(3s.) v. 292 (2011): 37-41.
ISSN-00378712 in PRESS

The semi normed space defined by entire sequences

N. Subramanian, K. Chandrasekhara Rao and K. Balasubramanian

Abstract

In this paper we introduce the sequence spaces $\Gamma(p, \sigma, q, s), \Lambda(p, \sigma, q, s)$ and define a semi normed space (X, q), semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.

Key Words: Entire sequence, Analytic sequence, Invariant mean, Semi norm.

Contents

1 Introduction

3 Main Results

1. Introduction

A complex sequence, whose $k^{t h}$ term is x_{k}, is denoted by $\left\{x_{k}\right\}$ or simply x. Let ϕ be the set of all finite sequences. A sequence $x=\left\{x_{k}\right\}$ is said to be analytic if $\sup _{k}\left|x_{k}\right|^{\frac{1}{k}}<\infty$. The vector space of all analytic sequences will be denoted by Λ. A sequence x is called entire sequence if $\lim _{k \rightarrow \infty}\left|x_{k}\right|^{\frac{1}{k}}=0$. The vector space of all entire sequences will be denoted by Γ. Let σ be a one-one mapping of the set of positive integers into itself such that $\sigma^{m}(n)=\sigma\left(\sigma^{m-1}(n)\right), m=1,2,3, \ldots$

A continuous linear functional ϕ on Λ is said to be an invariant mean or a σ mean if and only if (1) $\phi(x) \geq 0$ when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n (2) $\phi(e)=1$ where $e=(1,1,1, \ldots)$ and (3) $\phi\left(\left\{x_{\sigma}(n)\right\}\right)=\phi\left(\left\{x_{n}\right\}\right)$ for all $x \in \Lambda$. For certain kinds of mappings σ, every invariant mean ϕ extends the limit functional on the space C of all real convergent sequences in the sense that $\phi(x)=\lim x$ for all $x \in C$. Consequently $C \subset \mathrm{~V}_{\sigma}$, where V_{σ} is the set of analytic sequences all of those $\sigma-$ means are equal.

If $x=\left(x_{n}\right)$, set $T x=(T x)^{1 / n}=\left(x_{\sigma}(n)\right)$.It can be shown that
$V_{\sigma}=\left\{x=\left(x_{n}\right): m \xrightarrow{\lim } \infty t_{m n}\left(x_{n}\right)^{1 / n}=L\right.$ uniformly in $\left.n, L=\sigma-n \xrightarrow{\lim } \infty\left(x_{n}\right)^{1 / n}\right\}$ where

$$
\begin{equation*}
t_{m n}(x)=\frac{\left(x_{n}+T x_{n}+\cdots+T^{m} x_{n}\right)^{1 / n}}{m+1} \tag{1}
\end{equation*}
$$

Given a sequence $x=\left\{x_{k}\right\}$ its $n^{t h}$ section is the sequence $x^{(n)}=\left\{x_{1}, x_{2}, \ldots x_{n}, 0,0, \ldots\right\}$, $\delta^{(n)}=(0,0, \ldots, 1,0,0, \ldots), 1$ in the $n^{t h}$ place and zeros elsewhere. An FK-space

[^0](Frechet coordinate space) is a Frechet space which is made up of numerical sequences and has the property that the coordinate functionals $p_{k}(x)=x_{k}(k=$ $1,2, \ldots$) are continuous.

2. Definitions and Preliminaries

Definition 2.1 The space consisting of all those sequences x in w such that $\left(\left|x_{k}\right|^{1 / k}\right)$ $\rightarrow 0$ as $k \rightarrow \infty$ is denoted by Γ. In other words $\left(\left|x_{k}\right|^{1 / k}\right)$ is a null sequence . Γ is called the space of entire sequences. The space Γ is a metric space with the metric $d(x, y)=\left\{\sup _{k}\left(\left|x_{k}-y_{k}\right|^{1 / k}\right): k=1,2,3, \cdots\right\}$ for all $x=\left\{x_{k}\right\}$ and $y=\left\{y_{k}\right\}$ in Γ.

