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On λ− summable entire sequences of fuzzy numbers
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abstract: In this paper the concept of strongly (λ)p − Cesáro summability of
a sequence of fuzzy numbers and strongly λ− statistically convergent sequences of
fuzzy numbers are introduced.
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1. Introduction

The concept of fuzzy sets and fuzzy set operations were first introduced by
Zadeh[18] and subsequently several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. Matloka[10] introduced bounded and convergent sequences of fuzzy
numbers and studied their some properties. Matloka[10] also has shown that every
convergent sequence of fuzzy numbers is bounded. Later on sequences of fuzzy
numbers have been discussed by Nanda[12], Nuray [14], Kwon[9], Savas[15], Wu
and Wang[17], Bilgin[3] Basarir and Mursaleen [2,11],Aytar[1], Fang and Huang[5],
and many others. The notion of statistical convergence was introduced by Fast[6]
and Schoenberg[16] independently. Over the years and under different names sta-
tistical convergence has been discussed in the theory of Fourier analysis, ergodic
thoery, number theory. Later on it was further investigated from the sequence
space point of view and linked with summability theory by Fridy[7], Kwon[9], Nu-
ray[14], Savas[15] and many others. In recent years, generalizations of statistical
convergence have appeared in the study of strong integral summability and the
structure of ideals of bounded continuous functions on locally compact spaces.
Statistical convergence and its generalizations are also connected with subsets of
Stone-C̆ech compactification of the natural numbers. Moreover, statistical conver-
gence is closely related to the concept of convergence in probability. The notion
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depends on the density of subsets of the subset N of natural numbers. The natural
density of a set A of positive integers is defined by

δ (A) = lim
n

1

n
|{k ≤ n : k ∈ A}| ,

where |{k ≤ n : k ∈ A}| denotes the number of elements of A ⊆ N not exceed-
ing n [13]. It is clear that any finite subset of N have zero natural density and
δ (Ac) = 1 − δ (A) . If a property P (k) holds for all k ∈ A with δ (A) = 1, we say
that P holds for almost all k, we abbreviate this by ”a.a.k”. A sequence (xk) is said
to be statistically convergent to L if for every ǫ > 0, δ ({k ∈ N : |xk − L| ≥ ǫ}) = 0.
In this case we write S − limxk = L. The existing literature on statistical con-
vergence appears to have been restricted to real or complex sequences, but in [9]
Kwon, Nuray [14] and Savas[15] extended the idea to apply to sequences of fuzzy
numbers.
Let C (Rn) = {A ⊂ Rn : Acompact and convex} . The space C (Rn) has linear
structure induced by the operations A + B = {a+ b : a ∈ A, b ∈ B} and λA =
{λa : a ∈ A} for A,B ∈ C (Rn) and λ ∈ R. The Hausdorff distance between A and
B of C (Rn) is defined as

δ∞ (A,B) = max

{

sup
a∈A

inf
b∈B

‖a− b‖ , sup
b∈B

inf
a∈A

‖a− b‖

}

.

It is well known that (C (Rn) , δ∞) is a complete metric space. The fuzzy
number is a function X from Rn to [0,1] which is normal, fuzzy convex, upper semi-
continuous and the closure of {x ∈ Rn : X(x) > 0} is compact. These properties

imply that for each 0 < α ≤ 1, the α−level set [X]
2
= {x ∈ Rn : X(x) ≥ α} is a

nonempty compact convex subset of Rn, with support X0 = {x ∈ Rn : X(x) > 0} .
Let L (Rn) denote the set of all fuzzy numbers. The linear structure of L (Rn)
induces the addition X + Y and scalar multiplication λX, λ ∈ R, in terms of α−
level sets, by |X + Y |

α
= |X|

α
+ |Y |

α
, |λX|

α
= λ |X|

α
for each 0 ≤ α ≤ 1. Define,

for each 1 ≤ q < ∞,

dq (X,Y ) =

(
∫ 1

0

δ∞ (Xα, Y α)
q
dα

)1/q

, and d∞ = sup0≤α≤1δ∞ (Xα, Y α) ,

where δ∞ is the Hausdorff metric. Clearly d∞ (X,Y ) = limq→∞dq (X,Y ) with
dq ≤ dr, if q ≤ r [4].

