(Ph)

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm

(3s.) **v. 29** 2 (2011): 37–41. ISSN-00378712 in press doi:10.5269/bspm.v29i2.12190

The semi normed space defined by entire sequences

N. Subramanian, K. Chandrasekhara Rao and K. Balasubramanian

ABSTRACT: In this paper we introduce the sequence spaces $\Gamma(p, \sigma, q, s)$, $\Lambda(p, \sigma, q, s)$ and define a semi normed space (X, q), semi normed by q. We study some properties of these sequence spaces and obtain some inclusion relations.

Key Words: Entire sequence, Analytic sequence, Invariant mean, Semi norm.

Contents

1	Introduction	37
2	Definitions and Preliminaries	38

3 Main Results

1. Introduction

A complex sequence, whose k^{th} term is x_k , is denoted by $\{x_k\}$ or simply x. Let ϕ be the set of all finite sequences. A sequence $x = \{x_k\}$ is said to be analytic if $\sup_k |x_k|^{\frac{1}{k}} < \infty$. The vector space of all analytic sequences will be denoted by Λ . A sequence x is called entire sequence if $\lim_{k\to\infty} |x_k|^{\frac{1}{k}} = 0$. The vector space of all entire sequences will be denoted by Γ . Let σ be a one-one mapping of the set of positive integers into itself such that $\sigma^m(n) = \sigma(\sigma^{m-1}(n)), m = 1, 2, 3, \ldots$.

A continuous linear functional ϕ on Λ is said to be an invariant mean or a σ mean if and only if (1) $\phi(x) \geq 0$ when the sequence $x = (x_n)$ has $x_n \geq 0$ for all n (2) $\phi(e) = 1$ where e = (1, 1, 1, ...) and (3) $\phi(\{x_{\sigma}(n)\}) = \phi(\{x_n\})$ for all $x \in \Lambda$. For certain kinds of mappings σ , every invariant mean ϕ extends the limit functional on the space C of all real convergent sequences in the sense that $\phi(x) = \lim x$ for all $x \in C$. Consequently $C \subset V_{\sigma}$, where V_{σ} is the set of analytic sequences all of those σ -means are equal.

If $x = (x_n)$, set $Tx = (Tx)^{1/n} = (x_{\sigma}(n))$. It can be shown that $V_{\sigma} = \left\{ x = (x_n) : m \xrightarrow{\lim} \infty t_{mn}(x_n)^{1/n} = L \text{ uniformly in } n, L = \sigma - n \xrightarrow{\lim} \infty (x_n)^{1/n} \right\}$ where

$$t_{mn}(x) = \frac{(x_n + Tx_n + \dots + T^m x_n)^{1/n}}{m+1}$$
(1)

Given a sequence $x = \{x_k\}$ its n^{th} section is the sequence $x^{(n)} = \{x_1, x_2, ... x_n, 0, 0, ...\}$, $\delta^{(n)} = (0, 0, ..., 1, 0, 0, ...)$, 1 in the n^{th} place and zeros elsewhere. An FK-space

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

39

²⁰⁰⁰ Mathematics Subject Classification: 46A45,46B45

(Frechet coordinate space) is a Frechet space which is made up of numerical sequences and has the property that the coordinate functionals $p_k(x) = x_k(k = 1, 2, ...)$ are continuous.

2. Definitions and Preliminaries

Definition 2.1 The space consisting of all those sequences x in w such that $(|x_k|^{1/k}) \to 0$ as $k \to \infty$ is denoted by Γ . In other words $(|x_k|^{1/k})$ is a null sequence Γ is called the space of entire sequences. The space Γ is a metric space with the metric $d(x, y) = \left\{ \sup_k (|x_k - y_k|^{1/k}) : k = 1, 2, 3, \cdots \right\}$ for all $x = \{x_k\}$ and $y = \{y_k\}$ in Γ .

Definition 2.2 The space consisting of all those sequences x in w such that $\left(\sup_k \left(|x_k|^{1/k}\right)\right) < \infty$ is denoted by Λ . In other words $\left(\sup_k \left(|x_k|^{1/k}\right)\right)$ is a bounded sequence.

Definition 2.3 Let p,q be semi norms on a vector space X. Then p is said to be stronger than q if whenever (x_n) is a sequence such that $p(x_n) \to 0$, then also $q(x_n) \to 0$. If each is stronger than the other, then p and q are said to be equivalent.

Lemma 2.4 Let p and q be semi norms on a linear space X. Then p is stronger than q if and only if there exists a constant M such that $q(x) \leq Mp(x)$ for all $x \in X$.

Definition 2.5 A sequence space E is said to be solid or normal if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$, for all $k \in N$.

Definition 2.6 A sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark 2.7 From the above two definitions, it is clear that a sequence space E is solid implies that E is monotone.

Definition 2.8 A sequence E is said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies that $y_k = 0$.

Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k < \sup p_k = G$. Let $D = Max(1, 2^{G-1})$. Then for $a_k, b_k \in C$, the set of complex numbers for all $k \in N$ we have

$$|a_k + b_k|^{1/k} \le D\left\{|a_k|^{1/k} + |b_k|^{1/k}\right\}.$$
(2)

Let (X,q) be a semi-normed space over the field C of complex numbers with the semi-norm q. The symbol $\Lambda(X)$ denotes the space of all analytic sequences defined over X. We define the following sequence spaces:

$$\Lambda(p,\sigma,q,s) = \left\{ x \in \Lambda(X) : \sup_{n,k} k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} < \infty \text{ uniformly in } n \ge 0, s \ge 0 \right\}$$

$$\Gamma(p,\sigma,q,s) = \left\{ x \in \Gamma(X) : k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} \to 0, \text{ as } k \to \infty \text{unif}/\text{ in } n \ge 0, s \ge 0 \right\}.$$

3. Main Results

Theorem 3.1 $\Gamma(p, \sigma, q, s)$ is a linear space over the set of complex numbers.

Proof: The proof is easy, so omitted .

Theorem 3.2 $\Gamma(p, \sigma, q, s)$ is a paranormed space with

$$g^{*}(x) = \left\{ \sup_{k \ge 1} k^{-s} \left[q\left(\left| x_{\sigma^{k}(n)} \right|^{1/k} \right) \right], \text{ uniformly in } n > 0 \right\}$$

where $H = max (1, \sup_k p_k)$.

Proof: Clearly g(x) = g(-x) and $g(\theta) = 0$, where θ is the zero sequence. It can be easily verified that $g(x + y) \leq g(x) + g(y)$. Next $x \to \theta, \lambda$ fixed implies $g(\lambda x) \to 0$. Also $x \to \theta$ and $\lambda \to 0$ implies $g(\lambda x) \to 0$. The case $\lambda \to 0$ and x fixed implies that $g(\lambda x) \to 0$ follows from the following expressions.

$$g(\lambda x) = \left\{ \left(\sup_{k \ge 1} k^{-s} \left[q\left(\left| x_{\sigma^{k}(n)} \right|^{1/k} \right) \right] \text{ uniformly in } n, m \in N \right\} \right.$$

$$g(\lambda x) = \left\{ \left(\left|\lambda\right| r \right)^{p_m/H} : \sup_{k \ge 1} k^{-s} \left[q\left(\left|x_{\sigma^k(n)}\right|^{1/k} \right) \right], r > 0, \text{ uniformly in } n, m \in N \right\}$$

where $r = \frac{1}{|\lambda|}$. Hence $\Gamma(p, \sigma, q, s)$ is a paranormed space. This completes the proof.

Theorem 3.3 $\Gamma(p, \sigma, q, s) \bigcap \Lambda(p, \sigma, q, s) \subseteq \Gamma(p, \sigma, q, s)$.

Proof:The proof is easy, so omitted .

Theorem 3.4 $\Gamma(p, \sigma, q, s) \subset \Lambda(p, \sigma, q, s)$.

Proof: The proof is easy, so omitted .

Remark 3.1 Let q_1 and q_2 be two semi norms on X, we have (i) $\Gamma(p, \sigma, q_1, s) \bigcap \Gamma(p, \sigma, q_2, s) \subseteq \Gamma(p, \sigma, q_1 + q_2, s);$ (ii) If q_1 is stronger than q_2 , then $\Gamma(p, \sigma, q_1, s) \subseteq \Gamma(p, \sigma, q_2, s);$ (iii) If q_1 is equivalent to q_2 , then $\Gamma(p, \sigma, q_1, s) = \Gamma(p, \sigma, q_2, s).$

Theorem 3.5 (i) Let $0 \leq p_k \leq r_k$ and $\left\{\frac{r_k}{p_k}\right\}$ be bounded. Then $\Gamma(r, \sigma, q, s) \subset \Gamma(p, \sigma, q, s)$; (ii) $s_1 \leq s_2$ implies $\Gamma(p, \sigma, q, s_1) \subset \Gamma(p, \sigma, q, s_2)$. 40 N. Subramanian, K. Chandrasekhara Rao and K. Balasubramanian

Proof of (i): Let

$$x \in \Gamma(r, \sigma, q, s) \tag{3}$$

$$k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k} \to 0 \quad as \quad k \to \infty$$

$$\tag{4}$$

Let $t_k = k^{-s} \left[q\left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k}$ and $\lambda_k = \frac{p_k}{r_k}$. Since $p_k \leq r_k$, we have $0 \leq \lambda_k \leq 1$. Take $0 < \lambda > \lambda_k$. Define $u_k = t_k(t_k \geq 1)$; $u_k = 0(t_k < 1)$; and $v_k = 0(t_k \geq 1)$; $v_k = t_k(t_k < 1)$; $t_k = u_k + v_k$. $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$. Now it follows that

$$u_k^{\lambda_k} \le t_k \quad and \quad v_k^{\lambda_k} \le v_k^{\lambda} \tag{5}$$

