On an elliptic equation of p-Laplacian type with nonlinear boundary condition

Nguyen Thanh Chung

ABSTRACT: We consider elliptic equations of p-Laplacian type with the nonlinear boundary condition of the form

$$
\left\{\begin{array}{rll}
-\Delta_{p} u+|u|^{p-2} u & =\lambda f_{1}(u)+\mu g_{1}(u) & \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial n} & =\lambda f_{2}(u)+\mu g_{2}(u) & \text { in } \partial \Omega
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geqq 3)$ is a bounded domain with smooth boundary $\partial \Omega, \frac{\partial}{\partial n}$ is the outer unit normal derivative, λ, μ are parameters. The functions $f_{i}, i=1,2$, are assumed to be $(p-1)$-sublinear while $g_{i}, i=1,2$, are $(p-1)$-assymptotically linear at infinity. Using variational techniques, an existence result is given.

Key Words: Elliptic equation, p-Laplacian type, $(p-1)$-sublinear, $(p-1)$ assymptotically linear, Nonlinear boundary condition.

Contents

1 Introduction
2 Existence of solutions

1. Introduction

Consider the elliptic equation of p-Laplacian type with nonlinear boundary condition

$$
\left\{\begin{align*}
-\Delta_{p} u+|u|^{p-2} u & =\lambda f_{1}(u)+\mu g_{1}(u) \tag{1.1}
\end{align*} \quad \text { in } \Omega,\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geqq 3)$ is a bounded domain with smooth boundary $\partial \Omega, \frac{\partial}{\partial n}$ is the outer unit normal derivative, $1<p<N, \lambda, \mu$ are parameters.

Problem (1.1) has been studied in many works, such as [1,2,3,4,5,9], in which the authors have used different methods to obtain the existence of solutions. In a recent paper [7], we have considered the situation: $g_{i} \equiv 0(i=1,2), f_{i}, i=1,2$, are $(p-1)$-sublinear at infinity. We then used the three critical point theorem of G. Bonanno [6] to obtain a multiplicity result for (1.1). A natural question is to see what happens if the problem in [7] is affected by a certain perturbation. For this purpose, in this note, we establish an existence result for (1.1) in the case when $f_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are $(p-1)$-sublinear and $g_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are

2000 Mathematics Subject Classification: 35J65, 35J20.
($p-1$)-assymptotically at infinity. The proof relies essentially on the minimum principle in [8, Theorem 2.1].

In order to state the main result of this work, we would introduce the following hypotheses
(f) $f_{i}, i=1,2$ are continuous and $(p-1)$-sublinear at infinity, i.e.,

$$
\lim _{|t| \rightarrow \infty} \frac{\left|f_{i}(t)\right|}{|t|^{p-1}}=0
$$

(g) $g_{i}, i=1,2$ are continuous and $(p-1)$-assymptotically at infinity, i.e.,

$$
\lim _{|t| \rightarrow \infty} \frac{\left|g_{i}(t)\right|}{|t|^{p-1}}=l_{i}<+\infty
$$

Let $W^{1, p}(\Omega)$ be the usual Sobolev space with respect to the norm

$$
\|u\|_{1, p}^{p}=\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x
$$

and $W_{\Omega}^{1, p}(\Omega)$ is the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, p}(\Omega)$. For any $1<p<N$ and $1 \leqq q \leqq$ $p^{\star}=\frac{\Lambda_{p} p}{N-p}$, we denote by $S_{q, \Omega}$ the best constant in the embedding $W^{1, p}(\Omega) \hookrightarrow \bar{L}^{q}(\Omega)$ and for all $1 \leqq q \leqq p_{\star}=\frac{(N-1) p}{N-p}$, we also denote by $S_{q, \partial \Omega}$ the best constant in the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$, i.e.

$$
S_{q, \partial \Omega}=\inf _{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x}{\left(\int_{\partial \Omega}|u|^{q} d \sigma\right)^{\frac{p}{q}}}
$$

