (\gamma, \beta)$ -continuous and (Y, σ) is $b \tilde{U}\beta$ - T_2 , then the graph of f, $G(f) = \{(x, f(x)) \in X \times Y\}$ is a $b \cdot \rho$ -closed set of $(X \times Y, \tau \times \sigma)$.

Proof: The proof is similar to that of Theorem 4.14.

Definition 4.16 Let (X, τ) be a topological space and γ be an operation on BO(X). A subset K of X is said to be b- γ -compact, if for every b-open cover $\{G_i : i \in N\}$ of K there exists a finite subfamily $\{G_1, G_2, ..., G_n\}$ such that $K \subset G_1^{\gamma} \cup G_2^{\gamma} \cup ... \cup G_n^{\gamma}$.

Theorem 4.17 Suppose that γ is b-regular and $\rho : BO(X \times Y) \to P(X \times Y)$ is b-regular with respect to γ and β . Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping whose graph G(f) is b- ρ -closed in $(X \times Y, \tau \times \sigma)$. If a subset B is b- γ -compact in (Y, σ) , then $f^{-1}(B)$ is b- γ -closed in (X, τ) .

Proof: Suppose that $f^{-1}(B)$ is not $b \cdot \gamma$ -closed, then there exist a point x such that $x \in b \operatorname{Cl}_{\gamma}(f^{-1}(B))$ and $x \notin f^{-1}(B)$. Since $(x, b) \notin G(f)$ and each $b \in B$ and $b \operatorname{Cl}^{\gamma}(G(f)) \subset G(f)$, there exist a b-open set W of $(X \times Y, \tau \times \sigma)$ such that $(x, b) \in W$ and $W^{\rho} \cap G(f) = \emptyset$. By b-regularity of ρ , for each $b \in B$ we can take two b-open sets U(b) and V(b) in (Y, σ) such that $x \in U(b), b \in V(b)$ and $U(b)^{\gamma} \times V(b)^{\beta} \subset W^{\rho}$. Then we have $f(U(b)^{\gamma}) \cap V(b)^{\beta} = \emptyset$. Since $\{V(b) : b \in B\}$ is b-open cover of B, then by b- γ -compactness there exists a finite number $b_1, b_2, \dots, b_n \in B$ such that

32

 $B \subset V(b_1)^{\beta} \cup V(b_2)^{\beta} \cup \ldots \cup V(b_n)^{\beta}$. By the *b*-regularity of γ , there exist a *b*-open set U such that $x \in U$, $U^{\gamma} \subset U(b_1)^{\gamma} \cap U(b_2)^{\gamma} \cap \ldots \cap U(b_n)^{\gamma}$. Therefore, we have $U^{\gamma} \cap f^{-1}(B) \subset U(b_i) \subset \bigcap_{i=1}^n U(b_i) \cap f^{-1}(V(b_i))^{\beta} = \emptyset$. This shows that $x \notin b \operatorname{Cl}_{\gamma}(f^{-1}(B))$. This a contradiction. Therefore, $f^{-1}(B)$ is *b*- γ -closed. \Box

References

- 1. D. Andrijevic, On b-open sets, Math. Vesnik, 48(1996), 59-64.
- 2. C. K. Bass, B. M. Uzzil Afsan and M. K. Ghosh, A class of functions separation axiomwith respect o an Operation, Hacettepe J. Stat., 38(2)(2009), 103-118.
- 3. Carlos Carpintero, Ennis Rosas and Jose Sanabria, A Tichonoff Theorem for α -Compactness and some Applications, Indian J. Math, Vol- 49, No. 1,(2007), 31-45.
- 4. S.Kasahara, Operation compact spaces, Math. Japonica 24 (1979), 97 -105.
- 5. H. Ogata, Operations on topological spaces and associated topology, Math. Japon., $36(1)(1991),\,175\text{-}184.$
- 6. J. H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar., 110(4)(2006), 347-359.

C. Carpintero and E. Rosas Universidad De Oriente Nucleo De Sucre Cumana Venezuela E-mail address: carpintero.carlos@gmail.com E-mail address: ennisrafael@gmail.com

and

N. Rajesh Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India. E-mail address: nrajesh_topology@yahoo.co.in