Definition 2.2 The space consisting of all those sequences x in w such that $\left(\sup _{k}\left(\left|x_{k}\right|^{1 / k}\right)\right)<\infty$ is denoted by Λ. In other words $\left(\sup _{k}\left(\left|x_{k}\right|^{1 / k}\right)\right)$ is a bounded sequence.

Definition 2.3 Let p, q be semi norms on a vector space X. Then p is said to be stronger than q if whenever $\left(x_{n}\right)$ is a sequence such that $p\left(x_{n}\right) \rightarrow 0$, then also $q\left(x_{n}\right) \rightarrow 0$. If each is stronger than the other, then p and q are said to be equivalent.

Lemma 2.4 Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \leq M p(x)$ for all $x \in X$.

Definition 2.5 A sequence space E is said to be solid or normal if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and for all sequences of scalars $\left(\alpha_{k}\right)$ with $\left|\alpha_{k}\right| \leq 1$, for all $k \in N$.

Definition 2.6 A sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces .

Remark 2.7 From the above two definitions, it is clear that a sequence space E is solid implies that E is monotone.

Definition 2.8 A sequence E is said to be convergence free if $\left(y_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and $x_{k}=0$ implies that $y_{k}=0$.

Let $p=\left(p_{k}\right)$ be a sequence of positive real numbers with $0<p_{k}<\sup p_{k}=G$. Let $D=\operatorname{Max}\left(1,2^{G-1}\right)$. Then for $a_{k}, b_{k} \in C$, the set of complex numbers for all $k \in N$ we have

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{1 / k} \leq D\left\{\left|a_{k}\right|^{1 / k}+\left|b_{k}\right|^{1 / k}\right\} \tag{2}
\end{equation*}
$$

Let (X, q) be a semi normed space over the field C of complex numbers with the semi norm q. The symbol $\Lambda(X)$ denotes the space of all analytic sequences defined over X. We define the following sequence spaces:
$\Lambda(p, \sigma, q, s)=\left\{x \in \Lambda(X): \sup _{n, k} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}}<\infty\right.$ uniformly in $\left.n \geq 0, s \geq 0\right\}$
$\Gamma(p, \sigma, q, s)=\left\{x \in \Gamma(X): k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \rightarrow 0\right.$, as $k \rightarrow \infty$ unif $/$ in $\left.n \geq 0, s \geq 0\right\}$.

3. Main Results

Theorem 3.1 $\Gamma(p, \sigma, q, s)$ is a linear space over the set of complex numbers.
Proof: The proof is easy, so omitted .
Theorem 3.2 $\Gamma(p, \sigma, q, s)$ is a paranormed space with

$$
g^{*}(x)=\left\{\sup _{k \geq 1} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right], \text { uniformly in } n>0\right\}
$$

where $H=\max \left(1, \sup _{k} p_{k}\right)$.
Proof: Clearly $g(x)=g(-x)$ and $g(\theta)=0$, where θ is the zero sequence. It can be easily verified that $g(x+y) \leq g(x)+g(y)$. Next $x \rightarrow \theta$, λ fixed implies $g(\lambda x) \rightarrow 0$. Also $x \rightarrow \theta$ and $\lambda \rightarrow 0$ implies $g(\lambda x) \rightarrow 0$. The case $\lambda \rightarrow 0$ and x fixed implies that $g(\lambda x) \rightarrow 0$ follows from the following expressions.

$$
g(\lambda x)=\left\{\left(\sup _{k \geq 1} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right] \text { uniformly in } n, m \in N\right\}\right.
$$

$g(\lambda x)=\left\{(|\lambda| r)^{p_{m} / H}: \sup _{k \geq 1} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right], r>0\right.$, uniformly in $\left.n, m \in N\right\}$
where $r=\frac{1}{|\lambda|}$. Hence $\Gamma(p, \sigma, q, s)$ is a paranormed space. This completes the proof.

