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Functions almost contra-super-continuity in m-spaces

Luis Vásquez, Margot Salas Brown and Ennis Rosas

abstract: In this article, we study a generalizations of some class of functions
that are in relation with the notions of continuity when we use the notions of minimal
structures also its are characterized. Moreover we show that the notion of m-e∗-T1/2

spaces, given by Ekici [6], is a particular case of the m-(e∗)-T1/2 spaces when its
are defined using the notion of m-generalized closed sets.
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1. Introduction

The concepts of δ-open sets was introduced and studied by Velicko [27] in 1968,
which is a stronger notion of open set. The notion of generalized closed (briefly
g-closed) sets was introduced by Levine [13] in 1970. In 1987, P. Bhartacharyya
et al. [2] introduced the notion of semi-generalized closed sets in Topology. Fur-
thermore, the notion of quasi θ-continuous functions [11](resp. semi generalized
continuous maps and semi-T1/2 spaces [26], α-continuous and α-open mappings
[16]) is introduced and studied. Later, in [21] and [22] Popa and Noiri introduced
the notions of minimal structures. After this work, various mathematicians turned
their attention in introducing and studying diverse classes of sets and functions de-
fined on an structure, because this notions are a natural generalization of many well
known results related with generalized sets and several weaker forms of Continuity.
Each one of these classes of sets is, in turn, used in order to obtain different sepa-
ration properties and new form of continuity (see [3], [4], [10], [11], [17], [20], [21] for
details). E. Ekici [5] in 2004, studied the (δ-pre, s)-continuous functions on topolog-
ical spaces and defined the m-e∗-T1/2 spaces if every m-e∗-closed set is m-δ-closed.
In this article we introduce and study the (m,m′)-almost contra-super-continuous,
(m,m′)(a,s)-continuous, (m,m′)-(δ-semi,s)continuous, (m,m′)-
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(δ-pre,s)continuous, (m,m′)-(e,s)continuous, (m,m′)-(e∗,s)-continuous functions be-
tween spaces with minimal structure and study its relations with other class of
functions and prove that the definition of m-e∗-T1/2 spaces given by Ekici is a
particular case of the m-(e∗)-T1/2 spaces when it is defined in terms that each
m-e∗-generalized closed set is m-e∗-closed.

2. Preliminaries

Let X be a nonempty set and let m ⊆ P (X), where P (X) denote the set of power
of X. We say that m is an minimal structure on X (see [21] and [22]) if ∅ and X
belong to m. The members of the minimal structure m are called m-open sets, and
the pair (X,m) is called an m-space. The complement of an m-open set is called
m-closed set.

Definition 2.1 [14] Let (X,m) be an m-space and A ⊂ X, the m-interior of A
and the m-closure of A are defined, respectively, as

m-int(A) =
⋃

{W : W ∈ m,W ⊆ A},

m-cl(A) =
⋂

{F : A ⊆ F,X \ F ∈ m}

Theorem 2.2 Let (X,m) be an m-space, A and B subsets of X. Then x ∈
m-cl(A) if and only if U ∩ A 6= ∅ for all U ∈ m such that x ∈ m. And satisfy
the following properties:

1. m-int(X \A) = X \m-cl(A).

2. m-cl(X \A) = X \m-int(A).

3. If A ⊂ B, then m-cl(A) ⊂ m-cl(B).

4. m-cl(A) ∪m-cl(B) ⊂ m-cl(A ∪B).

5. m-int(A ∩B) ⊂ m-int(A) ∩m-int(B).

Proof: It follows from by Lemma 3.1 [21], [22]. 2

We can observe that, given a minimal structure m on a set X, if A ⊂ X, the
m-int(A) is not necessarily an element of m, but we assume on m the condition
that is closed under arbitrary unions (this condition is called the Maki condition),
then immediately, we have that m-int(A) is an element of m, and hence A ⊂ X is
m-open if and only if m-int(A) = A and m-closed if and only m-cl(A) = A.

Definition 2.3 Let (X,m) be an m-space. A subset A of X is said to be:

1. m-regular open if A = m-int(m-cl(A)).

2. m-semiopen if A ⊂ m-cl(m-int(A)).
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3. m-α-open if A ⊂ m-int(m-cl(m-int(A))).

4. m-preopen if A ⊂ m-int(m-cl(A)).

5. m-β-open if A ⊂ m-cl(m-int(m-cl(A))).

Observe that if the minimal structure is a topology, then the above concepts are
the same as the concepts of regular open [25], semiopen [12], α-open [19], pre-
open [15] and β-open [1]. The complement of an m-regular open (respectively
m-semiopen, m-α-open, m-preopen, m-β-open) is called m-regular closed (respec-
tively m-semiclosed, m-αclosed, m-preclosed, m-β-closed).

We denote by m-RO(X), (respectively m-RC(X), m-SO(X), m-αO(X), m-PO(X),
m-βO(X)) the family of all m-regular open sets (respectively m-regular closed sets,
m-semiopen sets, m-α-open sets, m-preopen sets, m-β-open sets) of X.

Definition 2.4 [23]Let (X,m) be an m-space and A be a subset of X. A point
x ∈ X is said to be an m-θ-semiclosure point of A if m-cl(U) ∩ A 6= ∅ for all
m-semiopen set U such that x ∈ U . The set of all m-θ-semiclosure points of A is
denoted by m-θ-cl(A).

Definition 2.5 [23]Let (X,m) be an m-space and A ⊂ X. A is said to be an
m-θ-semiclosed if A = m-θ-cl(A).

Definition 2.6 Let (X,m) be an m-space and A ⊆ X. The m-r-kernel of A,
denoted by m-r-ker(A), is defined as the intersection of all m-regular open sets
that contain A, that is,

m-r-ker(A) =
⋂

{U : U ∈ m-RO(X), A ⊂ U}.