Throughout the paper, d will denote dq with 1 ≤ q ≤ ∞. Let w be set of all
sequences of fuzzy numbers. The generalized de la Vallée-Pousin mean is defined
by

tn(x) =
1

λn

∑

k∈In

xk,

where λ = (λn) is a nondecreasing sequence of positive numbers such that λn+1 ≤
λn+1 = 1, λ1 = 1, λn → ∞ as n → ∞ and In = [n− λn + 1, n] . A sequence x (xk)
is said to be (V, λ)− summable to a number L [8] if tn (x) → L as n → ∞. (V, λ)−
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summability reduces to (C, 1) summability when λn = n for all n. A complex
sequence, whose kth term is xk, is denoted by {xk} or simply x. Let φ be the set
of all finite sequences. Let ℓ∞, c, c0 be the sequence spaces of bounded, convergent
and null sequences x = (xk) respectively. In respect of ℓ∞, c, c0 we have

‖x‖ =
sup

k |xk| , where x = (xk) ∈ c0 ⊂ c ⊂ ℓ∞. A sequence x = {xk} is said to

be analytic if supk |xk|
1/k

< ∞. The vector space of all analytic sequences will

be denoted by Λ. A sequence x is called entire sequence if limk→∞ |xk|
1/k

= 0.
The vector space of all entire sequences will be denoted by Γ. Given a sequence
x = {xk} its nth section is the sequence x(n) = {x1, x2, . . . , xn, 0, 0, . . .} , δ

(n) =
(0, 0, . . . , 1, 0, 0, . . .) , 1 in the nth place and zero’s elsewhere.

2. Definitions and Preliminaries

Let w denote the set of all fuzzy complex sequences x = (xk)
∞
k=1 . Consider

Γ =
{

x ∈ w : limk→∞

(

|xk|
1/k

)

= 0
}

and

Λ =
{

x ∈ w : supk

(

|xk|
1/k

)

< ∞
}

.

Γ and Λ are metric spaces with the metric

d (x, y) = inf

{

sup
k

(

|xk − yk|
1/k

)

≤ 1

}

(1)

for all x = {xk} and y = {yk} in Γ.

In the present paper we introduce and examine the concepts of λ− statistical
convergence and strongly (λ)p − Cesáro convergence of sequences of fuzzy numbers.
Firstly in section 2, we give the definition of λ− statistical convergence and strongly
(λ)p − Cesáro convergence of sequence of fuzzy numbers. In section 3, we establish
some inclusion relation between the sequences s (λ) and (λ)p . We now give the
following new definitions which will be needed in the sequel.

Definition 2.1 Let X = (Xk) be a sequence of fuzzy numbers. A sequence X =
(Xk) of fuzzy numbers is said to converge to fuzzy number X0 if for every ǫ > 0 there

is a positive integer N0 such that
(

d
(

|Xk|
1/k

)

, X0

)

< ǫ for k ≥ N0. X = (Xk) is

said to be Cauchy sequence if for every ǫ > 0 there is a positive integer N0 such

that
(

d
(

|Xk|
1/k

)

, Xℓ

)

< ǫ for k, ℓ ≥ N0.

Definition 2.2 A sequence X = (Xk) of fuzzy numbers is said to be analytic if

the set
{

|Xk|
1/k

: k ∈ N
}

of fuzzy numbers is analytic.

Definition 2.3 A sequence X = (Xk) of fuzzy numbers is said to be λ− statisti-
cally convergent to a fuzzy number X0 if for every ǫ > 0, we have

1
n

∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

)

, X0

)

≥ ǫ
}
∣

∣

∣
→ 0asn → ∞.
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In this case we shall write Sλ − limk→∞

(

|Xk|
1/k

)

= X0.