Moreover, if $1 \leqq q<p^{\star}$, then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ is compact and if $1 \leqq q<p_{\star}$, then the embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ is compact. As a consequence, we have the existence of extremals, i.e. functions where the infimum is attained (see $[2,5]$).
Definition 1.1. A function $u \in W^{1, p}(\Omega)$ is said to be a weak solution of problem (1.1) if and only if

$$
\begin{aligned}
\int_{\Omega}\left[|\nabla u|^{p-2} \nabla u \cdot \nabla v+|u|^{p-2} u v\right] d x-\lambda & \int_{\Omega} f_{1}(u) v d x-\lambda \int_{\partial \Omega} f_{2}(u) v d \sigma \\
& -\mu \int_{\Omega} g_{1}(u) v d x-\mu \int_{\partial \Omega} g_{2}(u) v d \sigma=0
\end{aligned}
$$

for all $v \in W^{1, p}(\Omega)$.
Theorem 1.2. Assume conditions (f) and (g) are fulfilled. Moreover, there exists $s_{0}>0$ such that

$$
F_{1}\left(s_{0}\right):=\int_{0}^{s_{0}} f_{1}(t) d t>0 \text { and } F_{2}\left(s_{0}\right):=\int_{0}^{s_{0}} f_{2}(t) d t>0
$$

Then for each $\lambda \in \mathbb{R}$ large enough, there exists $\bar{\mu}>0$, such that problem (1.1) has at least a non-trivial weak solution u in $W^{1, p}(\Omega)$ for every $\mu \in(0, \bar{\mu})$.

2. Existence of solutions

For $\lambda, \mu \in \mathbb{R}$, let us define the functional $J_{\lambda, \mu}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ associated to problem (1.1) by the formula

$$
\begin{align*}
J_{\lambda, \mu}(u)= & \frac{1}{p} \int_{\Omega}\left[|\nabla u|^{p}+|u|^{p}\right] d x-\lambda \int_{\Omega} F_{1}(u) d x-\lambda \int_{\partial \Omega} F_{2}(u) d \sigma \\
& \quad-\mu \int_{\Omega} G_{1}(u) d x-\mu \int_{\partial \Omega} G_{2}(u) d \sigma \tag{2.1}\\
= & \Lambda(u)-I_{\lambda, \mu}(u)
\end{align*}
$$

where

$$
\begin{align*}
\Lambda(u) & =\frac{1}{p} \int_{\Omega}\left[|\nabla u|^{p}+|u|^{p}\right] d x \\
I_{\lambda, \mu}(u) & =\lambda \int_{\Omega} F_{1}(u) d x+\lambda \int_{\partial \Omega} F_{2}(u) d \sigma+\mu \int_{\Omega} G_{1}(u) d x+\mu \int_{\partial \Omega} G_{2}(u) d \sigma \tag{2.2}
\end{align*}
$$

for all $u \in W^{1, p}(\Omega)$. Then, a simple computation shows that $J_{\lambda, \mu}$ is of C^{1} class and

$$
\begin{aligned}
& D J_{\lambda, \mu}(u)(v)=\int_{\Omega}\left[|\nabla u|^{p-2} \nabla u \cdot \nabla v+|u|^{p-2} u v\right] d x-\lambda \int_{\Omega} f_{1}(u) v d x-\lambda \int_{\partial \Omega} f_{2}(u) v d \sigma \\
&-\mu \int_{\Omega} g_{1}(u) v d x-\mu \int_{\partial \Omega} g_{2}(u) v d \sigma=0
\end{aligned}
$$

for all $u, v \in W^{1, p}(\Omega)$. Thus, weak solutions of problem (1.1) are exactly the critical points of $J_{\lambda, \mu}$.
Lemma 2.1. For every $\lambda \in \mathbb{R}$, there exists $\bar{\mu}>0$, depending on λ, such that for every $\mu \in(0, \bar{\mu})$, the functional $J_{\lambda, \mu}$ is coercive.

Proof. Firstly, we have

$$
S_{p, \Omega}\|u\|_{L^{p}(\Omega)} \leqq\|u\|_{1, p} \text { and } S_{p, \partial \Omega}\|u\|_{L^{p}(\partial \Omega)} \leqq\|u\|_{1, p}
$$

for all $u \in W^{1, p}(\Omega)$.
Let us fix $\lambda \in \mathbb{R}$, arbitrary. By (f), there exist $\delta_{i}=\delta_{i}(\lambda), i=1,2$, such that

$$
\left|f_{1}(t)\right| \leqq S_{p, \Omega}^{p} \frac{1}{2(1+|\lambda|)}|t|^{p-1}, \quad \forall|t| \geqq \delta_{1}
$$

and

$$
\left|f_{2}(t)\right| \leqq S_{p, \partial \Omega}^{p} \frac{1}{2(1+|\lambda|)}|t|^{p-1}, \quad \forall|t| \geqq \delta_{2}
$$