Definition 2.7 Let (X,m) be an m-space and A ⊆ X. The m-δ-closure and the
m-δ-interior of the set A, are defined, respectively, as:

m-δ-cl(A) = {x ∈ X : A ∩m-int(m-cl(U)) 6= ∅,∀ U ∈ m,x ∈ U}

m-δ-int(A) =
⋃

{W : W ∈ m-RO(X),W ⊂ A}

Theorem 2.8 Let A be a subset of an m-space X. The following statements hold:

1. If A ⊂ B then m-δ-cl(A) ⊂ m-δ-cl(B).

2. If A ⊂ B then m-δ-int(A) ⊂ m-δ-int(B).

3. m-δ-int(A) ⊂ m-int(A) ⊂ m-cl(A) ⊂ m-δ-cl(A)

4. X \m-δ-int(A) = m-δ-cl(X \A).

5. m-δ-int(X \A) = X \m-δ-cl(A).
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Definition 2.9 A subset A of an m-space X is said to be:

1. m-δ-open if A = m-δ-int(A).

2. m-δ- preopen if A ⊂ m-int(m-δ-cl(A)).

3. m-δ-semiopen if A ⊂ m-cl(m-δ-int(A)).

The complement of an m-δ-open set (respectively m-δ-semiopen set, m-δ-preopen
set) is called m-δ-closed set (respectively m-δ-semiclosed set, m-δ-preclosed set).
The family of all m-δ-open sets (respectively m-δ-preopen sets, m-δ-semiopen sets)
are denoted by m-δO(X) (respectively m-δPO(X), m-δSO(X)).

Definition 2.10 A subset A of an m-space X is said to be:

1. m-e-open if A ⊂ m-cl(m-δ-int(A)) ∪m-int(m-δ-cl(A)).

2. m-e∗-open if A ⊂ m-cl(m-int(m-δ-cl(A))).

3. m-a-open if A ⊂ m-int(m-cl(m-δ-int(A))).

The complement of an m-e-open set (respectively m-e∗-open set, m-aopen set)
is called m-e-closed set (respectively m-e∗-closed set, m-aclosed set). The family
of all m-e-open sets (respectively m-e∗-open sets, m-a-open sets) are denoted by
m-eO(X) (respectively m− e∗O(X), m-aO(X)).
The following diagram 1 shows the existence relation between the different sets
defined above.
(M)=Maki condition

Example 2.11 Let R be the set of real number, x, y two distinct points in R and
m = {R, ∅, {x}, {y},R\{x},R\{y}}. The set A = {x, y} is an m-δ-open but is not
m-regular open neither m-open.

Example 2.12 Let R be the set of real number, x, y two distinct points in R and
m = {R, ∅, {x},R \ {y}}. The set A = {x} is an m-open but is not m-δ-open.

Example 2.13 Let R be the set of real number, x, y two distinct points in R and
m = {R, ∅, {x}, {y}}. Let a be a point in R distinct of x and y.

1. The set A = R \ {a} is m-δ-preopen but not is m-open.

2. The set A = {x, a} is m-e-open but not is m-δ-preopen.

3. The set A = {x, y} is m-α-open but not is m-open.

4. The set A = R \ {x} is m-semiopen but not is m-α-open.

5. The set A = R \ {x} is m-β-open but not is m-preopen.
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Figure 1: Relation among the sets in an m-spaces

Example 2.14 Let R be the set of real number, x, y, z three distinct points in R

and m = {R, ∅, {x}, {y}, {x, y, z}}.

1. The set A = {x, y, z} is m-a-open but is not m-δ-open.

2. The set A = {x, z} is m-δ-semiopen but not is m-a-open.

3. The set A = {x, y, z} is m-δ-semiopen but not is m-δ-open.

Example 2.15 Let R be the set of real number, x, y two distinct points in R and
m = {R, ∅,R \ {x},R \ {y}}.

1. The set A = {x} is m-e∗-open but not is m-semiopen.

2. The set A = {x} is m-δ-preopen but not is m-preopen.

3. The set A = {x} is m-e-open but not is m-preopen.

4. The set A = {x} is m-e∗-open but not is m-β-open.

5. The set A = {x} is m-e-open but not is m-α-open.
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6. The set A = R \ {a}, with a /∈ {x, y} is m-preopen but not is m-α-open.

7. The set A = R \ {a}, with a /∈ {x, y} is m-β-open but not is m--semiopen.

The following theorem shows that the collection of all m-e∗-open sets (respectively
m-e-open sets, m-a-open sets) is an m structure that satisfy the Maki condition.

Theorem 2.16 Let (X,m) be an m-space, the following statements hold:

1. The union of any collection of m-e∗-open sets is an m-e∗-open set.

2. The union of any collection of m-e-open sets is an m-e-open set.

3. The union of any collection of m-a-open sets is an m-a-open set.

Proof: Let {Uα}α∈J any collection of m-e∗-open sets, then for each α ∈ J , Uα ⊂
m-cl(m-int(m-δ-cl(Uα))), and hence Uα ⊂

⋃
α∈J Uα

in consequence:

m-cl(m-int(m-δ-cl(Uα))) ⊂ m-cl(m-int(m-δ-cl(
⋃

α∈J

Uα)))

Uα ⊂ m-cl(m-int(m-δ-cl(
⋃

α∈J

Uα)))

⋃

α∈J

Uα ⊂ m-cl(m-int(m-δ-cl(
⋃

α∈J

Uα)))

and we obtain that
⋃

α∈J

Uα is an m-e∗-open set.

In analogue form follows (2) and (3).
2

We define the m-e-closure (respectively m-e∗-closure, m-a-closure) of a subset A of
X, denoted by m-e-cl(A) (respectively m-e∗-cl(A), m-a-cl(A)), as the intersection
of all m-e-closed sets (respectively m-e∗-closed sets, m-a-closed sets) containing
A. Now using the above theorem, we obtain in a natural form that the m-e-cl(A)
(respectively m-e∗-cl(A), m-a-cl(A)) is the smallest m-e-closed (respectively m-e∗-
closed set, m-a-closed set) containing A.

In 2007 Salas, M. et. al. [24] studied and generalized the separation axioms using
minimal structure. Now we define the notions of m-T1 spaces and m-T2 spaces
given in [23].

