Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm (3s.) **v. 29** 2 (2011): 61–68. ISSN-00378712 in press doi:10.5269/bspm.v29i2.12848

Preopen sets in ideal bitopological spaces

M. Caldas, S. Jafari and N. Rajesh

ABSTRACT: The aim of this paper is to introduce and characterize the concepts of preopen sets and their related notions in ideal bitopological spaces.

Key Words: Ideal bitopological spaces, (i, j)-pre- \mathcal{I} -open sets, (i, j)-pre- \mathcal{I} -closed sets.

Contents

1	Introduction and Preliminaries	61
2	(i, j) -pre- \mathcal{I} -open sets	62
3	pairwise pre- \mathcal{I} -continuous functions	66

1. Introduction and Preliminaries

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [4] and Vaidyanathasamy [5]. An ideal \mathcal{I} on a topological space (X,τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset$ A implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [5] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } dx \in X \}$ $U \in \tau(x)$, where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator Cl^{*}(.) for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, finer than τ is defined by $\mathrm{Cl}^*(A) =$ $A \cup A^*(\tau, \mathcal{I})$ when there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* and τ_i -Int^{*}(A) denotes the interior of A in $\tau_i^*(\mathcal{I})$. If \mathcal{I} is an ideal on X, then $(X, \tau_1, \tau_2, \mathcal{I})$ is called an ideal bitopological space. A subset A of an ideal bitopological space is said to be (i, j)- \mathcal{I} -open [2] if $A \subset \tau_i$ -Int (A_i^*) , where $A_i^* = \{x \in X | U \cap A \notin \mathcal{I}\}$ for every $U \in \tau_i(x)$. Let A be a subset of a bitopological space (X, τ_1, τ_2) . We denote the closure of A and the interior of A with respect to τ_i by τ_i -Cl(A) and τ_i -Int(A), respectively. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-preopen [3] if $A \subset \tau_i$ -Int $(\tau_j$ -Cl(A)), where i, j = 1, 2 and $i \neq j$. A subset S of an ideal topological space (X, τ, \mathcal{I}) is said to be pre- \mathcal{I} -open [1] if $S \subset \text{Int}(\text{Cl}^*(S))$. The family of all pre- \mathcal{I} -open sets of (X, τ, \mathcal{I}) is denoted by $\mathcal{PIO}(X, \tau)$. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-precontinuous [3] if the inverse image of every σ_i -open set in (Y, σ_1, σ_2) is (i, j)-preopen in $(X, \tau_1, \tau_2, \mathcal{I})$, where $i \neq j$, i, j=1, 2.

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54D10

2. (i, j)-pre- \mathcal{I} -open sets

Definition 2.1 A subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be (i, j)-pre- \mathcal{I} -open if and only if $A \subset \tau_i$ -Int $(\tau_j$ -Cl^{*}(A)), where i, j = 1, 2 and $i \neq j$. The family of all (i, j)-pre- \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ is denoted by $\mathcal{PIO}(X, \tau_1, \tau_2)$ or (i, j)- $\mathcal{PIO}(X)$. Also, The family of all (i, j)-pre- \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ containing x is denoted by (i, j)- $\mathcal{PIO}(X, x)$.

Remark 2.2 Let \mathcal{I} and \mathcal{J} be two ideals on (X, τ_1, τ_2) . If $\mathcal{I} \subset \mathcal{J}$, then $P\mathcal{J}O(X, \tau_1, \tau_2) \subset P\mathcal{I}O(X, \tau_1, \tau_2)$.

Remark 2.3 It is clear that every τ_i -open sets is (i, j)-pre- \mathcal{I} -open but the converse is not true in general as it can be seen from the following example.

Example 2.4 Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, X\}$, $\tau_2 = \{\emptyset, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b\}$ is (1, 2)-pre- \mathcal{I} -open but not τ_1 -open and therefore not τ_1 -preopen.

Remark 2.5 It is clear that $PIO(X, \tau_1, \tau_2) \neq PIO(X, \tau_1) \cup PIO(X, \tau_2)$.