Integrating the above inequalities, we have

$$
\begin{equation*}
\left|F_{1}(t)\right| \leqq S_{p, \Omega}^{p} \frac{1}{2 p(1+|\lambda|)}|t|^{p}+\max _{|s| \leqq \delta_{1}}\left|f_{1}(s)\right||t|, \quad \forall t \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F_{2}(t)\right| \leqq S_{p, \partial \Omega}^{p} \frac{1}{2 p(1+|\lambda|)}|t|^{p}+\max _{|s| \leqq \delta_{2}}\left|f_{2}(s)\right||t|, \quad \forall t \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

Since $g_{i}, i=1,2$ are $(p-1)$-asymptotically linear at infinity, there exist two constants $m_{i}>0, i=1,2$, such that

$$
\begin{aligned}
& \left|g_{1}(t)\right| \leqq m_{1} p S_{p, \Omega}^{p}|t|^{p-1}+m_{1} \\
& \left|g_{2}(t)\right| \leqq m_{2} p S_{p, \partial \Omega}^{p}|t|^{p-1}+m_{2}
\end{aligned}
$$

for all $t \in \mathbb{R}$. It implies that

$$
\begin{equation*}
\left|G_{1}(t)\right| \leqq m_{1} S_{p, \Omega}^{p}|t|^{p}+m_{1}|t| \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|G_{2}(t)\right| \leqq m_{2} S_{p, \partial \Omega}^{p}|t|^{p}+m_{2}|t| \tag{2.6}
\end{equation*}
$$

for all $t \in \mathbb{R}$.
Hence, for any $u \in W^{1, p}(\Omega)$, we deduce that

$$
\begin{aligned}
J_{\lambda, \mu}(u) \geqq & \Lambda(u)-\left|I_{\lambda, \mu}(u)\right| \\
\geqq & \frac{1}{p}\|u\|_{1, p}^{p}-\frac{|\lambda|}{2 p(1+|\lambda|)}\|u\|_{1, p}^{p}-\frac{|\lambda|}{S_{p, \Omega}}|\Omega|_{N}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \max _{|s| \leqq \delta_{1}}\left|f_{1}(s)\right| \\
& \quad-\frac{|\lambda|}{2 p(1+|\lambda|)}\|u\|_{1, p}^{p}-\frac{|\lambda|}{S_{p, \partial \Omega}}|\partial \Omega|_{N-1}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \max _{|s| \leqq \delta_{1}}\left|f_{2}(s)\right| \\
& \quad-|\mu| m_{1}\|u\|_{1, p}^{p}-m_{1} \frac{|\mu|}{S_{p, \Omega}}|\Omega|_{N}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \\
& \quad-|\mu| m_{2}\|u\|_{1, p}^{p}-m_{2} \frac{|\mu|}{S_{p, \partial \Omega}}|\partial \Omega|_{N-1}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \\
& \quad \begin{array}{l}
\left.\quad \frac{1}{p(1+|\lambda|)}-|\mu|\left(m_{1}+m_{2}\right)\right)\|u\|_{1, p}^{p}-\frac{|\lambda|}{S_{p, \Omega}}|\Omega|_{N}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \max _{|s| \leqq \delta_{1}}\left|f_{1}(s)\right| \\
\\
\\
\quad \quad-\frac{|\lambda|}{S_{p, \partial \Omega}}|\partial \Omega|_{N-1}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \max _{|s| \leqq \delta_{1}}\left|f_{2}(s)\right|-m_{1} \frac{|\mu|}{S_{p, \Omega}}|\Omega|_{N}^{\frac{1}{p^{\prime}}}\|u\|_{1, p} \\
\\
\\
\quad-m_{2} \frac{|\mu|}{S_{p, \partial \Omega}}|\partial \Omega|_{N-1}^{\frac{1}{p^{\prime}}}\|u\|_{1, p},
\end{array}
\end{aligned}
$$

where $p^{\prime}=\frac{p}{p-1}$. Let $\bar{\mu}=\frac{1}{p\left(m_{1}+m_{2}\right)(1+|\lambda|)}$ and fix $\mu \in(0, \bar{\mu})$. Since $p>1$ we have $J_{\lambda, \mu}(u) \rightarrow+\infty$ as $\|u\|_{1, p} \rightarrow \infty$. Thus, the functional $J_{\lambda, \mu}$ is coercive.