Definition 2.17 [23] Let (X,m) be an m-space, X is said to be:

1. m-T1 if for each pair of different points x, y of X, there exist m-open sets M
and N such that x ∈ M, y ∈ N and y /∈ M and x /∈ N .
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2. m-T2 If for each pair of different points x, y of X there exist m-open sets M
and N such that x ∈ M, y ∈ N and M ∩N = ∅.

If (X,m) is an m space and consider the m spaces (X,m-e∗O(X)), (X,m-eO(X))
and (X,m-aO(X). We obtain the concepts of m-e∗-T1,
m-e∗-T2 spaces (respectively m-e-T1, m-e-T2, m-a-T1, m-a-T2) spaces, that are
a natural generalizations of the definitions given by Ekici [9] when the minimal
structure m is a topology.

3. Functions almost contra-super-continuous in m-spaces

Using the sets described in the above section, we define a new class of continuous
functions between m spaces and we give some characterizations.

Definition 3.1 Let (X,m), (Y,m′) two m-spaces and f : X → Y be a function
between m-spaces, f is said to be:

1. (m,m′)-contra R-map if f−1(A) is an m-regular closed set in X for all
m′-regular open set A in Y .

2. (m,m′)-almost contra-super-continuous if f−1(A) is an m-δclosed set in X
for all m′-regular open set A in Y .

3. (m,m′)-(δ-semi,s)-continuous if f−1(A) is an m-δ-semiclosed set in X for all
m′-regular open set A in Y .

4. (m,m′)-(δ-pre,s)-continuous if f−1(A) is an m-δ-preclosed set in X for all
m′-regular open set A in Y .

5. (m,m′)-(e∗,s)-continuous if the inverse image of each m′-regular open set in
Y is an m-e∗-closed set in X.

6. (m,m′)-(e,s)-continuous if the inverse image of each m′-regular open set in
Y is an m-e-closed set in X.

7. (m,m′)-(a,s)-continuous if the inverse image of each m′-regular open set in
Y is an m-a-closed set in X.

Example 3.2 Let X = {a, b, c} and m = {∅, X, {a}}. Let f : (X,m) → (X,m)
the identity function, then f is (m,m)-almost contrasuper-continuous.

Example 3.3 Let X = {a, b, c, d} and m = {∅, X, {a, b}, {c, d}}. Let f : (X,m) →
(X,m) the identity function, then f is (m,m)-contra R-map.

Example 3.4 Let X = Y = {a, b, c} and m = {∅, X, {a}, {b, c}} Consider the
function f : (X,m) → (X,m) defined as f(a)=a, f(b)=c, f(c)=a. Then, f is
(m,m)-e∗-continuous and (m,m)-e-continuous.
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Example 3.5 Let X = Y = {a, b, c, d} and m = {∅, X, {a}, {c}, {a, b},
{a, c}, {a, b, c}, {a, c, d}} Consider the function f : (X,m) → (X,m) defined as
f(a) = d, f(b) = c, f(c) = b and f(d) = a. Then, f is (m,m)-almost e∗-conti-
nuous.

If in the above definitions the minimal structures m and m′ are topologies on X
and Y respectively we obtain the classical concepts of function contra R-map [8],
almost contra-super-continuous [6], (δ-semi, s)-continuous [7], (δ-pre, s)-continuous
[5], (e∗,s)-continuous [9], (e, s)-continuous [9] and (a, s)-continuous [9] respectively.
The following theorem shows the existent relations between the different class of
functions defined above.

Theorem 3.6 Let f : X → Y be a function between m-spaces. The following
statements hold:

1. If f is (m,m′)-almost contra-super-continuous then f is (m,m′)(a,s)-continuous.

2. If f is (m,m′)-(a,s)-continuous then f is (m,m′)-(δ-semi,s)continuous.

3. If f is (m,m′)-(a,s)-continuous then f is (m,m′)-(δ-pre,s)-continuous.

4. If f is (m,m′)-(δ-semi,s)-continuous then f is (m,m′)-(e,s)continuous.

5. If f is (m,m′)-(δ-pre,s)-continuous then f is (m,m′)-(e,s)-continuous.

6. If f is (m,m′)-(e,s)-continuous then f is (m,m′)-(e∗,s)-continuous.

The converse implications of the Theorem 3.6, in general are not true, as we can
see in the following examples:

Example 3.7 Let X = Y = {a, b, c, d} and m = {∅, X, {a}, {b}, {a, b},
{a, b, c}, {a, b, d}} and m′ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c},
{a, c, d}}. Consider the function f : (X,m) → (Y,m′) defined as f(a)=d, f(b)=d,
f(c)=d, f(d)=c. Then, f is (m,m′)-(a,s)-continuous but not is (m,m′)-almost
contra-super-continuous.

Example 3.8 Let X = {a, b, c} and m = {∅, X, {a}, {c}, {a, c}, {b, c}}. Let f :
(X,m) → (X,m) the function defined as f(a) = b, f(b) = a, f(c) = c. Then f is
(m,m′)-(e,s)-continuous but not is (m,m′)-(δ-semi,s)-continuous.

Example 3.9 Let X = {a, b, c, d} and m = {∅, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}. Then the identity function i : (X,m) → (X,m) is (m,m′)-
(δ-semi,s)-continuous but not is (m,m′)-(a,s)-continuous.

Example 3.10 Let X = {a, b, c, d} and m = {∅, X, {a}, {c}, {a, b},
{a, c}, {a, b, c}, {a, c, d}}. The function f : (X,m) → (X,m) defined as f(a) = a,
f(b) = c, f(c) = a, f(d) = c is (m,m′)-(e∗,s)-continuous but not is (m,m′)-
(e,s)-continuous.
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Figure 2: Relation among continuous function in m-spaces

Example 3.11 Let X = {a, b, c, d} and m = {∅, X, {a, d}, {c}, {a, c, d}}. The
function f : (X,m) → (X,m) defined as f(a) = d, f(b) = a, f(c) = b, f(d) = c.
Is (m,m′)-(δ-pre,s)-continuous but not is (m,m′)-(a,s)-continuous.

