Bol. Soc. Paran. Mat. ©SPM –ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) v. 29 2 (2011): 43-49. ISSN-00378712 IN PRESS doi:10.5269/bspm.v29i2.11965

On an elliptic equation of *p*-Laplacian type with nonlinear boundary condition

Nguyen Thanh Chung

ABSTRACT: We consider elliptic equations of p-Laplacian type with the nonlinear boundary condition of the form

$$\begin{cases} -\Delta_p u + |u|^{p-2}u &= \lambda f_1(u) + \mu g_1(u) & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial n} &= \lambda f_2(u) + \mu g_2(u) & \text{in } \partial\Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ $(N \geq 3)$ is a bounded domain with smooth boundary $\partial \Omega$, $\frac{\partial}{\partial n}$ is the outer unit normal derivative, λ, μ are parameters. The functions f_i , i = 1, 2, are assumed to be (p-1)-sublinear while g_i , i = 1, 2, are (p-1)-assymptotically linear at infinity. Using variational techniques, an existence result is given.

Key Words: Elliptic equation, p-Laplacian type, (p-1)-sublinear, (p-1)assymptotically linear, Nonlinear boundary condition.

Contents

Introduction 1

Existence of solutions 2

1. Introduction

Consider the elliptic equation of *p*-Laplacian type with nonlinear boundary condition

$$\begin{cases} -\Delta_p u + |u|^{p-2}u &= \lambda f_1(u) + \mu g_1(u) & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial n} &= \lambda f_2(u) + \mu g_2(u) & \text{in } \partial\Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ $(N \geq 3)$ is a bounded domain with smooth boundary $\partial \Omega$, $\frac{\partial}{\partial n}$ is the outer unit normal derivative, $1 , <math>\lambda, \mu$ are parameters.

Problem (1.1) has been studied in many works, such as [1,2,3,4,5,9], in which the authors have used different methods to obtain the existence of solutions. In a recent paper [7], we have considered the situation: $g_i \equiv 0$ $(i = 1, 2), f_i, i = 1, 2, j_i$ are (p-1)-sublinear at infinity. We then used the three critical point theorem of G. Bonanno [6] to obtain a multiplicity result for (1.1). A natural question is to see what happens if the problem in [7] is affected by a certain perturbation. For this purpose, in this note, we establish an existence result for (1.1) in the case when $f_i : \mathbb{R} \to \mathbb{R}, i = 1, 2$, are (p-1)-sublinear and $g_i : \mathbb{R} \to \mathbb{R}, i = 1, 2$, are

 $\mathbf{43}$ $\mathbf{45}$

²⁰⁰⁰ Mathematics Subject Classification: 35J65, 35J20.

(p-1)-assymptotically at infinity. The proof relies essentially on the minimum principle in [8, Theorem 2.1].

In order to state the main result of this work, we would introduce the following hypotheses

(f) f_i , i = 1, 2 are continuous and (p-1)-sublinear at infinity, i.e.,

$$\lim_{|t| \to \infty} \frac{|f_i(t)|}{|t|^{p-1}} = 0;$$

(g) g_i , i = 1, 2 are continuous and (p - 1)-assymptotically at infinity, i.e.,

$$\lim_{t \to \infty} \frac{|g_i(t)|}{|t|^{p-1}} = l_i < +\infty.$$

Let $W^{1,p}(\Omega)$ be the usual Sobolev space with respect to the norm

$$\|u\|_{1,p}^p = \int_{\Omega} (|\nabla u|^p + |u|^p) dx$$

and $W_0^{1,p}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. For any $1 and <math>1 \leq q \leq p^* = \frac{Np}{N-p}$, we denote by $S_{q,\Omega}$ the best constant in the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ and for all $1 \leq q \leq p_* = \frac{(N-1)p}{N-p}$, we also denote by $S_{q,\partial\Omega}$ the best constant in the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$, i.e.

$$S_{q,\partial\Omega} = \inf_{u \in W^{1,p}(\Omega) \backslash W_0^{1,p}(\Omega)} \frac{\int_{\Omega} (|\nabla u|^p + |u|^p) dx}{\left(\int_{\partial\Omega} |u|^q d\sigma\right)^{\frac{p}{q}}}$$

Moreover, if $1 \leq q < p^*$, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact and if $1 \leq q < p_*$, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega)$ is compact. As a consequence, we have the existence of extremals, i.e. functions where the infimum is attained (see [2,5]).

