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The semi normed space defined by entire sequences

N. Subramanian, K. Chandrasekhara Rao and K. Balasubramanian

abstract: In this paper we introduce the sequence spaces Γ(p, σ, q, s), Λ(p, σ, q, s)
and define a semi normed space (X, q), semi normed by q. We study some properties
of these sequence spaces and obtain some inclusion relations.
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1. Introduction

A complex sequence, whose kth term is xk, is denoted by {xk} or simply x. Let
φ be the set of all finite sequences. A sequence x = {xk} is said to be analytic if

supk |xk|
1

k < ∞. The vector space of all analytic sequences will be denoted by Λ.

A sequence x is called entire sequence if limk→∞ |xk|
1

k = 0. The vector space of all
entire sequences will be denoted by Γ. Let σ be a one-one mapping of the set of
positive integers into itself such that σm(n) = σ(σm−1(n)),m = 1, 2, 3, . . . .

A continuous linear functional φ on Λ is said to be an invariant mean or a σ-
mean if and only if (1) φ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n (2)
φ(e) = 1 where e = (1, 1, 1, . . . .) and (3) φ({xσ(n)}) = φ({xn}) for all x ∈ Λ. For
certain kinds of mappings σ, every invariant mean φ extends the limit functional on
the space C of all real convergent sequences in the sense that φ(x) = limx for all
x ∈ C. Consequently C⊂Vσ,where V σis the set of analytic sequences all of those
σ−means are equal .

If x = (xn), set Tx = (Tx)1/n = (xσ(n)).It can be shown that

Vσ =
{

x = (xn) :
lim

m → ∞ tmn(xn)
1/n = L uniformly in n,L = σ−

lim
n → ∞ (xn)

1/n
}

where

tmn(x) =
(xn + Txn + · · ·+ Tmxn)

1/n

m+ 1
(1)

Given a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ...xn, 0, 0, ...} ,
δ(n) = (0, 0, ..., 1, 0, 0, . . .) , 1 in the nth place and zeros elsewhere. An FK-space
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(Frechet coordinate space) is a Frechet space which is made up of numerical se-
quences and has the property that the coordinate functionals pk(x) = xk(k =
1, 2, ...) are continuous.

2. Definitions and Preliminaries

Definition 2.1 The space consisting of all those sequences x in w such that
(

|xk|
1/k

)

→ 0 as k → ∞ is denoted by Γ. In other words
(

|xk|
1/k

)

is a null sequence . Γ is

called the space of entire sequences . The space Γ is a metric space with the metric

d(x, y) =
{

supk

(

|xk − yk|
1/k

)

: k = 1, 2, 3, · · ·
}

for all x = {xk} and y = {yk} in

Γ.

Definition 2.2 The space consisting of all those sequences x in w

such that
(

supk

(

|xk|
1/k

))

< ∞ is denoted by Λ. In other words
(

supk

(

|xk|
1/k

))

is a bounded sequence.

Definition 2.3 Let p,q be semi norms on a vector space X. Then p is said to
be stronger than q if whenever (xn) is a sequence such that p (xn) → 0, then also
q (xn) → 0. If each is stronger than the other, then p and q are said to be equivalent.

Lemma 2.4 Let p and q be semi norms on a linear space X. Then p is stronger
than q if and only if there exists a constant M such that q(x) ≤ Mp(x) for all
x ∈ X .

Definition 2.5 A sequence space E is said to be solid or normal if (αkxk) ∈ E
whenever (xk) ∈ E and for all sequences of scalars (αk) with |αk| ≤ 1, for all
k ∈ N .

Definition 2.6 A sequence space E is said to be monotone if it contains the canon-
ical pre-images of all its step spaces .

Remark 2.7 From the above two definitions, it is clear that a sequence space E
is solid implies that E is monotone .

Definition 2.8 A sequence E is said to be convergence free if (yk) ∈ E whenever
(xk) ∈ E and xk = 0 implies that yk = 0.

Let p = (pk) be a sequence of positive real numbers with 0 < pk < sup pk = G.
Let D = Max(1, 2G−1) . Then for ak, bk ∈ C, the set of complex numbers for all
k ∈ N we have

|ak + bk|
1/k

≤ D
{

|ak|
1/k

+ |bk|
1/k

}

. (2)

Let (X, q) be a semi normed space over the field C of complex numbers with the
semi norm q . The symbol Λ(X) denotes the space of all analytic sequences defined
over X. We define the following sequence spaces:

Λ(p, σ, q, s)=

{

x ∈ Λ(X) : sup
n,k

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

<∞uniformly in n ≥ 0, s ≥ 0

}
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Γ(p, σ, q, s)=
{

x ∈ Γ(X) : k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

→0, as k →∞unif/ in n ≥ 0, s ≥ 0
}

.

3. Main Results

Theorem 3.1 Γ (p, σ, q, s) is a linear space over the set of complex numbers.

Proof: The proof is easy, so omitted .