Example 3.12 Let X = {a, b, c} and m = {∅, X, {a}, {b}, {a, b}}. Then the iden-
tity function i : (X,m) → (X,m) is (m,m′)-(e,s)-continuous but not is (m,m′)-
(δ-pre,s)-continuous.

Definition 3.13 Let (X,m), (Y,m′) two m-spaces and f : X → Y be a function
between m-spaces, f is said to be:

1. (m,m′)-e∗-continuous if f−1(A) is an m-e∗-open set for all m′-
open set A .

2. (m,m′)-almost e∗-continuous if f−1(A) is an m-e∗-open set for all m′-regular
open set A.

3. (m,m′)-almost e-continuous if f−1(A) is an m-e-open set for all m′-regular
open set A.
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4. (m,m′)-almost a-continuous if f−1(A) is an m-a-open set for all m′-regular
open set A.

Definition 3.14 An m-space (X,m) is said to be m-extremely disconnected if the
m-closure of all m-open set of X is m-open.

Example 3.15 Consider X = {a, b, c, d} and m = {∅, X, {a}, {b}, {c},
{d}, {b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}}. The m-space (X,m) is extremely discon-
nected.

If the range of a function is m-extremely disconnected, then the concepts of func-
tions (m,m′)-(e∗,s)-continuous and (m,m′)-almost e∗-continuous are equivalents.
This fact we can see in the following theorem.

Theorem 3.16 Let (X,m), (Y,m′) two m-spaces and f : X → Y be a function.
If (Y,m′) is an m′-extremely disconnected, then f is (m,m′)-(e∗,s)-continuous if
and only if f is (m,m′)-almost e∗-continuous.

Proof: Suppose that f is (m,m′)-(e∗,s)-continuous and let U be a subset of Y
that is m′ regular open, we want to prove that f−1(U) is m-e∗-open. Since
Y is m′-extremaly disconnected then U es m′-open and m′-closed. In effect,
U = m′-int(m′-cl(U)). But the m′-closure of U is an m′-open, follows that the
m′-closure is m′-open and m′-closed. In consequence, U = m′-cl(U), This proof
that U is m′-open and m′-closed. By hypothesis U is m′-regular closed, then
f−1(U) is m-e∗-
open. Therefore, f is (m,m′)-almost e∗-continuous.

Conversely, suppose that f is (m,m′)-almost e∗-continuous and let W ∈ m′-RC(Y ).
Since Y is m′-extremely disconnected, W is m′-regular open. Since f is (m,m′)-almost
e∗-continuous then f−1(W ) is m-e∗-open. Therefore, f is (m,m′)-(e∗,s)-continuous.

2

The concept of e∗-T1/2 spaces was introduced by Ekici [10] in the case of topological
spaces, this concept characterize some classes of functions. Now we define a new
class of spaces, the m-e∗-T1/2 spaces and characterize some class of functions.

Definition 3.17 An m-space X is called m-e∗-T1/2 if all m-e∗-closed set is m-δ-closed.

Example 3.18 Let X={a,b,c} and m = {∅, X, {a}, {b}, {c}}. X is m-e∗-T1/2

space.

Theorem 3.19 Let (X,m), (Y,m′) m-spaces and f : X → Y be a function. If X
is an m-e∗-T1/2 space, the following propositions are equivalent:

1. f is (m,m′)-(e∗,s)-continuous.

2. f is (m,m′)-(e,s)-continuous.
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3. f is (m,m′)-(δ-semi,s)-continuous.

4. f is (m,m′)-(δ-pre,s)-continuous.

5. f is (m,m′)-(a,s)-continuous.

6. f is (m,m′)-almost contra-super-continuous.

Proof: (6) → (5) Suppose that f is (m,m′)-almost contra-super-continuous. Let
W an m′-regular open set in Y , by hypothesis f−1(W ) is m-δ-closed, that is,

f−1(W ) = m-δ-cl(f−1(W ))

Since

m-cl(m-int(m-δ-cl(f−1(W ))) ⊂ m-cl(m-δ-cl(f−1(W )))

⊂ m-δ-cl(m-δ-cl(f−1(W )))

= m-δ-cl(f−1(W ))

= f−1(W )

Then f−1(W ) is an m-a-closed set. Therefore f is (m,m′)-(a,s)continuous.

(5) → (3) Suppose that f is (m,m′)-(a,s)-continuous. Let W an m′-regular open
set in Y , by hypothesis f−1(W ) is m-a-closed. X \ f−1(W ) is m-a-open. Since

X \ f−1(W ) ⊂ m-int(m-cl(m-δ-int(X \ f−1(W )))

⊂ m-cl(m-δ-int(X \ f−1(W ))

Then X \ f−1(W ) is an m-δ-semiopen. f−1(W ) is m-δ-semiclosed. Therefore f is
(m,m′)-(δ-semi,s)-continuous.

(3) → (2) Suppose that f is (m,m′)-(δ-semi,s)-continuous. Let W be an m′-re-
gular open set in Y , by hypothesis f−1(W ) is m-δ-semiclosed, using the fact that
all mX -δ-semiclosed is mX -e-closed then f−1(W ) is mX -e-closed. Therefore f is
(m,m′)-(e,s)-continuous.

(2) → (1) Suppose that f is (m,m′)-(e,s)-continuous. Let W be an m′-regular
open set in Y , by hypothesis f−1(W ) is m-e-closed, since all m-e-closed set is
m-e∗-closed,then f−1(W ) is m-e∗-closed. Therefore f is (m,m′)-(e∗,s)-continuous.

(1) → (4) Suppose that f is (m,m′)-(e∗,s)-continuous. Let W be an m′-regular
open set in Y , by hypothesis f−1(W ) is m-e∗-closed, since X is an m-e∗-T1/2 space,
f−1(W ) is m-δ-closed. Now using the fact that all m-δ-closed set is m-δ-preclosed
follows that f−1(W ) is m-δ-preclosed. And hence f is (m,m′)-(δ-pre,s)-continuous.