(i.e)
$$t_k^{\lambda_k} \leq t_k + v_k^{\lambda}$$
 by (5) $k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{\lambda_k} \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k}$
 $k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right)^{r_k} \right]^{p_k/r_k} \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k} k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} \leq k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k}$ But $k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{r_k} \to 0$ as $k \to \infty$ by (4) .
 $k^{-s} \left[q \left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} \to 0$ as $k \to \infty$.
Hence
 $x \in \Gamma(p, \sigma, q, s).$ (6)

From (3) and (6) we get $\Gamma(r, \sigma, q, s) \subset \Gamma(p, \sigma, q, s)$. This completes the proof . **Proof of (ii):** The proof is easy, so omitted .

Theorem 3.6 The space $\Gamma(p, \sigma, q, s)$ is solid and as such is monotone.

Proof: Let $(x_k) \in \Gamma(p, \sigma, q, s)$ and (α_k) be a sequence of scalars such that $|\alpha_k| \leq 1$ for all $k \in N$. Then $k^{-s} \left[q\left(\left| \alpha_k x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} \leq k^{-s} \left[q\left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k}$ for all $k \in N$. $\left[q\left(\left| \alpha_k x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k} \leq \left[q\left(\left| x_{\sigma^k(n)} \right|^{1/k} \right) \right]^{p_k}$ for all $k \in N$. This completes the proof.

Theorem 3.7 The space $\Gamma(p, \sigma, q, s)$ are not convergence free in general.

Proof: The proof follows from the following example.

Example: Let s = 0; $p_k = 1$ for k even and $p_k = 2$ for k odd. Let X = C, q(x) = |x|and $\sigma(n) = n + 1$ for all $n \in N$. Then we have $\sigma^2(n) = \sigma(\sigma(n)) = \sigma(n+1) = (n+1) + 1 = n+2$ and $\sigma^3(n) = \sigma(\sigma^2(n)) = \sigma(n+2) = (n+2) + 1 = n+3$. Therefore $\sigma^k(n) = (n+k)$ for all $n, k \in N$. Consider the sequences (x_k) and (y_k) defined as $x_k = \left(\frac{1}{k}\right)^k$ and $(y_k) = k^k$ for all $k \in N$. (i.e) $|x_k|^{1/k} = \frac{1}{k}$ and $|y_k|^{1/k} = k$ for all $k \in N$. Hence $\left| \left(\frac{1}{(n+k)}\right)^{n+k} \right|^{p_k} \to 0$ as $k \to \infty$. Therefore $(x_k) \in \Gamma(p, \sigma)$. But $\left| \left(\frac{1}{(n+k)}\right)^{n+k} \right|^{p_k}$ $r \neq 0$ as $k \to \infty$. Hence $(y_k) \notin \Gamma(p, \sigma)$. Hence the space $\Gamma(p, \sigma, q, s)$ are not convergence free in general. This completes the proof.

Acknowledgments

I wish to thank the referees for their several remarks and valuable suggestions that improved the presentation of the paper.

References

- 1. Y.Altin and M.Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, *Soochow J. Math.* **31(2)**(2005), 233-243.
- 2. H.I.Brown, The summability filed of a perfect $\ell \ell$ method of summation, J. Anal. Math. **20**(1967), 281-287.
- 3. R.Colak, M.Et, and E.Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, *Firat University Press, Elazig, Turkey*, **2004**.
- 4. C.Goffman and G.Pedrick, First Course in Functional Analysis, *Prentice Hall India, New Delhi*, **1974**.
- 5. P.K.Kamthan and M.Gupta, Sequence spaces and Series. Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, **1981**.
- 6. I.J.Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
- I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc.(100) (1986), 161-166.
- H.Nakano, "Concave modulars", Journal of the Mathematical Society of Japan, Vol. 5, no.1(1953), 29-49.
- 9. W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, **25**(1973), 973-978.
- B.C.Tripathy, S.Mahanta and M.Et, On a class of generalized difference sequence space defined by modulus function, *Hakkaido Math. Jour.*, XXX1V(3)(2005), 667-677.
- 11. A.Wilansky, Functional Analysis, Blaisdell publishing company, New York, 1964.
- A.Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, North-Holland Publishing, Amsterdam, Vol. 85 (1984).

N.Subramanian Department of Mathematics, SASTRA University, Thanjavur-613 401, India. E-mail address: nsmaths@yahoo.com

and

K.Chandrasekhara Rao Department of Mathematics, SASTRA University, Thanjavur-613 401, India. E-mail address: kchandrasekhara@rediffmail.com

and

K.Balasubramanian Department of Mathematics, SASTRA University, Thanjavur-613 401, India. E-mail address: k_bala27@yahoo.co.in