It can be shown that if a sequence X = (Xk) of fuzzy numbers is convergent to a
fuzzy number X0, then it is statistically convergent to the fuzzy number X0. But
the converse does not hold. For example, we define X = (Xk) such that

(

|Xk|
1/k

)

=

{

A if k = n2, n = 1, 2, 3, · · ·
0 otherwise

where A is a fixed fuzzy number. Then X = (Xk) is statistically convergent but is
not convergent.

Definition 2.4 A sequence X = (Xk) of fuzzy numbers is said to be strongly

λ−summable if there is a fuzzy number X0 such that 1
λn

∑

k∈In

(

d
(

|Xk|
1/k

)

, X0

)

→

0asn → ∞.

Definition 2.5 A sequence X = (Xk) of fuzzy numbers is said to be strongly λp

Cesáro summable if there is a fuzzy number X0 such that 1
λn

∑

k∈In

(

d
(

|Xk|
1/k

)

, X0

)p

→

0asn → ∞. The set of all strongly λp− Cesáro summable sequences of fuzzy num-
bers is denoted by λp.

Definition 2.6 A sequence X = (Xk) of fuzzy numbers is said to be λ− statisti-
cally convergent or Sλ to a fuzzy number X0 if for every ǫ > 0, we have

1

λn

∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

)

, X0

)

≥ ǫ
}
∣

∣

∣
→ 0asn → ∞.

In this case we shall write Sλ − lim
(

|Xk|
1/k

)

= X0. In the special case (λ)n = n

for all n ∈ N, then λ− statistically convergent is same as statistically convergent.

3. Main Results

Theorem 3.1 (i)If a sequence X = (Xk) is strongly λp− Cesáro summable to X0,

then it is λ− statistically convergent to X0.

(ii)If X = (Xk) is a sequence λ− analytic and λ− statistically convergent to X0,

then it is strongly (λ)p − Cesáro summable to X0, and hence X is strongly λ−
Cesáro summable to X0.

Proof: (i) Let ǫ > 0 and X ∈ (λ)p . We have
∑

k∈In

(

d
(

|Xk|
1/k

)

, X0

)

≥
∑

k∈In , d(Xk,X0)≥ǫ

(

d
(

|Xk|
1/k

)

, X0

)p

≥
∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

)

, X0

)

≥ ǫ
}∣

∣

∣
ǫp.

Therefore (Xk) is λ− statistically convergent to X0.

(ii)Suppose that X = (Xk) is analytic and λ− statistically convergent to X0.
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Since X ∈ Λ, there exists a constant M > 0 such that
(

d
(

|Xk|
1/k

)

, X0

)

≤ M for

all k. Let ǫ > 0 be given and choose Nǫ such that

1
λn

∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

)

, X0

)

≥
(

ǫ
2

)1/p
}∣

∣

∣
≤ ǫ

2Mp for all n > Nǫ, and

set Ln =
∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

)

, X0

)

≥
(

ǫ
2

)1/p
}
∣

∣

∣
. Now for all n > Nǫ, we have

1
λn

∑

k∈In

[

d
(

|Xk|
1/k

)

, X0

]p

= 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

)

, X0

]p

+

1
λn

∑

k/∈In

[

d
(

|Xk|
1/k

)

, X0

]p

≤ 1
λn

(

λnǫ
2Mp

)

Mp + 1
λn

(

λnǫ
2

)

= ǫ.

Hence
(

|Xk|
1/k

)

→ X0 (λ)p . Further we have,

1
n

∑n
k=1

[

d
(

|Xk|
1/k

)

, X0

]

= 1
n

∑n−λn

k=1

[

d
(

|Xk|
1/k

)

, X0

]

+

1
n

∑

k∈In

[

d
(

|Xk|
1/k

)

, X0

]

≤ 1
λn

∑n−λn

k=1

[

d
(

|Xk|
1/k

)

, X0

]

+ ≤ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

)

, X0

]

≤ 2
λn

∑

k∈In

[

d
(

|Xk|
1/k

)

, X0

]

.