(4) → (6) Suppose that f is (m,m′)-(δ-pre,s)-continuous. Let W be an m′-regular
open set in Y , by hypothesis f−1(W ) is m-δ-preclosed, follows that f−1(W ) is
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m-e∗-closed. Since X is an m-e∗-T1/2 space, f−1(W ) is m-δ-closed. Therefore f is
(m,m′)-almost contra-super-continuous. 2

Theorem 3.20 Let (Y,m′) be an m′-regular space and f : X → Y be a function.
If f is (m,m′)-(e∗,s)-continuous then f is (m,m′)-e∗-continuous.

Proof: Let x ∈ X an A be an m′-open set in Y such that f(x) ∈ A. Since Y is
an m′-regular space, there exists an m′-open set G in Y that contain f(x) such
that f(x) ∈ m′-cl(G) ⊂ A. Since f is (m,m′)-(e∗,s)-continuous, there exists U ∈
m-e∗O(X,x) such that f(U) ⊂ m′-cl(G). Follows that f is (m,m′)-e∗-continuous.

2

Theorem 3.21 Let f : X → Y be a function between m-spaces. The following
statements are equivalent:

1. f is (m,m′)-(e∗,s)-continuous.

2. The inverse image of any m′-regular closed set in Y is m-e∗-open.

3. f−1(m-e∗-cl(U)) ⊂ m′-r-ker(f(U)) for all U ⊂ X.

4. m-e∗-cl(f−1(A)) ⊂ f−1(m′-r-ker(A)) for all A ⊂ Y .

5. For each x ∈ X and each A ∈ m′-SO(Y ), f(x) ∈ A there exists an m-e∗-open
set U in X, x ∈ U such that f(U) ⊂ m′-cl(A).

6. f(m-e∗-cl(P )) ⊂ m′-θ-s-cl(f(P )) for all P ⊂ X.

7. m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)) for all R ⊂ Y .

8. m-e∗-cl(f−1(A)) ⊂ f−1(m′-θ-s-cl(A)) for all m′-open subset A of Y .

9. m-e∗-cl(f−1(A)) ⊂ f−1(m′-s-cl(A)) for all m′-open set A in Y .

10. m-e∗-cl(f−1(A)) ⊂ f−1(m′-int(m′-cl(A))) for all m′-open set A in Y .

11. The inverse image of any m′-θ-semi-open set in Y is m-e∗-open.

12. f−1(A) ⊂ m-e∗-int(f−1(m′-cl(A))) for all A ∈ m′-SO(Y ).

13. The inverse image of any m′-θ-semi-closed set in Y is m-e∗-closed.

14. f−1(m′-int(m′-cl(A))) is m-e∗-closed for all m′-open set A in Y .

15. f−1(m′-cl(m′-int(F ))) is m-e∗-open for all m′-closed set F in Y .

16. f−1(m′-cl(U)) is m-e∗-open for all U ∈ m′-βO(Y ).

17. f−1(m′-cl(U)) is m-e∗-open for all U ∈ m′-SO(Y ).

18. f−1(m′-int(m′-cl(U))) is m-e∗-closed for all U ∈ m′-PO(Y ).
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Proof: (1) → (2) Let W be an m′-regular closed set in Y , Y \W is an m′-regular
open set in Y . Since f is (m,m′)-(e∗,s)-continuous then f−1(Y \W ) is m-e∗-closed.
But

f−1(Y \W ) = X \ f−1(W ).

Follows that f−1(W ) is m-e∗-open.

(2) → (1) Let W be an m′-regular open in Y , Y \W is m′-regular closed in Y . By
hypothesis, f−1(Y \W ) is m-e∗-open. Follows that

f−1(Y \W ) = X \ f−1(W )

and f−1(W ) is m-e∗-closed.

(2) → (3) Let U ⊂ X, and suppose that y /∈ m′-r-ker(f(U)). Then there exists
an m′-regular closed set F , with y ∈ F such that f(U) ∩ F = ∅. Follows that,
U ∩ f−1(F ) = ∅ and m-e∗-cl(U) ∩ f−1(F ) = ∅. Therefore, f(m-e∗-cl(U)) ∩ F = ∅
and y /∈ f(m-e∗-cl(U)). We obtain that f−1(m-e∗-cl(U)) ⊂ m′-r-ker(f(U)).

(3) → (4) Let A ⊂ Y . By (3), f(m-e∗-cl(f−1(A))) ⊂ m′-r-ker(A). Follows that,
m-e∗-cl(f−1(A)) ⊂ f−1(m′-r-ker(A)).

(4) → (1) Let A ⊂ m′-RO(Y ). By hypothesis

m-e∗-cl(f−1(A)) ⊂ f−1(m′-r-ker(A)) = f−1(A)

since f−1(A) ⊂ m-e∗-cl(f−1(A)) we obtain that m-e∗-cl(f−1(A)) = f−1(A). There-
fore, f−1(A) is m-e∗-closed in X.

(5) → (6) Let P ⊂ X, x ∈ m-e∗-cl(P ) and G ∈ m′-SO(Y ), f(x) ∈ G. Us-
ing (5) there exists U ∈ m-e∗O(X), x ∈ U such that f(U) ⊂ m′-cl(G). Since
x ∈ m-e∗-cl(P ), U ∩ P 6= ∅ and ∅ 6= f(U) ∩ f(P ) ⊂ m′-cl(G) ∩ f(P ). Follows that
f(x) ∈ m′-θ-s-cl(f(P )) and therefore f(m-e∗-cl(P )) ⊂ m′-θ-s-cl(f(P )).

(6) → (7) Let R ⊂ Y . Using hypothesis, we obtain that

f(m-e∗-cl(f−1(R))) ⊂ m′-θ-s-cl(f(f−1(R))) ⊂ m′-θ-s-cl(R)

and m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)).