Theorem 3.3 $\Gamma(p, \sigma, q, s) \bigcap \Lambda(p, \sigma, q, s) \subseteq \Gamma(p, \sigma, q, s)$.
Proof:The proof is easy, so omitted.
Theorem 3.4 $\Gamma(p, \sigma, q, s) \subset \Lambda(p, \sigma, q, s)$.
Proof: The proof is easy, so omitted.
Remark 3.1 Let q_{1} and q_{2} be two semi norms on X, we have
(i) $\Gamma\left(p, \sigma, q_{1}, s\right) \bigcap \Gamma\left(p, \sigma, q_{2}, s\right) \subseteq \Gamma\left(p, \sigma, q_{1}+q_{2}, s\right)$;
(ii) If q_{1} is stronger than q_{2}, then $\Gamma\left(p, \sigma, q_{1}, s\right) \subseteq \Gamma\left(p, \sigma, q_{2}, s\right)$;
(iii) If q_{1} is equivalent to q_{2}, then $\Gamma\left(p, \sigma, q_{1}, s\right)=\Gamma\left(p, \sigma, q_{2}, s\right)$.

Theorem 3.5 (i) Let $0 \leq p_{k} \leq r_{k}$ and $\left\{\frac{r_{k}}{p_{k}}\right\}$ be bounded. Then $\Gamma(r, \sigma, q, s) \subset$ $\Gamma(p, \sigma, q, s)$;
(ii) $s_{1} \leq s_{2}$ implies $\Gamma\left(p, \sigma, q, s_{1}\right) \subset \Gamma\left(p, \sigma, q, s_{2}\right)$.

Proof of (i):

Let

$$
\begin{gather*}
x \in \Gamma(r, \sigma, q, s) \tag{3}\\
k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}} \rightarrow 0 \text { as } k \rightarrow \infty \tag{4}
\end{gather*}
$$

Let $t_{k}=k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}}$ and $\lambda_{k}=\frac{p_{k}}{r_{k}}$. Since $p_{k} \leq r_{k}$, we have $0 \leq \lambda_{k} \leq 1$. Take $0<\lambda>\lambda_{k}$. Define $u_{k}=t_{k}\left(t_{k} \geq 1\right) ; u_{k}=0\left(t_{k}<1\right)$; and $v_{k}=0\left(t_{k} \geq 1\right) ; v_{k}=$ $t_{k}\left(t_{k}<1\right) ; t_{k}=u_{k}+v_{k} . t_{k}^{\lambda_{k}}=u_{k}^{\lambda_{k}}+v_{k}^{\lambda_{k}}$. Now it follows that

$$
\begin{equation*}
u_{k}^{\lambda_{k}} \leq t_{k} \quad \text { and } \quad v_{k}^{\lambda_{k}} \leq v_{k}^{\lambda} \tag{5}
\end{equation*}
$$

(i.e) $t_{k}^{\lambda_{k}} \leq t_{k}+v_{k}^{\lambda}$ by (5) $k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)^{r_{k}}\right]^{\lambda_{k}} \leq k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}}$
$k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)^{r_{k}}\right]^{p_{k} / r_{k}} \leq k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}} k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \leq$
$k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}}$ But $k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{r_{k}} \rightarrow 0$ as $k \rightarrow \infty$ by (4).
$k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \rightarrow 0$ as $k \rightarrow \infty$.
Hence