Example 2.6 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be as in Example 2.4. Then $PIO(X, \tau_1) = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}, PIO(X, \tau_2) = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}.$ But $PIO(X, \tau_1, \tau_2) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}.$

Proposition 2.7 Every (i, j)- \mathcal{I} -open set is (i, j)-pre- \mathcal{I} -open.

Proof: Let A be an (i, j)- \mathcal{I} -open set. Then $A \subset \tau_i$ -Int $(A_j^*) \subset \tau_i$ -Int $(A \cup A_j^*) = \tau_i$ -Int $(\tau_j$ -Cl^{*}(A)). Therefore, $A \in (i, j)$ - $\mathcal{PIO}(X)$.

Example 2.8 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, X\}, \tau_2 = \{\emptyset, \{b\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a\}$ is (1, 2)-pre- \mathcal{I} -open but not (1, 2)- \mathcal{I} -open.

Proposition 2.9 Every (i, j)-pre- \mathcal{I} -open set is (i, j)-preopen.

Proof: Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and let $A \in (i, j)$ -P $\mathcal{I}O(X)$. Then $A \subset \tau_i$ -Int $(\tau_j$ -Cl^{*} $(A)) = \tau_i$ -Int $(A \cup A_j^*) \subset \tau_i$ -Int $(\tau_j$ -Cl $(A) \cup A) = \tau_i$ -Int $(\tau_j$ -Cl(A)). \Box

The following example shows that the converse of Proposition 2.9 is not true in general.

Example 2.10 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{b\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{a\}$ is (1, 2)-preopen but not (1, 2)-pre- \mathcal{I} -open.

Proposition 2.11 For an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ and $A \subset X$, we have:

(i) If $\mathcal{I} = \emptyset$, then A is (i, j)-pre- \mathcal{I} -open if and only if A is (i, j)-preopen.

(ii) If $\mathcal{I} = \mathcal{P}(X)$, then A is (i, j)-pre- \mathcal{I} -open if and only if A is τ_i -open.

Proof: The proof follows from the fact that

- (i) if $\mathcal{I} = \emptyset$, then $A^* = \operatorname{Cl}(A)$.
- (ii) if $\mathcal{I} = P(X)$, then $A^* = \emptyset$ for every subset A of X.

Proposition 2.12 Let A be a subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ and A be an (i, j)-pre- \mathcal{I} -open set. Then we have the following:

1. τ_j -Cl $(\tau_i$ -Int $(\tau_j$ -Cl $^*(A))) = \tau_j$ -Cl(A). 2. τ_i -Cl $^*(\tau_i$ -Int $(\tau_i$ -Cl $^*(A))) = \tau_i$ -Cl $^*(A)$.

Proof: The proof is obvious.

Remark 2.13 The intersection of two (i, j)-pre- \mathcal{I} -open sets need not be (i, j)-pre- \mathcal{I} -open as it can be seen from the following example.

Example 2.14 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a, c\}, X\}, \tau_2 = \{\emptyset, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the sets $\{a, b\}$ and $\{a, c\}$ are (1, 2)-pre- \mathcal{I} -open sets of $(X, \tau_1, \tau_2, \mathcal{I})$ but their intersection $\{a\}$ is not an (1, 2)-pre- \mathcal{I} -open set of $(X, \tau_1, \tau_2, \mathcal{I})$.

Theorem 2.15 If $\{A_{\alpha}\}_{\alpha\in\Omega}$ is a family of (i, j)-pre- \mathcal{I} -open sets in $(X, \tau_1, \tau_2, \mathcal{I})$, then $\bigcup_{\alpha\in\Omega} A_{\alpha}$ is (i, j)-pre- \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$.