Definition 1.1. A function $u \in W^{1,p}(\Omega)$ is said to be a weak solution of problem (1.1) if and only if

$$\int_{\Omega} \left[|\nabla u|^{p-2} \nabla u \cdot \nabla v + |u|^{p-2} uv \right] dx - \lambda \int_{\Omega} f_1(u) v dx - \lambda \int_{\partial \Omega} f_2(u) v d\sigma - \mu \int_{\Omega} g_1(u) v dx - \mu \int_{\partial \Omega} g_2(u) v d\sigma = 0$$

for all $v \in W^{1,p}(\Omega)$.

Theorem 1.2. Assume conditions (f) and (g) are fulfilled. Moreover, there exists $s_0 > 0$ such that

$$F_1(s_0) := \int_0^{s_0} f_1(t)dt > 0 \text{ and } F_2(s_0) := \int_0^{s_0} f_2(t)dt > 0.$$

Then for each $\lambda \in \mathbb{R}$ large enough, there exists $\overline{\mu} > 0$, such that problem (1.1) has at least a non-trivial weak solution u in $W^{1,p}(\Omega)$ for every $\mu \in (0, \overline{\mu})$.

2. Existence of solutions

For $\lambda, \mu \in \mathbb{R}$, let us define the functional $J_{\lambda,\mu} : W^{1,p}(\Omega) \to \mathbb{R}$ associated to problem (1.1) by the formula

$$J_{\lambda,\mu}(u) = \frac{1}{p} \int_{\Omega} \left[|\nabla u|^p + |u|^p \right] dx - \lambda \int_{\Omega} F_1(u) dx - \lambda \int_{\partial \Omega} F_2(u) d\sigma$$
$$-\mu \int_{\Omega} G_1(u) dx - \mu \int_{\partial \Omega} G_2(u) d\sigma$$
$$= \Lambda(u) - I_{\lambda,\mu}(u),$$
(2.1)

where

$$\Lambda(u) = \frac{1}{p} \int_{\Omega} \left[|\nabla u|^p + |u|^p \right] dx,$$

$$I_{\lambda,\mu}(u) = \lambda \int_{\Omega} F_1(u) dx + \lambda \int_{\partial\Omega} F_2(u) d\sigma + \mu \int_{\Omega} G_1(u) dx + \mu \int_{\partial\Omega} G_2(u) d\sigma$$
(2.2)

for all $u \in W^{1,p}(\Omega)$. Then, a simple computation shows that $J_{\lambda,\mu}$ is of C^1 class and

$$\begin{split} DJ_{\lambda,\mu}(u)(v) &= \int_{\Omega} \Big[|\nabla u|^{p-2} \nabla u \cdot \nabla v + |u|^{p-2} uv \Big] dx - \lambda \int_{\Omega} f_1(u) v dx - \lambda \int_{\partial \Omega} f_2(u) v d\sigma \\ &- \mu \int_{\Omega} g_1(u) v dx - \mu \int_{\partial \Omega} g_2(u) v d\sigma = 0 \end{split}$$

for all $u, v \in W^{1,p}(\Omega)$. Thus, weak solutions of problem (1.1) are exactly the critical points of $J_{\lambda,\mu}$.

Lemma 2.1. For every $\lambda \in \mathbb{R}$, there exists $\overline{\mu} > 0$, depending on λ , such that for every $\mu \in (0, \overline{\mu})$, the functional $J_{\lambda,\mu}$ is coercive.

Proof. Firstly, we have

$$S_{p,\Omega} \|u\|_{L^p(\Omega)} \leq \|u\|_{1,p}$$
 and $S_{p,\partial\Omega} \|u\|_{L^p(\partial\Omega)} \leq \|u\|_{1,p}$

for all $u \in W^{1,p}(\Omega)$.