(7) → (5) Let A ∈ m′-SO(Y ), f(x) ∈ A. Since m′-cl(A) ∩ (Y \m′-cl(A)) = ∅, we
obtain that f(x) /∈ m′-θ-s-cl(Y \m′-cl(A)) and x /∈ f−1(m′-θ-s-cl(Y \m′-cl(A))).
By (7) x /∈ m-e∗-cl(f−1(Y \m′-cl(A))) and therefore there exists U ∈ m-e∗O(X),
x ∈ U such that U ∩ f−1(Y \m′-cl(A)) = ∅ and f(U)∩ (Y \m′-cl(A)) = ∅. Follows
that f(U) ⊂ m′-cl(A).
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(7) → (8) Since m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)) for all R ⊂ Y , in particular,

m-e∗-cl(f−1(A)) ⊂ f−1(m′-θ-s-cl(A)).

for all m′-open subset A in Y .

(8) → (9) Since m-θ-s-cl(A) = m-s-cl(A) for all m-open set A, then m-e∗-cl(f−1(A)) ⊂
f−1(m-s-cl(A)).

(9) → (10) Since m′-s-cl(A) = m′-int(m′-cl(A)) for all m′-open set A in Y , then
m-e∗-cl(f−1(A)) ⊂ f−1(m′-int(m′-cl(A))).

(10) → (1) Let A ∈ m′-RO(Y ). By (10) we have m-e∗-cl(f−1(A))
⊂ f−1(m′-int(m′-cl(A))) = f−1(A). Therefore, f−1(A) is m-e∗-closed and then f
is (m,m′)-(e∗,s)-continuous.

(2) → (11) Since any m-θ-semi open set is the union of m-regular closed and the
result follows.

(11) → (5) Let x ∈ X and A ∈ m′-SO(Y ), f(x) ∈ A. Since the m′-cl(A)
is m′-θ-semi open in Y , then there exists an m-e∗-open set U in X, such that
x ∈ U ⊂ f−1(m′-cl(A)). In consequence f(U) ⊂ m′-cl(A).

(5) → (12) Let A ∈ m′-SO(Y ) and x ∈ f−1(A). then f(x) ∈ A, using hypothesis,
there exists an m-e∗-open set U in X, such that x ∈ U and f(U) ⊂ m′-cl(A).
Follows that x ∈ U ⊂ f−1(m′-cl(A)) and therefore x ∈ m-e∗int(f−1(m′-cl(A))).
Follows f−1(A) ⊂ m-e∗-int(f−1(m′-cl(A))).

(12) → (2) Let F any m′-regular closed set in Y . Since F ∈ m′-SO(Y ), then
f−1(F ) ⊂ m-e∗-int(f−1(F )). Follows that f−1(F ) is m-e∗-open in X.

(11) → (13) Let W be an m′-θ-semi closed set in Y . Y \W is m′-θ-semi open. By
hypothesis f−1(Y \W ) is m-e∗-open. Follows that, f−1(W ) is m-e∗-closed.

(13) → (11) Let W be an m′-θ-semi open set in Y . Y \W is m′-θ-semiclosed. By
hypothesis f−1(Y \W ) is m-e∗-closed. Follows that, f−1(W ) is m-e∗-open.

(1) → (14) Let A be an m′-open set in Y . Since m′-int(m′-cl(A)) is m′-regular
open, we obtain that f−1(m′-int(m′-cl((A))) is m-e∗-closed.

(14) → (1) Let A be an m′-regular open set in Y . By hypothesis, f−1(A) is
m-e∗-closed in X. But f−1(A) = f−1(m′-int(m′-cl((A))). Therefore
f−1(m′-int(m′-cl((A))) is m-e∗-closed.

(2) → (15) Let F be m′-regular closed in Y . By hypothesis f−1(F ) is m-e∗-open.
Since f−1(F ) = f−1(m′-cl(m′-int((F ))) then
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f−1(m′-cl(m′-int((F ))) is m-e∗-open.

(15) → (2) Let F be an m′-regular closed in Y . By hypothesis, we obtain
f−1(m′-cl(m′-int((F ))) is m-e∗ -open. But
f−1(F ) = f−1(m′-cl(m′-int((F ))) that is m-e∗-open. Therefore, f−1(F ) is m-e∗-open.

(2) → (16) Let U ∈ m′-βO(Y ). Always we obtain that m′-int(m′-cl(U)) ⊂
m′-cl(U), follows that m′-cl(m′-int(m′-cl(U))) ⊂ m′-cl(U). Since U ∈ m′-βO(Y )
then U ⊂ m′-cl(m′-int(m′-cl(U))), and obtain that

m′-cl(U) ⊂ m′-cl(m′-cl(m′-int(m′-cl(U)))) = m′-cl(m′-int(m′-cl(U)))

Follows that m′-cl(U) = m′-cl(m′-int(m′-cl(U))), from here m′-cl(U) is m′-regular
closed and therefore f−1(m′-cl(U)) is m-e∗-open.

(16) → (17) Since m′-SO(Y ) ⊂ m′-βO(Y ) then f−1(m′-cl(U)) is m-e∗-
open.

(17) → (18) Let U ∈ m′-PO(Y ). Since Y \m′-int(m′-cl(U)) is an m′-regular closed
set and therefore is m′-semi open. We obtain that X \ f−1(m′-int(m′-cl(U))) =
f−1(Y \m′-int(m′-cl(U))) = f−1(m′-cl(Y \m′-int(m′-cl(U)))) ∈ m-e∗O(X). Fol-
lows that f−1(m′-int(m′-cl(U))) is m-e∗-closed.

(18) → (1) Let U ∈ m′-RO(Y ). Then U ∈ m′-PO(Y ) and therefore f−1(U) =
f−1(m′-int(m′-cl(U))) is m-e∗-closed set in X. 2

Remark 3.22 In the same form as we characterize the functions (m,m′)-(e∗,s)
-continuous, in the Theorem 3.21, we can obtain similar characterizations for func-
tions (m,m′)-
(e,s)-continuous (respectively (m,m′)-(a,s)-continuous) changing in the Theorem
3.21, e∗ by e (respectively a).

Corollary 3.23 Let f : X → Y be a function between m-spaces. The following
statements are equivalent:

1. f is (m,m′)-(e∗,s)-continuous.

2. f−1(m′-α-cl(A)) is an m-e∗-open set in X for all A ∈ m′-βO(Y ).