Proof: Since $\{A_{\alpha} : \alpha \in \Omega\} \subset (i, j)$ -P $\mathcal{IO}(X)$, then $A_{\alpha} \subset \tau_i$ -Int $(\tau_j$ -Cl^{*} $(A_{\alpha}))$ for every $\alpha \in \Omega$. Thus, $\bigcup_{\alpha \in \Omega} A_{\alpha} \subset \bigcup_{\alpha \in \Omega} \tau_i$ -Int $(\tau_j$ -Cl^{*} $(A_{\alpha})) \subset \tau_i$ -Int $(\bigcup_{\alpha \in \Omega} \tau_j$ -Cl^{*} $(A_{\alpha})) =$ τ_i -Int $(\bigcup_{\alpha \in \Omega} (A_{\alpha})_j^* \cup A_{\alpha}) = \tau_i$ -Int $(\tau_j$ -Cl^{*} $(\bigcup_{\alpha \in \Omega} A_{\alpha}))$. Therefore, we obtain $\bigcup_{\alpha \in \Omega} A_{\alpha} \subset \tau_i$ -Int $(\tau_j$ -Cl^{*} $(\bigcup_{\alpha \in \Omega} A_{\alpha}))$. Hence any union of (i, j)-pre- \mathcal{I} -open sets is (i, j)-pre- \mathcal{I} -open.

Theorem 2.16 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. If $U \in \tau_1 \cap \tau_2$ and $V \in P\mathcal{IO}(X, \tau_1, \tau_2,)$, then $U \cap V \in PO(X, \tau_1, \tau_2, \mathcal{I})$.

Proof: By definition, we have $U \cap V \subset U \cap \tau_i \operatorname{-Int}(\tau_j \operatorname{-Cl}^*(V)) \subset U \cap (\tau_i \operatorname{-Int}(V \cup V_j^*)) = \tau_i \operatorname{-Int}((U \cap V) \cup (U \cap V_j^*)) \subset \tau_i \operatorname{-Int}(U \cap V) \cup (U \cap V_j^*) = \tau_i \operatorname{-Int}(\tau_j \operatorname{-Cl}^*(U \cap V)).$ Therefore, $U \cap W \in (i, j) - P\mathcal{I}O(X)$.

Lemma 2.17 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space with $A \subset B \subset X$, then $A_i^*(\mathcal{I}_{|B}, \tau_{|B}) = A_i^*(\mathcal{I}, \tau_i) \cap B$ for i = 1, 2. **Theorem 2.18** Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space. If $U \in \tau_1 \cap \tau_2$ and $W \in (i, j)$ -PO(X), then $U \cap W \in (i, j)$ -PO $(U, \tau_{1|U}, \tau_{2|U}, \mathcal{I}_{|U})$.

Proof: Since $U \in \tau_1 \cap \tau_2$, we have τ_i -Int_U(A) = τ_i -Int(A) where i = 1, 2 for any subset A of U. By using this fact and Lemma 2.17, the result follows immediately.

Definition 2.19 In an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$, $A \subset X$ is said to be (i, j)-pre- \mathcal{I} -closed if $X \setminus A$ is (i, j)-pre- \mathcal{I} -open in X, i, j = 1, 2 and $i \neq j$.

Theorem 2.20 If A is an (i, j)-pre- \mathcal{I} -closed set in an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ if and only if τ_i -Cl $(\tau_j$ -Int^{*} $(A)) \subset A$.

Proof: The proof follows from the definitions.

Theorem 2.21 If a subset A of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)-pre- \mathcal{I} -closed, then τ_i -Cl^{*} $(\tau_j$ -Int $(A)) \subset A$.

Proof: Since A is (i, j)-pre- \mathcal{I} -closed, $X \setminus A$ is (i, j)-pre- \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$. Then $X \setminus A \subset \tau_i$ -Int $(\tau_j$ -Cl^{*} $(X \setminus A)) \subset \tau_i$ -Int $(\tau_j$ -Cl $(X \setminus A)) = X \setminus (\tau_i$ -Cl $(\tau_j$ -Int $(A)) \subset X \setminus (\tau_i$ -Cl^{*} $(\tau_j$ -Int(A))). Therefore, we obtain τ_i -Cl^{*} $(\tau_j$ -Int $(A)) \subset A$. \Box

Theorem 2.22 Arbitrary intersection of (i, j)-pre- \mathcal{I} -closed sets is always (i, j)-pre- \mathcal{I} -closed.

Proof: Follows from Theorems 2.15 and 2.21.