$$
\begin{equation*}
x \in \Gamma(p, \sigma, q, s) \tag{6}
\end{equation*}
$$

From (3) and (6) we get $\Gamma(r, \sigma, q, s) \subset \Gamma(p, \sigma, q, s)$. This completes the proof.
Proof of (ii): The proof is easy, so omitted.
Theorem 3.6 The space $\Gamma(p, \sigma, q, s)$ is solid and as such is monotone .
Proof: Let $\left(x_{k}\right) \in \Gamma(p, \sigma, q, s)$ and $\left(\alpha_{k}\right)$ be a sequence of scalars such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$. Then $k^{-s}\left[q\left(\left|\alpha_{k} x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \leq k^{-s}\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}}$ for all $k \in N .\left[q\left(\left|\alpha_{k} x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}} \leq\left[q\left(\left|x_{\sigma^{k}(n)}\right|^{1 / k}\right)\right]^{p_{k}}$ for all $k \in N$. This completes the proof.

Theorem 3.7 The space $\Gamma(p, \sigma, q, s)$ are not convergence free in general.
Proof: The proof follows from the following example.
Example: Let $s=0 ; p_{k}=1$ for k even and $p_{k}=2$ for k odd. Let $X=C, q(x)=|x|$ and $\sigma(n)=n+1$ for all $n \in N$. Then we have $\sigma^{2}(n)=\sigma(\sigma(n))=\sigma(n+1)=$ $(n+1)+1=n+2$ and $\sigma^{3}(n)=\sigma\left(\sigma^{2}(n)\right)=\sigma(n+2)=(n+2)+1=n+3$. Therefore $\sigma^{k}(n)=(n+k)$ for all $n, k \in N$. Consider the sequences $\left(x_{k}\right)$ and $\left(y_{k}\right)$ defined as $x_{k}=\left(\frac{1}{k}\right)^{k}$ and $\left(y_{k}\right)=k^{k}$ for all $k \in N$. (i.e) $\left|x_{k}\right|^{1 / k}=\frac{1}{k}$ and $\left|y_{k}\right|^{1 / k}=k$ for all $k \in N$.
Hence $\left|\left(\frac{1}{(n+k)}\right)^{n+k}\right|^{p_{k}} \rightarrow 0$ as $k \rightarrow \infty$. Therefore $\left(x_{k}\right) \in \Gamma(p, \sigma)$. But $\left|\left(\frac{1}{(n+k)}\right)^{n+k}\right|^{p_{k}}$ $r \nrightarrow 0$ as $k \rightarrow \infty$. Hence $\left(y_{k}\right) \notin \Gamma(p, \sigma)$. Hence the space $\Gamma(p, \sigma, q, s)$ are not convergence free in general. This completes the proof.

Acknowledgments

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

References

1. Y.Altin and M.Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31(2)(2005), 233-243.
2. H.I.Brown, The summability filed of a perfect $\ell-\ell$ method of summation, J. Anal. Math. 20(1967), 281-287.
3. R.Colak, M.Et, and E.Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
4. C.Goffman and G.Pedrick, First Course in Functional Analysis, Prentice Hall India, New Delhi,1974.
5. P.K.Kamthan and M.Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, 1981.
6. I.J.Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
7. I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc.(100) (1986), 161-166.
8. H.Nakano, "Concave modulars", Journal of the Mathematical Society of Japan, Vol. 5, no.1(1953), 29-49.
9. W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
10. B.C.Tripathy, S.Mahanta and M.Et, On a class of generalized difference sequence space defined by modulus function, Hakkaido Math. Jour., XXX1V(3)(2005), 667-677.
11. A.Wilansky, Functional Analysis, Blaisdell publishing company, New York, 1964.
12. A.Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).

N.Subramanian

Department of Mathematics, SASTRA University, Thanjavur-613 401, India.
E-mail address: nsmaths@yahoo.com
and
K.Chandrasekhara Rao

Department of Mathematics, SASTRA University, Thanjavur-613 401, India.
E-mail address: kchandrasekhara@rediffmail.com
and
K.Balasubramanian

Department of Mathematics, SASTRA University, Thanjavur-613 401, India.
E-mail address: k_bala27@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification: 46A45,46B45