Let us fix $\lambda \in \mathbb{R}$, arbitrary. By (f), there exist $\delta_i = \delta_i(\lambda)$, i = 1, 2, such that

$$|f_1(t)| \leq S_{p,\Omega}^p \frac{1}{2(1+|\lambda|)} |t|^{p-1}, \quad \forall |t| \geq \delta_1$$

and

$$|f_2(t)| \leq S_{p,\partial\Omega}^p \frac{1}{2(1+|\lambda|)} |t|^{p-1}, \quad \forall |t| \geq \delta_2.$$

Integrating the above inequalities, we have

$$|F_1(t)| \leq S_{p,\Omega}^p \frac{1}{2p(1+|\lambda|)} |t|^p + \max_{|s| \leq \delta_1} |f_1(s)| |t|, \quad \forall t \in \mathbb{R}$$
(2.3)

and

$$|F_2(t)| \le S_{p,\partial\Omega}^p \frac{1}{2p(1+|\lambda|)} |t|^p + \max_{|s| \le \delta_2} |f_2(s)||t|, \quad \forall t \in \mathbb{R}.$$
 (2.4)

Since g_i , i = 1, 2 are (p - 1)-asymptotically linear at infinity, there exist two constants $m_i > 0$, i = 1, 2, such that

$$|g_1(t)| \leq m_1 p S_{p,\Omega}^p |t|^{p-1} + m_1,$$

 $|g_2(t)| \leq m_2 p S_{p,\partial\Omega}^p |t|^{p-1} + m_2$

for all $t \in \mathbb{R}$. It implies that

$$|G_1(t)| \le m_1 S_{p,\Omega}^p |t|^p + m_1 |t|, \qquad (2.5)$$

and

$$|G_2(t)| \le m_2 S_{p,\partial\Omega}^p |t|^p + m_2 |t|$$
(2.6)

for all $t \in \mathbb{R}$.

Hence, for any $u \in W^{1,p}(\Omega)$, we deduce that

$$\begin{split} J_{\lambda,\mu}(u) &\geqq \Lambda(u) - |I_{\lambda,\mu}(u)| \\ &\geqq \frac{1}{p} \|u\|_{1,p}^{p} - \frac{|\lambda|}{2p(1+|\lambda|)} \|u\|_{1,p}^{p} - \frac{|\lambda|}{S_{p,\Omega}} |\Omega|_{N}^{\frac{1}{p'}} \|u\|_{1,p} \max_{|s| \leq \delta_{1}} |f_{1}(s)| \\ &\quad - \frac{|\lambda|}{2p(1+|\lambda|)} \|u\|_{1,p}^{p} - \frac{|\lambda|}{S_{p,\partial\Omega}} |\partial\Omega|_{N-1}^{\frac{1}{p'}} \|u\|_{1,p} \max_{|s| \leq \delta_{1}} |f_{2}(s)| \\ &\quad - |\mu|m_{1}\|u\|_{1,p}^{p} - m_{1}\frac{|\mu|}{S_{p,\Omega}} |\Omega|_{N-1}^{\frac{1}{p'}} \|u\|_{1,p} \\ &\quad - |\mu|m_{2}\|u\|_{1,p}^{p} - m_{2}\frac{|\mu|}{S_{p,\partial\Omega}} |\partial\Omega|_{N-1}^{\frac{1}{p'}} \|u\|_{1,p} \\ &= \left(\frac{1}{p(1+|\lambda|)} - |\mu|(m_{1}+m_{2})\right) \|u\|_{1,p}^{p} - \frac{|\lambda|}{S_{p,\Omega}} |\Omega|_{N}^{\frac{1}{p'}} \|u\|_{1,p} \max_{|s| \leq \delta_{1}} |f_{1}(s)| \\ &\quad - \frac{|\lambda|}{S_{p,\partial\Omega}} |\partial\Omega|_{N-1}^{\frac{1}{p'}} \|u\|_{1,p} \max_{|s| \leq \delta_{1}} |f_{2}(s)| - m_{1}\frac{|\mu|}{S_{p,\Omega}} |\Omega|_{N}^{\frac{1}{p'}} \|u\|_{1,p} \\ &\quad - m_{2}\frac{|\mu|}{S_{p,\partial\Omega}} |\partial\Omega|_{N-1}^{\frac{1}{p'}} \|u\|_{1,p}, \end{split}$$

where $p' = \frac{p}{p-1}$. Let $\overline{\mu} = \frac{1}{p(m_1+m_2)(1+|\lambda|)}$ and fix $\mu \in (0,\overline{\mu})$. Since p > 1 we have $J_{\lambda,\mu}(u) \to +\infty$ as $\|u\|_{1,p} \to \infty$. Thus, the functional $J_{\lambda,\mu}$ is coercive. \Box