Hence X is strongly Cesáro summable to X0, since X is strongly λ Cesáro summable
to X0. This completes the proof. 2

Theorem 3.2 Let (Xk) and (Yk) be sequence of fuzzy numbers.

(i)If Sλ − lim
(

|Xk|
1/k

)

= X0 and c ∈ R, then Sλ − lim
(

c |Xk|
1/k

)

= cX0; (ii)If

Sλ−lim
(

|Xk|
1/k

)

= X0 and Sλ−lim
(

|Yk|
1/k

)

= Y0, then Sλ−lim
(

|Xk|
1/k

+
(

|Yk|
1/k

))

=

X0 + Y0.

Proof: (i) Let α ∈ [0, 1] and c ∈ R. Let
(

|Xα
k |

1/k
)

,
(

|Y α
k |

1/k
)

, Xα
0 and Y α

0 be α−

level sets of
(

|Xk|
1/k

)

,
(

|Yk|
1/k

)

, X0 and Y0 respectively. Since δ∞

(

c |Xk|
1/k

, Xα
0

)

=

|c| δ∞

(

|Xα
k |

1/k
, Xα

0

)

, we have d
(

c |Xk|
1/k

, cX0

)

= |c| d
(

|Xk|
1/k

, X0

)

. For given

ǫ > 0 we have 1
λn

∣

∣

∣

{

k ∈ In :
(

d
(

c |Xk|
1/k

, X0

))

≥ ǫ
}∣

∣

∣

≤ 1
λn

∣

∣

∣

{

k ∈ In :
(

d
(

|Xk|
1/k

, X0

))

≥ ǫ
|c|

}∣

∣

∣
. Hence Sλ − lim

(

|Xk|
1/k

)

= cX0.

(ii) Suppose that Sλ − lim
(

|Xk|
1/k

)

= X0 and Sλ − lim
(

|Yk|
1/k

)

= Y0. Firstly

we have, δ∞

(

|Xα
k |

1/k
+ |Y α

k |
1/k

, Xα
0 + Y α

0

)

≤

δ∞

(

|Xα
k |

1/k
+ |Y α

k |
1/k

,
(

|Y α
k |

1/k
)

+Xα
0

)

+ δ∞

(

|Y α
k |

1/k
+Xα

0 , X
α
0 + Y α

0

)

=

δ∞

(

|Xα
k |

1/k
, Xα

0

)

+ δ∞

(

|Y α
k |

1/k
, Y α

0

)

.

By Minkowski’s inequality we get

d
(

|Xα
k |

1/k
+ |Yk|

1/k
, X0 + Y0

)

≤ d
(

|Xα
k |

1/k
, X0

)

+ d
(

|Y α
k |

1/k
, Y0

)

. Therefore
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given ǫ > 0 we have
1
λn

∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

+ |Yk|
1/k

, X0 + Y0

)

≥ ǫ
}∣

∣

∣
≤

1
λn

∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

, X0

)

+ d
(

|Yk|
1/k

, Y0

)

≥ ǫ
}∣

∣

∣
≤

1
λn

∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

, X0

)

≥ ǫ
2

}
∣

∣

∣
+

1
λn

∣

∣

∣

{

k ∈ In : d
(

|Yk|
1/k

, Y0

)

≥ ǫ
2

}
∣

∣

∣
.

Hence Sλ − lim
(

|Xk|
1/k

+ |Yk|
1/k

)

= X0 + Y0. This completes the proof. 2

Theorem 3.3 If a sequence X = (Xk) is statistically convergent to X0 and lim inf(n)
(

λn

n

)

>

0, then it is λ− statistically convergent to X0.