Definition 2.23 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then

- (i) x is called an (i, j)-pre- \mathcal{I} -interior point of S if there exists $V \in (i, j)$ -P $\mathcal{I}O(X)$ such that $x \in V \subset S$.
- ii) the set of all (i, j)-pre- \mathcal{I} -interior points of S is called (i, j)-pre- \mathcal{I} -interior of S and is denoted by (i, j)-p \mathcal{I} Int(S).

Theorem 2.24 Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold:

- (i) (i, j)- $p\mathcal{I}$ Int $(A) = \cup \{T : T \subset A \text{ and } T \in (i, j)$ - $P\mathcal{I}O(X)\}.$
- (ii) (i, j)-p \mathcal{I} Int(A) is the largest (i, j)-pre- \mathcal{I} -open subset of X contained in A.
- (iii) A is (i, j)-pre- \mathcal{I} -open if and only if A = (i, j)-p \mathcal{I} Int(A).
- (iv) (i, j)- $p\mathcal{I}$ Int((i, j)- $p\mathcal{I}$ Int(A)) = (i, j)- $p\mathcal{I}$ Int(A).

- (v) If $A \subset B$, then (i, j)- $p\mathcal{I}$ Int $(A) \subset (i, j)$ - $p\mathcal{I}$ Int(B).
- (vi) (i, j)- $p\mathcal{I}$ Int $(A) \cup (i, j)$ - $p\mathcal{I}$ Int $(B) \subset (i, j)$ - $p\mathcal{I}$ Int $(A \cup B)$.
- (vii) (i, j)- $p\mathcal{I}$ Int $(A \cap B) \subset (i, j)$ - $p\mathcal{I}$ Int $(A) \cap (i, j)$ - $p\mathcal{I}$ Int(B).

Proof: (i). Let $x \in \bigcup\{T : T \subset A$ and $T \in (i, j) - \mathcal{PIO}(X)\}$. Then, there exists $T \in (i, j) - \mathcal{PIO}(X, x)$ such that $x \in T \subset A$ and hence $x \in (i, j) - \mathcal{PIInt}(A)$. This shows that $\bigcup\{T : T \subset A \text{ and } T \in (i, j) - \mathcal{PIO}(X)\} \subset (i, j) - \mathcal{PIInt}(A)$. For the reverse inclusion, let $x \in (i, j) - \mathcal{PIInt}(A)$. Then there exists $T \in (i, j) - \mathcal{PIO}(X, x)$ such that $x \in T \subset A$. we obtain $x \in \bigcup\{T : T \subset A \text{ and } T \in (i, j) - \mathcal{PIO}(X)\}$. This shows that $(i, j) - \mathcal{PIInt}(A) \subset \bigcup\{T : T \subset A \text{ and } T \in (i, j) - \mathcal{PIO}(X)\}$. This shows that $(i, j) - \mathcal{PIInt}(A) \subset \bigcup\{T : T \subset A \text{ and } T \in (i, j) - \mathcal{PIO}(X)\}$. Therefore, we obtain $(i, j) - \mathcal{PIInt}(A) = \bigcup\{T : T \subset A \text{ and } T \in (i, j) - \mathcal{PIO}(X)\}$. The proof of (ii)-(v) are obvious and the proofs of (vi) and (vii) are obvious from

Definition 2.25 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space, S a subset of X and x be a point of X. Then

- (i) x is called an (i, j)-pre- \mathcal{I} -cluster point of S if $V \cap S \neq \emptyset$ for every $V \in (i, j)$ - $\mathcal{PIO}(X, x)$.
- (ii) the set of all (i, j)-pre-I-cluster points of S is called (i, j)-pre-I-closure of S and is denoted by (i, j)-pI Cl(S).

Theorem 2.26 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. A point $x \in (i, j)$ -p \mathcal{I} Cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ -P $\mathcal{I}O(X, x)$.

Proof: The proof follows from Definition 2.25.

(v).