Lemma 2.2. Let λ and $\bar{\mu}$ be chosen as in the previous lemma. Then for each $\mu \in(0, \bar{\mu})$, the functional $J_{\lambda, \mu}$ satisfies the Palais-Smale condition.

Proof. Let $\left\{u_{m}\right\}$ be a sequence in $W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
J_{\lambda, \mu}\left(u_{m}\right) \rightarrow \bar{c}, \quad D J_{\lambda, \mu}\left(u_{m}\right) \rightarrow 0 \text { in } W^{-1, p}(\Omega) \text { as } m \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Since the functional $J_{\lambda, \mu}$ is coercive, the sequence $\left\{u_{m}\right\}$ is bounded in $W^{1, p}(\Omega)$. Then, there exist a subsequence still denoted by $\left\{u_{m}\right\}$ and a function $u \in W^{1, p}(\Omega)$, such that $\left\{u_{m}\right\}$ converges weakly to u in $W^{1, p}(\Omega)$. Hence, $\left\{\left\|u_{m}-u\right\|_{1, p}\right\}$ is bounded and by $(2.7), D J_{\lambda, \mu}\left(u_{m}\right)\left(u_{m}-u\right)$ converges to 0 as $m \rightarrow \infty$.

By (f), there exists a constant $C_{1}>0$ such that

$$
\left|f_{i}(t)\right| \leqq C_{1}\left(1+|t|^{p-1}\right), \quad i=1,2
$$

for all $t \in \mathbb{R}$. Therefore,

$$
\begin{aligned}
0 \leqq \int_{\Omega}\left|f_{1}\left(u_{m}\right)\right|\left|u_{m}-u\right| d x & \leqq C_{1} \int_{\Omega}\left|u_{m}-u\right| d x+C \int_{\Omega}\left|u_{m}\right|^{p-1}\left|u_{m}-u\right| d x \\
& \leqq C_{1}\left[|\Omega|_{N}^{\frac{1}{p^{j}}}+\left\|u_{m}\right\|_{L^{p}(\Omega)}^{p-1}\right]\left\|u_{m}-u\right\|_{L^{p}(\Omega)}
\end{aligned}
$$

and

$$
\begin{aligned}
0 \leqq \int_{\partial \Omega}\left|f_{2}\left(u_{m}\right)\right|\left|u_{m}-u\right| d x & \leqq C_{1} \int_{\partial \Omega}\left|u_{m}-u\right| d x+C_{1} \int_{\partial \Omega}\left|u_{m}\right|^{p-1}\left|u_{m}-u\right| d x \\
& \leqq C_{1}\left[|\partial \Omega|_{N-1}^{\frac{1}{p^{\prime}}}+\left\|u_{m}\right\|_{L^{p}(\partial \Omega)}^{p-1}\right]\left\|u_{m}-u\right\|_{L^{p}(\partial \Omega)}
\end{aligned}
$$

Since $\left\{u_{m}\right\}$ converges strongly to u in the spaces $L^{p}(\Omega)$ and $L^{p}(\partial \Omega)$, the above inequalities imply that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega} f_{1}\left(u_{m}\right)\left(u_{m}-u\right) d x=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\partial \Omega} f_{2}\left(u_{m}\right)\left(u_{m}-u\right) d x=0 \tag{2.9}
\end{equation*}
$$

On the other hand, by (\mathbf{g}), there exists a constant $C_{2}>0$ such that

$$
\left|g_{i}(t)\right| \leqq C_{2}\left(1+|t|^{p-1}\right), \quad i=1,2
$$

for all $t \in \mathbb{R}$. Therefore, the similar arguments above show that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega} g_{1}\left(u_{m}\right)\left(u_{m}-u\right) d x=0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\partial \Omega} g_{2}\left(u_{m}\right)\left(u_{m}-u\right) d x=0 \tag{2.11}
\end{equation*}
$$

By relations (2.8)-(2.11), we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty} D I_{\lambda, \mu}\left(u_{m}\right)\left(u_{m}-u\right)=0 \tag{2.12}
\end{equation*}
$$

Combining (2.11) and (2.7), it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \Lambda\left(u_{m}\right)\left(u_{m}-u\right)=0 \tag{2.13}
\end{equation*}
$$

Hence, standard arguments help us to show that the sequence $\left\{u_{m}\right\}$ converges strongly to u in $W^{1, p}(\Omega)$. Thus, the functional $J_{\lambda, \mu}$ satisfies the Palais-Smale condition in $W^{1, p}(\Omega)$.