Lemma 2.2. Let λ and $\overline{\mu}$ be chosen as in the previous lemma. Then for each $\mu \in (0, \overline{\mu})$, the functional $J_{\lambda,\mu}$ satisfies the Palais-Smale condition.

46

Proof. Let $\{u_m\}$ be a sequence in $W^{1,p}(\Omega)$ such that

$$J_{\lambda,\mu}(u_m) \to \overline{c}, \quad DJ_{\lambda,\mu}(u_m) \to 0 \text{ in } W^{-1,p}(\Omega) \text{ as } m \to \infty.$$
 (2.7)

Since the functional $J_{\lambda,\mu}$ is coercive, the sequence $\{u_m\}$ is bounded in $W^{1,p}(\Omega)$. Then, there exist a subsequence still denoted by $\{u_m\}$ and a function $u \in W^{1,p}(\Omega)$, such that $\{u_m\}$ converges weakly to u in $W^{1,p}(\Omega)$. Hence, $\{\|u_m-u\|_{1,p}\}$ is bounded and by (2.7), $DJ_{\lambda,\mu}(u_m)(u_m-u)$ converges to 0 as $m \to \infty$.

By (f), there exists a constant $C_1 > 0$ such that

$$|f_i(t)| \leq C_1(1+|t|^{p-1}), \quad i=1,2$$

for all $t \in \mathbb{R}$. Therefore,

$$0 \leq \int_{\Omega} |f_1(u_m)| |u_m - u| dx \leq C_1 \int_{\Omega} |u_m - u| dx + C \int_{\Omega} |u_m|^{p-1} |u_m - u| dx$$
$$\leq C_1 \left[|\Omega|_N^{\frac{1}{p'}} + ||u_m||_{L^p(\Omega)}^{p-1} \right] ||u_m - u||_{L^p(\Omega)}$$

and

$$0 \leq \int_{\partial\Omega} |f_2(u_m)| |u_m - u| dx \leq C_1 \int_{\partial\Omega} |u_m - u| dx + C_1 \int_{\partial\Omega} |u_m|^{p-1} |u_m - u| dx$$
$$\leq C_1 \Big[|\partial\Omega|_{N-1}^{\frac{1}{p'}} + ||u_m||_{L^p(\partial\Omega)}^{p-1} \Big] ||u_m - u||_{L^p(\partial\Omega)}.$$

Since $\{u_m\}$ converges strongly to u in the spaces $L^p(\Omega)$ and $L^p(\partial\Omega)$, the above inequalities imply that

$$\lim_{m \to \infty} \int_{\Omega} f_1(u_m)(u_m - u)dx = 0$$
(2.8)

and

$$\lim_{m \to \infty} \int_{\partial \Omega} f_2(u_m)(u_m - u)dx = 0.$$
(2.9)

On the other hand, by (g), there exists a constant $C_2 > 0$ such that

$$|g_i(t)| \leq C_2(1+|t|^{p-1}), \quad i=1,2$$

for all $t \in \mathbb{R}$. Therefore, the similar arguments above show that

$$\lim_{m \to \infty} \int_{\Omega} g_1(u_m)(u_m - u) dx = 0$$
(2.10)

and

$$\lim_{m \to \infty} \int_{\partial \Omega} g_2(u_m)(u_m - u) dx = 0.$$
(2.11)

By relations (2.8)-(2.11), we get

$$\lim_{m \to \infty} DI_{\lambda,\mu}(u_m)(u_m - u) = 0.$$
(2.12)

N.T. Chung

Combining (2.11) and (2.7), it follows that

$$\lim_{m \to \infty} \Lambda(u_m)(u_m - u) = 0.$$
(2.13)

Hence, standard arguments help us to show that the sequence $\{u_m\}$ converges strongly to u in $W^{1,p}(\Omega)$. Thus, the functional $J_{\lambda,\mu}$ satisfies the Palais-Smale condition in $W^{1,p}(\Omega)$.