Proof: For given ǫ > 0, we have
∣

∣

∣

{

k ∈ n : d
(

|Xk|
1/k

, X0

)

≥ ǫ
}∣

∣

∣

⊃
∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

, X0

)

≥ ǫ
}∣

∣

∣
. Therefore

1
n

∣

∣

∣

{

k ≤ n : d
(

|Xk|
1/k

, X0

)

≥ ǫ
}
∣

∣

∣
≥ 1

n

∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

, X0

)

≥ ǫ
}
∣

∣

∣

≥ λn

n
1

(λ)
n

∣

∣

∣

{

k ∈ In : d
(

|Xk|
1/k

, X0

)

≥ ǫ
}∣

∣

∣
.

Taking lim as n → ∞ and using lim inf(n)
(

λn

n

)

> 0, we get X = (Xk) is λ−
statistically convergent to X0. This completes the proof. 2

Definition 3.1 Let p = (pk) be any sequence of positive real numbers. Then we de-

fine (λ)p =
{

X = {Xk} : 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

→ 0asn → ∞
}

. Suppose

that pk is a constant for all k, then (λ)p = λ.

Theorem 3.4 Let 0 ≤ pk ≤ qk and let
{

qk
pk

}

be bounded. Then (λ)p ⊂ (λ)q .

Proof: Let
X ∈ (λ)q (2)

1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
→ 0asn → ∞.

Let tk = 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

and λk = pk

qk
Since pk ≤ qk, we have

0 ≤ λk ≤ 1.
Take 0 < λ < λk.Define uk = tk (tk ≥ 1) ;uk = 0 (tk < 1) and vk = 0 (tk ≥ 1) ;
vk = tk (tk < 1) . tk = uk + vk. (i.e)t

λk

k = uλk

k + vλk

k . Now it follows that

uλk

k ≤ uk ≤ tk and vλk

k ≤ vλk . (3)

Since tλk

k = uλk

k + vλk

k , tλk

k ≤ tk + vλk .

1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)qk]λk

≤ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
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⇒ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)qk]pk/qk
≤ 1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk

⇒ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

≤ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
.

But 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
→ 0asn → ∞.

Hence 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

→ 0asn → ∞. Hence

X ∈ (λ)p (4)

From (2) and (4) we get (λ)q ⊂ (λ)p . This completes the proof. 2

Theorem 3.5 (a)Let 0 < infpk ≤ pk ≤ 1. Then (λ)p ⊂ λ (b) Let 1 ≤ pk ≤
sup pk < ∞. Then λ ⊂ (λ)p .

Proof: (a)Let
X ∈ (λ)p (5)

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

→ 0asn → ∞. (6)

Since 0 < inf pk ≤ pk ≤ 1

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]

≤
1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

(7)

From (6) and (7) it follows that
X ∈ λ (8)

Thus
(λ)p ⊂ λ. (9)

This completes the proof.
Proof:(b)Let pk ≥ 1 for each k and suppk < ∞. Let X ∈ λ

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]

→ 0asn → ∞ (10)

Since 1 ≤ pk ≤ suppk < ∞ we have

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

≤
1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]

(11)

1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

→ 0asn → ∞ (by using 10)

Therefore X ∈ (λ)p . This completes the proof. 2
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Theorem 3.6 Let 0 < pk ≤ qk < ∞ for each k. Then (λ)p ⊆ (λ)q .

Proof: Let
X ∈ (λ)p . (12)

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

→ 0asn → ∞. (13)

This implies that 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]

≤ 1, for sufficiently large n, we get

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
≤

1

λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]pk

. (14)

⇒ 1
λn

∑

k∈In

[

d
(

|Xk|
1/k

, X0

)]qk
→ 0asn → ∞ (by using 13). Hence

X ∈ (λ)q . (15)

From (12) and (15) we get (λ)p ⊆ (λ)q . This completes the proof. 2
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