3. f−1(m′-p-cl(A)) is an m-e∗-open set in X for all A ∈ m′-SO(Y ).

4. f−1(m′-s-cl(A)) is an m-e∗-open set in X for all A ∈ m′-PO(Y ).

5. m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)) for all R ⊂ m′-SO(Y ).

6. m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)) for all R ⊂ m′-PO(Y ).

7. m-e∗-cl(f−1(R)) ⊂ f−1(m′-θ-s-cl(R)) for all R ⊂ m′-βO(Y ).
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Proof: Is an immediate consequence of the Theorem 3.21. 2

Remark 3.24 There are an analogue to the Corollary 3.23 for functions (m,m′)
-(e, s)-continuous (respectively (m,m′)
-(a, s)-continuous), only change in Corollary 3.23, e∗ by e (respectively by a).

4. Compact sets in m-spaces

Definition 4.1 A subspace A of an m-space X is said to be m-compact relative
to X if for all covering {Pi : i ∈ I} of A by m-open sets in X, there exists a

finite subset I0 of I such that A ⊂
⋃

{Pi : i ∈ I0}. An m-space X is said to

be m-compact if all m-open covering of X contains a finite subcollection that also
covers X.

Remark 4.2 1. If in Definition 4.1, the covering of A consist of m-e∗-open sets
in X, then the notion of A m-compact relative to X is called m-e∗-compact
relative to X

2. If in Definition 4.1, the covering of A consist of m-e-open sets in X, then
the notion of A m-compact relative to X is called m-e-compact relative to X

3. If in Definition 4.1, the covering of A consist of m-a-open sets in X, then
the notion of A m-compact relative to X is called m-a-compact relative to X

Theorem 4.3 Let (X,m) be an m-space and A a subset of X. Then

1. If A is m-e∗-compact then A is m-compact.

2. If A is m-e∗-compact then A is m-e-compact.

3. If A is m-e-compact then A is m-a-compact.

Proof: (1) Suppose that A is m-e∗-compact and {Uα : α ∈ J} is a covering of A by
sets m-open in X. Since all m-open set is m-e∗-open, then {Uα : α ∈ J} is a cov-
ering of A by sets m-e∗-open in X; hence a finite subcollection {Uα1

, Uα2
, ..., Uαn

}
covers A. Therefore A is m-compact.

In analogue form follows (2) and (3) 2

Theorem 4.4 Every m-e∗-closed subset of an m-e∗-compact space is m-e∗-compact.

Proof: Let A be an m-e∗-closed subset of an m-e∗-compact space. Given a covering

{Mi : i ∈ I} of A by sets m-e∗-open in X. Then (X \A)∪ (
⋃

i∈I

Mi) is a covering of

X by sets m-e∗-open in X. Some finite subcollection of (X \ A) ∪ (
⋃

i∈I

Mi) covers

X. If this subcollection contains the set X \ A discard X \ A; otherwise leave the
subcollection alone. The resulting collection is a finite subcollection of {Mi : i ∈ I}
that covers A. 2



Functions almost contra-super-continuity in m-spaces 31

Theorem 4.5 Every m-e-closed subset of an m-e-compact space is m-e-compact.

Proof: The proof is similar to the proof of the Theorem 4.4. 2

Theorem 4.6 Every m-a-closed subset of an m-a-compact space is m-a-compact.

Proof: The proof is similar to the proof of the Theorem 4.4. 2

Definition 4.7 An m-space X is said to be m-s-closed if for all covering of X by
sets m-regular closed in X contains a finite subcollection that also covers X.

Theorem 4.8 Let f : X → Y be surjective and (m,m′)-(e∗,s)-continuous func-
tion. If X is an m-e∗compact space then Y is m′-s-closed.

Proof: Let X be an m-e∗-compact space, f : X → Y an (m,m′)-(e∗,s)-continuous
and surjective. Given a covering {Mi : i ∈ I} of Y by sets m′-regular closed. Since
f is (m,m′)-(e∗,s)-continuous, then {f−1(Mi) : i ∈ I} is a covering of X by sets
m-e∗-open. Since X is m-e∗-compact, there exists a finite subset I0 of I such that

X =
⋃

i∈I0

f−1(Mi). Now using the fact that f is surjective, Y is m′-s-closed. 2

Theorem 4.9 Let f : X → Y be surjective and (m,m′)-(e,s)-continuous function.
If X is an m-e-compact space then Y is m′-s-closed.

Proof: The proof is similar to the proof of the Theorem 4.8 2

Theorem 4.10 Let f : X → Y surjective and (m,m′)-(a,s)-continuous function.
If X is an m-a-compact space then Y is m′-s-closed.

Proof: The proof is similar to the proof of the Theorem 4.8 2

The following Theorems are particular case of the Theorem 4.2 [21].

Theorem 4.11 Let X, Y be m- spaces and f be an (m,m′)-e∗-continuous func-
tion. If A is m-e∗-compact relative to X, then the image f(A) is m′-compact
relative to Y .

Proof: Let A ⊂ X be m-e∗-compact and f : X → Y be (m,m′)-e∗-continuous.
Let {Uα : α ∈ J} be a covering of the set f(A) by sets m′-open. The collection
{f−1(Uα) : α ∈ J} is a covering of A by sets m-e∗-open in X. Hence finitely many of
them, say {f−1(Uα1

), f−1(Uα2
),

..., f−1(Uαn
)} cover A. Then the sets {Uα1

, Uα2
, ..., Uαn

} cover f(A). 2
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Theorem 4.12 Let X, Y be m-spaces and f be an (m,m′)-e-continuous. If A is
m-e-compact relative to X, then the image f(A) is m′-compact relative to Y .

Proof: The proof is similar to the proof of the Theorem 4.11. 2

Theorem 4.13 Let X, Y be m-spaces and f be an (m,m′)-a-continuous function.
If A is m-a-compact relative to X, then the image f(A) is m′-compact relative to
Y .

Proof: The proof is similar to the proof of the Theorem 4.11. 2

Definition 4.14 An m-space X is said to be weakly Hausdorff if each element of
X is the intersection of m-regular closed sets.