Proof Theorem 1.2. By Lemmas 2.1 and 2.2, using the minimum principle [8, Theorem 2.1], we deduce that for each $\lambda \in \mathbb{R}$, there exists $\bar{\mu}>0$, such that for any $\mu \in(0, \bar{\mu})$, problem (1.1) has a weak solution $u \in W^{1, p}(\Omega)$. We will show that u is not trivial for λ large enough. Indeed, let s_{0} be a real number such that

$$
F_{1}\left(s_{0}\right):=\int_{0}^{s_{0}} f_{1}(t) d t>0 \text { and } F_{2}\left(s_{0}\right):=\int_{0}^{s_{0}} f_{2}(t) d t>0
$$

and let $\Omega_{0} \subset \Omega$ be an open subset with $\left|\Omega_{0}\right|_{N}>0$. Then, there exists $u_{0} \in C_{0}^{\infty}(\Omega)$ such that $u_{0}(x) \equiv s_{0}$ on $\bar{\Omega}_{0}$ and $0 \leqq u_{0}(x) \leqq s_{0}$ in $\Omega \backslash \Omega_{0}$. We have

$$
\begin{aligned}
J_{\lambda, \mu}\left(u_{0}\right)= & \frac{1}{p} \int_{\Omega}\left[\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right] d x-\lambda \int_{\Omega} F_{1}\left(u_{0}\right) d x-\lambda \int_{\partial \Omega} F_{2}\left(u_{0}\right) d x \\
& \quad-\mu \int_{\Omega} G_{1}\left(u_{0}\right) d x-\mu \int_{\partial \Omega} G_{2}\left(u_{0}\right) d x \\
\leqq & \frac{1}{p} \int_{\Omega}\left[\left|\nabla u_{0}\right|^{p}+\left|u_{0}\right|^{p}\right] d x-\lambda \int_{\Omega_{0}} F_{1}\left(u_{0}\right) d x-\lambda \int_{\partial \Omega_{0}} F_{2}\left(u_{0}\right) d x \\
& \quad-\mu \int_{\Omega_{0}} G_{1}\left(u_{0}\right) d x-\mu \int_{\partial \Omega_{0}} G_{2}\left(u_{0}\right) d x \\
= & C-\lambda\left(F_{1}\left(s_{0}\right)\left|\Omega_{0}\right|_{N}+F_{2}\left(s_{0}\right)\left|\Omega_{0}\right|_{N-1}\right)
\end{aligned}
$$

where C is a positive constant (C depends on μ). Therefore, for $\lambda>0$ large enough, we have $J_{\lambda, \mu}\left(u_{0}\right)<0$. Thus, the solution u is not trivial. The proof of Theorem 1.2 is now completed.

References

1. E. A. M. Abreu, J. M. do Ó and E.S. Medeiros, Multiplicity of solutions for a class of quasilinear nonhomogeneuous Neumann problems, Nonlinear Anal., 60 (2005), 1443-1471.
2. J.F.Bonder, Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities, Abstr. Appl. Anal., 2004(12) (2004), 1047-1056.
3. J.F. Bonder, Multiple solutions for the p-Laplacian equation with nonlinear boundary conditions, Electron. J. Diff. Equ., 2006(37) (2006), 1-7.
4. J.F. Bonder, S. Martínez and J.D. Rossi, Existence results for gradient elliptic systems with nonlinear boundary conditions, Nonlinear Differ. Eqns. Appl. (NoDEA), 14(1-2) (2007), 153-179.
5. J.F. Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl., 263 (2001), 195-223.
6. G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651-665.
7. N.T. Chung, Multiple solutions for quasilinear elliptic problems with nonlinear boundary conditions, Electron. J. Diff. Equ., 2008(165) (2008), 1-6.
8. A. Anane, O. Chakrone, B. Karim and A. Zerouali, Existence of solutions for a resonant Steklov Problem, Bol. Soc. Paranaense de Mat., 27(1) (2009), 85-90.
9. J.H. Zhao and P.H. Zhao, Infinitely many weak solutions for a p-Laplacian equations with nonlinear boundary conditions, Electron. J. Diff. Equ., 2006 (90) (2006), 1-14.

Nguyen Thanh Chung,
Department of Mathematics and Informatics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Vietnam
E-mail address: chungnt.qbu@gmail.com