Theorem 2.27 Let A and B be subsets of $(X, \tau_1, \tau_2, \mathcal{I})$. Then the following properties hold:

- (i) (i, j)- $p\mathcal{I}$ Cl $(A) = \cap \{F : A \subset F \text{ and } F \in (i, j)$ - $P\mathcal{I}C(X)\}.$
- (ii) (i, j)-p \mathcal{I} Cl(A) is the smallest (i, j)-pre- \mathcal{I} -closed subset of X containing A.
- (iii) A is (i, j)-pre- \mathcal{I} -closed if and only if A = (i, j)-p \mathcal{I} Cl(A).
- (iv) (i, j)-p \mathcal{I} Cl((i, j)-p \mathcal{I} Cl(A) = (i, j)-p \mathcal{I} Cl(A).
- (v) If $A \subset B$, then (i, j)- $p\mathcal{I}\operatorname{Cl}(A) \subset (i, j)$ - $p\mathcal{I}\operatorname{Cl}(B)$.
- (vi) (i, j)- $p\mathcal{I}$ Cl $(A) \cup (i, j)$ - $p\mathcal{I}$ Cl $(B) \subset (i, j)$ - $p\mathcal{I}$ Cl $(A \cup B)$.
- (vii) (i, j)- $p\mathcal{I}\operatorname{Cl}(A \cap B) \subset (i, j)$ - $p\mathcal{I}\operatorname{Cl}(A) \cap (i, j)$ - $p\mathcal{I}\operatorname{Cl}(B)$.

Proof: (i). Suppose that $x \notin (i, j) - p\mathcal{I}\operatorname{Cl}(A)$. Then there exists $V \in (i, j) - P\mathcal{I}O(X, x)$ such that $V \cap A = \emptyset$. Since $X \setminus V$ is (i, j)-pre- \mathcal{I} -closed set containing A and $x \notin X \setminus V$, we obtain $x \notin \cap \{F : A \subset F \text{ and } F \in (i, j) - P\mathcal{I}C(X)\}$. Conversely, suppose there exists $F \in (i, j) - P\mathcal{I}C(X)$ such that $A \subset F$ and $x \notin F$. Since $X \setminus F$ is (i, j)-pre- \mathcal{I} -open set containing x, we obtain $(X \setminus F) \cap A = \emptyset$. This shows that $x \notin (i, j) - p\mathcal{I}\operatorname{Cl}(A)$. Therefore, we obtain $(i, j) - p\mathcal{I}\operatorname{Cl}(A) = \cap \{F : A \subset F \text{ and } F \in (i, j) - P\mathcal{I}C(X)\}$.

The other proofs are obvious.

Theorem 2.28 Let $(X, \tau_1, \tau_2, \mathcal{I})$ be an ideal bitopological space and $A \subset X$. Then the following properties hold:

- (i) (i, j)- $p\mathcal{I}$ Int $(X \setminus A) = X \setminus (i, j)$ - $p\mathcal{I}$ Cl(A);
- (i) (i, j)- $p\mathcal{I}$ Cl $(X \setminus A) = X \setminus (i, j)$ - $p\mathcal{I}$ Int(A).

Proof: (i). Let $x \notin (i, j)$ - $p\mathcal{I}$ Cl(A). There exists $V \in (i, j)$ - $P\mathcal{I}O(X, x)$ such that $V \cap A = \emptyset$; hence we obtain $x \in (i, j)$ - $p\mathcal{I}$ Int($X \setminus A$). This shows that $X \setminus (i, j)$ - $p\mathcal{I}$ Cl(A) $\subset (i, j)$ - $p\mathcal{I}$ Int($X \setminus A$). Let $x \in (i, j)$ - $p\mathcal{I}$ Int($X \setminus A$). Since (i, j)- $p\mathcal{I}$ Int($X \setminus A$) $\cap A = \emptyset$, we obtain $x \notin (i, j)$ - $p\mathcal{I}$ Cl(A); hence $x \in X \setminus (i, j)$ - $p\mathcal{I}$ Cl(A). Therefore, we obtain (i, j)- $p\mathcal{I}$ Int($X \setminus A$) = $X \setminus (i, j)$ - $p\mathcal{I}$ Cl(A). (ii). Follows from (i).

Definition 2.29 A subset B_x of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is said to be an (i, j)-pre- \mathcal{I} -neighbourhood of a point $x \in X$ if there exists an (i, j)-pre- \mathcal{I} -open set U such that $x \in U \subset B_x$.