Theorem 3.2 Γ(p, σ, q, s) is a paranormed space with

g∗ (x) =

{

sup
k≥1

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]

, uniformly in n > 0

}

where H = max (1, supk pk) .

Proof: Clearly g(x) = g(−x) and g(θ) = 0, where θ is the zero sequence . It can be
easily verified that g(x+ y) ≤ g(x) + g(y). Next x → θ, λ fixed implies g(λx) → 0.
Also x → θ and λ → 0 implies g(λx) → 0. The case λ → 0 and x fixed implies that
g(λx) → 0 follows from the following expressions.

g (λx) =

{

(sup
k≥1

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]

uniformly in n,m ∈ N

}

g (λx) =
{

(|λ| r)pm/H : supk≥1k
−s

[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]

, r > 0, uniformly in n,m ∈ N
}

where r = 1
|λ| . Hence Γ(p, σ, q, s) is a paranormed space . This completes the proof.

Theorem 3.3 Γ(p, σ, q, s)
⋂

Λ(p, σ, q, s) ⊆ Γ(p, σ, q, s) .

Proof:The proof is easy, so omitted .

Theorem 3.4 Γ(p, σ, q, s) ⊂ Λ(p, σ, q, s) .

Proof: The proof is easy, so omitted .

Remark 3.1 Let q1 and q2 be two semi norms on X, we have
(i) Γ(p, σ, q1, s)

⋂

Γ(p, σ, q2, s) ⊆ Γ(p, σ, q1 + q2, s);
(ii) If q1 is stronger than q2, then Γ(p, σ, q1, s) ⊆ Γ(p, σ, q2, s);
(iii) If q1 is equivalent to q2, then Γ(p, σ, q1, s) = Γ(p, σ, q2, s) .

Theorem 3.5 (i) Let 0 ≤ pk ≤ rk and
{

rk
pk

}

be bounded. Then Γ(r, σ, q, s) ⊂

Γ(p, σ, q, s);
(ii) s1 ≤ s2 implies Γ(p, σ, q, s1) ⊂ Γ(p, σ, q, s2) .
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Proof of (i):
Let

x ∈ Γ(r, σ, q, s) (3)

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

→ 0 as k → ∞ (4)

Let tk = k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

and λk = pk

rk
. Since pk ≤ rk, we have 0 ≤ λk ≤ 1.

Take 0 < λ > λk. Define uk = tk(tk ≥ 1);uk = 0(tk < 1); and vk = 0(tk ≥ 1); vk =
tk(tk < 1); tk = uk + vk. t

λk

k = uλk

k + vλk

k . Now it follows that

uλk

k ≤ tk and vλk

k ≤ vλk (5)

(i.e) tλk

k ≤ tk + vλk by (5) k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)rk]λk

≤ k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)rk]pk/rk

≤ k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

≤

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

But k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]rk

→ 0 as k → ∞ by (4) .

k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

→ 0 as k → ∞.

Hence
x ∈ Γ(p, σ, q, s). (6)

From (3) and (6) we get Γ(r, σ, q, s) ⊂ Γ(p, σ, q, s). This completes the proof .
Proof of (ii): The proof is easy, so omitted .

Theorem 3.6 The space Γ(p, σ, q, s) is solid and as such is monotone .

Proof: Let (xk) ∈ Γ(p, σ, q, s) and (αk) be a sequence of scalars such that |αk| ≤ 1

for all k ∈ N . Then k−s
[

q
(

∣

∣αkxσk(n)

∣

∣

1/k
)]pk

≤ k−s
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

for all

k ∈ N .
[

q
(

∣

∣αkxσk(n)

∣

∣

1/k
)]pk

≤
[

q
(

∣

∣xσk(n)

∣

∣

1/k
)]pk

for all k ∈ N . This completes

the proof.

Theorem 3.7 The space Γ(p, σ, q, s) are not convergence free in general.

Proof: The proof follows from the following example.
Example: Let s = 0; pk = 1 for k even and pk=2 for k odd. Let X = C, q(x) = |x|
and σ(n) = n + 1 for all n ∈ N. Then we have σ2(n) = σ(σ(n)) = σ(n + 1) =
(n + 1) + 1 = n + 2 and σ3(n) = σ(σ2(n)) = σ(n + 2) = (n + 2) + 1 = n + 3.
Therefore σk(n) = (n + k) for all n, k ∈ N . Consider the sequences (xk) and (yk)

defined as xk =
(

1
k

)k
and (yk) = kk for all k ∈ N . (i.e)|xk|

1/k
= 1

k and |yk|
1/k

= k
for all k ∈ N .

Hence

∣

∣

∣

∣

(

1
(n+k)

)n+k
∣

∣

∣

∣

pk

→ 0 as k → ∞ . Therefore (xk) ∈ Γ(p, σ) . But

∣

∣

∣

∣

(

1
(n+k)

)n+k
∣

∣

∣

∣

pk

r 6→ 0 as k → ∞ . Hence (yk) /∈ Γ(p, σ) . Hence the space Γ(p, σ, q, s) are not con-
vergence free in general. This completes the proof.
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