Proof Theorem 1.2. By Lemmas 2.1 and 2.2, using the minimum principle [8, Theorem 2.1], we deduce that for each $\lambda \in \mathbb{R}$, there exists $\overline{\mu} > 0$, such that for any $\mu \in (0, \overline{\mu})$, problem (1.1) has a weak solution $u \in W^{1,p}(\Omega)$. We will show that u is not trivial for λ large enough. Indeed, let s_0 be a real number such that

$$F_1(s_0) := \int_0^{s_0} f_1(t)dt > 0 \text{ and } F_2(s_0) := \int_0^{s_0} f_2(t)dt > 0$$

and let $\Omega_0 \subset \Omega$ be an open subset with $|\Omega_0|_N > 0$. Then, there exists $u_0 \in C_0^{\infty}(\Omega)$ such that $u_0(x) \equiv s_0$ on $\overline{\Omega}_0$ and $0 \leq u_0(x) \leq s_0$ in $\Omega \setminus \Omega_0$. We have

$$\begin{aligned} J_{\lambda,\mu}(u_0) &= \frac{1}{p} \int_{\Omega} \left[|\nabla u_0|^p + |u_0|^p \right] dx - \lambda \int_{\Omega} F_1(u_0) dx - \lambda \int_{\partial\Omega} F_2(u_0) dx \\ &- \mu \int_{\Omega} G_1(u_0) dx - \mu \int_{\partial\Omega} G_2(u_0) dx \\ &\leq \frac{1}{p} \int_{\Omega} \left[|\nabla u_0|^p + |u_0|^p \right] dx - \lambda \int_{\Omega_0} F_1(u_0) dx - \lambda \int_{\partial\Omega_0} F_2(u_0) dx \\ &- \mu \int_{\Omega_0} G_1(u_0) dx - \mu \int_{\partial\Omega_0} G_2(u_0) dx \\ &= C - \lambda \Big(F_1(s_0) |\Omega_0|_N + F_2(s_0) |\Omega_0|_{N-1} \Big), \end{aligned}$$

where C is a positive constant (C depends on μ). Therefore, for $\lambda > 0$ large enough, we have $J_{\lambda,\mu}(u_0) < 0$. Thus, the solution u is not trivial. The proof of Theorem 1.2 is now completed.

References

- 1. E. A. M. Abreu, J. M. do Ó and E.S. Medeiros, Multiplicity of solutions for a class of quasilinear nonhomogeneuous Neumann problems, *Nonlinear Anal.*, **60** (2005), 1443-1471.
- 2. J.F.BONDER, Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities, *Abstr. Appl. Anal.*, **2004**(12) (2004), 1047-1056.
- J.F. BONDER, Multiple solutions for the p-Laplacian equation with nonlinear boundary conditions, *Electron. J. Diff. Equ.*, 2006(37) (2006), 1-7.
- J.F. BONDER, S. MARTÍNEZ AND J.D. ROSSI, Existence results for gradient elliptic systems with nonlinear boundary conditions, *Nonlinear Differ. Eqns. Appl. (NoDEA)*, 14(1-2) (2007), 153-179.
- J.F. BONDER AND J.D. ROSSI, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001), 195-223.

- G. BONANNO, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651-665.
- 7. N.T. CHUNG, Multiple solutions for quasilinear elliptic problems with nonlinear boundary conditions, *Electron. J. Diff. Equ.*, **2008**(165) (2008), 1-6.
- 8. A. ANANE, O. CHAKRONE, B. KARIM AND A. ZEROUALI, Existence of solutions for a resonant Steklov Problem, *Bol. Soc. Paranaense de Mat.*, **27**(1) (2009), 85-90.
- 9. J.H. ZHAO AND P.H. ZHAO, Infinitely many weak solutions for a *p*-Laplacian equations with nonlinear boundary conditions, *Electron. J. Diff. Equ.*, **2006** (90) (2006), 1-14.

Nguyen Thanh Chung, Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Vietnam E-mail address: chungnt.qbu@gmail.com