Theorem 2.30 A subset of an ideal bitopological space $(X, \tau_1, \tau_2, \mathcal{I})$ is (i, j)-pre- \mathcal{I} -open if and only if it is an (i, j)-pre- \mathcal{I} -neighbourhood of each of its points.

Proof: Let G be an (i, j)-pre- \mathcal{I} -open set of X. Then by definition, it is clear that G is an (i, j)-pre- \mathcal{I} -neighbourhood of each of its points, since for every $x \in G$, $x \in G \subset G$ and G is (i, j)-pre- \mathcal{I} -open. Conversely, suppose G is an (i, j)-pre- \mathcal{I} -neighbourhood of each of its points. Then for each $x \in G$, there exists $S_x \in (i, j)$ - $\mathcal{PIO}(X)$ such that $S_x \subset G$. Then $G = \bigcup \{S_x : x \in G\}$. Since each S_x is (i, j)-pre- \mathcal{I} -open and an arbitrary union of (i, j)-pre- \mathcal{I} -open sets is (i, j)-pre- \mathcal{I} -open, G is (i, j)-pre- \mathcal{I} -open in $(X, \tau_1, \tau_2, \mathcal{I})$.

3. pairwise pre-*I*-continuous functions

Definition 3.1 A function $f: (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-pre- \mathcal{I} continuous (resp. (i, j)- \mathcal{I} -continuous [2]) if the inverse image of every σ_i -open set in (Y, σ_1, σ_2) is (i, j)-pre- \mathcal{I} -open (resp. (i, j)- \mathcal{I} -open)in $(X, \tau_1, \tau_2, \mathcal{I})$, where $i \neq j$, i, j=1, 2.

Proposition 3.2 (i) Every (i, j)- \mathcal{I} -continuous function is (i, j)-pre- \mathcal{I} -continuous.

(ii) Every (i, j)-pre- \mathcal{I} -continuous function is (i, j)-precontinuous

Proof: The proof follows from Propositions 2.7 and 2.9.

However, the converse may be false.

Example 3.3 Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is (1, 2)-pre- \mathcal{I} -continuous. but not (1, 2)- \mathcal{I} -continuous.

Example 3.4 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{b\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is (1, 2)-precontinuous but not (1, 2)-pre- \mathcal{I} -continuous.

Theorem 3.5 For a function $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (i) f is pairwise pre- \mathcal{I} -continuous;
- (ii) For each point x in X and each σ_i -open set F in Y such that $f(x) \in F$, there is a (i, j)-pre- \mathcal{I} -open set A in X such that $x \in A$, $f(A) \subset F$;
- (iii) The inverse image of each σ_i -closed set in Y is (i, j)-pre- \mathcal{I} -closed in X;
- (iv) For each subset A of X, $f((i, j) p\mathcal{I} \operatorname{Cl}(A)) \subset \sigma_i \operatorname{Cl}(f(A));$
- (v) For each subset B of Y, (i, j)-p \mathcal{I} Cl $(f^{-1}(B)) \subset f^{-1}(\sigma_i$ -Cl(B));
- (vi) For each subset C of Y, $f^{-1}(\sigma_i \operatorname{-Int}(C)) \subset (i, j) \operatorname{-p}\mathcal{I}\operatorname{Int}(f^{-1}(C))$.

Proof: (i) \Rightarrow (ii): Let $x \in X$ and F be a σ_i -open set of Y containing f(x). By (i), $f^{-1}(F)$ is (i, j)-pre- \mathcal{I} -open in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$. (ii) \Rightarrow (i): Let F be σ_i -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (ii), there is an (i, j)-pre- \mathcal{I} -open set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$. Then $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is (i, j)-pre- \mathcal{I} -open in X. (i) \Rightarrow (ii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) =$

(i) \Leftrightarrow (ii): This follows due to the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

(iii) \Rightarrow (iv): Let A be a subset of X. Since $A \subset f^{-1}(f(A))$ we have $A \subset f^{-1}(\sigma_i \operatorname{Cl}(f(A)))$. Now, $\sigma_i \operatorname{Cl}(f(A))$ is σ_i -closed in Y and hence $(i, j) \operatorname{-p}\mathcal{I}\operatorname{Cl}(A) \subset f^{-1}(\sigma_i \operatorname{Cl}(f(A)))$, for $(i, j) \operatorname{-p}\mathcal{I}\operatorname{Cl}(A)$ is the smallest $(i, j) \operatorname{-pre-}\mathcal{I}$ -closed set containing A. Then $f((i, j) \operatorname{-p}\mathcal{I}\operatorname{Cl}(A)) \subset \sigma_i \operatorname{-Cl}(f(A))$.

(iv) \Rightarrow (v): Let *B* be any subset of *Y*. Now, $f((i, j) - p\mathcal{I}\operatorname{Cl}(f^{-1}(B))) \subset \sigma_i - \operatorname{Cl}(f(f^{-1}(B))) \subset \sigma_i - \operatorname{Cl}(B)$. Consequently, $(i, j) - p\mathcal{I}\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i - \operatorname{Cl}(B))$.

(v) \Rightarrow (iii): Let *B* be any σ_i -closed subset of *Y*. Then (i, j)- $p\mathcal{I}\operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_i$ - $\operatorname{Cl}(B)) = f^{-1}(B)$; hence $f^{-1}(B)$ is (i, j)-pre- \mathcal{I} -closed in *X*.

(i) \Rightarrow (vi): Let *B* be a σ_i -open set in *Y*. Clearly, $if^{-1}(\sigma_i-\text{Int}(B))$ is (i, j)-pre- \mathcal{I} -open and we have $f^{-1}(\sigma_i-\text{Int}(B)) \subset (i, j)$ -p \mathcal{I} Int $(f^{-1}(\sigma_i-\text{Int}(B))) \subset (i, j)$ -p \mathcal{I} Int $(f^{-1}(B)$.

(vi) \Rightarrow (i): Let *B* be a σ_i -open set in *Y*. Then σ_i -Int(*B*) = *B* and $f^{-1}(B) \subset f^{-1}(\sigma_i$ -Int(*B*)) $\subset (i, j)$ - $p\mathcal{I}$ Int($f^{-1}(B)$). Hence we have $f^{-1}(B) = (i, j)$ - $p\mathcal{I}$ Int($f^{-1}(B)$). This shows that $f^{-1}(B)$ is (i, j)-pre- \mathcal{I} -open in *X*. \Box

Theorem 3.6 If $f : (X, \tau_1, \tau_2, \mathcal{I}) \to (Y, \sigma_1, \sigma_2)$ is pairwise pre- \mathcal{I} -continuous and $A \in \tau_1 \cap \tau_2$, then $f|A : (A, \tau_{1|A}, \tau_{2|A}, \mathcal{I}_{|A}) \to (Y, \sigma_1, \sigma_2)$ is pairwise pre- $\mathcal{I}_{|A}$ -continuous.

Proof: The proof follows from Theorem 2.18.

Acknowledgement The authors thank the referee for his/her valuable comments and suggestions.

References

- 1. J. Dontchev, On pre- \mathcal{I} -open sets and a decomposition of \mathcal{I} -continuity, Banyan Math. J., $\mathbf{2}(1996)$.
- M. Caldas, S. Jafari and N. Rajesh, On *I*-open sets and *I*-continuous functions in Ideal Bitopological spaces (submitted).
- M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Sci., 3(1990), 25-29.
- 4. K. Kuratowski, Topology, Academic Press, New York, (1966).
- 5. R. Vaidyanathaswamy, The localisation theory in set topology, *Proc. Indian Acad. Sci.*, **20**(1945), 51-61.
- S. Yuksel, A. H. kocaman and A. Acikgoz, On α-*I*-irresolute functions, Far East J. Math. Sci., 26(3)(2007), 673-684.

Departamento de Matematica Aplicada Universidade Federal Fluminense, Rua Mario Santos Braga, S/n, 24020-140, Niteroi RJ Brasil E-mail address: gmamccs@vm.uff.br

and

Department of Mathematics College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse Denmark E-mail address: jafari@stofanet.dk

and

Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu, India. E-mail address: nrajesh_topology@yahoo.co.in