Theorem 4.15 Let f : X → Y be a function. If f is injective, (m,m′)-(e∗,s)-
continuous and Y is weakly Hausdorff, then X is an m-e∗-T1 space.

Proof: Consider x 6= y in X, since f is injective f(x) 6= f(y) in Y , so there exist
P,R ∈ m′-RC(Y ) such that f(x) ∈ P , f(y) /∈ P , f(x) /∈ R and f(y) ∈ R. Since f
is (m,m′)-(e∗,s)-continuous, f−1(P ) and f−1(R) are m-e∗-open subsets of X such
that x ∈ f−1(P ), y /∈ f−1(P ), x /∈ f−1(R) y y ∈ f−1(R). Follows that X is an
m-e∗-T1 space. 2

Theorem 4.16 Let f : X → Y be a function. If f is injective, (m,m′)-(e,s)-
continuous and Y is weakly Hausdorff, then X is an m-e-T1 space.

Proof: The proof is similar to the proof of the Theorem 4.15. 2

Theorem 4.17 Let f : X → Y be a function. If f is injective, (m,m′)-(a,s)-
continuous and Y is weakly Hausdorff, then X is an m-a-T1 space.

Proof: The proof is similar to the proof of the Theorem 4.15. 2

Definition 4.18 [23]An m-space X is said to be s-Urysohn if for each pair x, y
of distinct points of X, there exist M ∈ m-SO(X) and N ∈ m-SO(X), x ∈ M ,
y ∈ N , such that m-cl(M) ∩m-cl(N) = ∅.

Theorem 4.19 Let f : X → Y be a function. If f is injective, (m,m′)-(e∗,s)-
continuous and Y is s-Urysohn, then X is an m-e∗-T2 space.

Proof: Let Y be s-Urysohn. For each pair x, y of distinct points of X, f(x) 6= f(y).
Hence there exist P ∈ m′-SO(Y ), f(x) ∈ P and R ∈ m′-SO(Y ), f(y) ∈ R, such
that m′-cl(P ) ∩m′-cl(R) = ∅. Now using that f is (m,m′)-(e∗,s)-continuous, then
there exist m-e∗-open sets A,B in X such that x ∈ A, y ∈ B and satisfy that
f(A) ⊂ m-cl(P ) and f(B) ⊂ m-cl(R). It follows A ∩B = ∅ and therefore, X is an
m-e∗-T2 space. 2
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Theorem 4.20 Let f : X → Y be a function. If f is injective, (m,m′)-(e,s)-
continuous and Y is s-Urysohn, then X is an m-e-T2 space.

Proof: The proof is similar to the proof of the Theorem 4.19. 2

Theorem 4.21 Let f : X → Y be a function. If f is injective, (m,m′)-(a,s)-
continuous and Y is s-Urysohn, then X is m-a-T2 space.

Proof: The proof is similar to the proof of the Theorem 4.19. 2

5. Generalized closed sets and T1/2 spaces

In general topology, the notion of T1/2 spaces is defined if every generalized closed
set is closed. In 2007 Salas, M. Carpintero, C. and Rosas, E [24] studied and
generalize these spaces using minimal structure. In 2007 Ekici [10] introduced the
notion of T1/2 spaces associated with the δ-closed sets. In this section, we compare
the Definition of m−T1/2 given by Salas, M. Carpintero, C. and Rosas, E [24] and
the Definition 3.17.

Definition 5.1 [18] Let (X,m) be an m-space, A a subset of X, A is said to be an
m-generalized closed set, abbreviate m-g-closed, if m-cl(A) ⊂ U whenever A ⊂ U
and U ∈ m.

Definition 5.2 [4] Let (X,m) be an m-space, X is said to be an m-T1/2 space, if
every m-g-closed set is m-closed.

Theorem 5.3 (Teorema 4.4 [24]) Let (X,m) be an m-space, X is an m-T1/2space
if and only if the following statements hold:

1. For each x ∈ X we have that {x} es m-open or m-closed.

2. The m structure satisfy the Maki condition.

If m is an minimal structure on X consider the m space (X,m-e∗O(X)), denoted
the generalized closed sets under this minimal structure by m-e∗-g-closed, and the
m-T1/2 space by m-(e∗)-T1/2.
Our interest is to show that the Definition 5.2 of m-(e∗)-T1/2 space is more general
that Definition 3.17 of m-e∗-T1/2 space.

Theorem 5.4 Let (X,m) be an m-space, if X is m-e∗-T1/2 space under Definition
3.17 then each x ∈ X, {x} is m-δ-open or m-δ-closed.

Proof: Let x ∈ X and suppose that {x} is not m-δ-open, then X \ {x} is not
m-δ-closed, follows that the only m-δ-closed set that contains X \{x} is X. Hence,

m-δ-cl(X \ {x}) = X
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m-cl(m-int(m-δ-cl(X \ {x}))) = X

X \ {x} ⊂ m-cl(m-int(m-δ-cl(X \ {x})))

Therefore, X \ {x} is m-e∗-open and {x} is m-e∗-closed. Since X is an m-e∗-T1/2

space under Definition 3.17 then {x} is m-δ-closed. 2

Corollary 5.5 Let (X,m) be an m-space where m satisfies the Maki condition,
if X is an m-e∗-T1/2space under Definition 3.17 then for each x ∈ X, {x} is
m-e∗-open or m-e∗-closed.

Proof: By Theorem 5.4, each unitary set is m-δ-open or m-δ-closed. Now using the
Maki condition each unitary set is m-e∗-open or m-e∗-
closed. 2

Theorem 5.6 Let m be a minimal structure on X that satisfy Maki condition, if
X is an m-e∗-T1/2 space under Definition 3.17 then X is an m-(e∗)-T1/2 space
under Definition 5.2.

Proof: Suppose that X is an m-e∗-T1/2 space under Definition 3.17. By Theorem
5.4 each unitary set {x} is m-δ-open or m-δ-closed, follows that each unitary set
{x} is m-e∗-open or m-e∗-closed. Now using Theorem 5.3 we obtain that X is an
m-e∗-T1/2 space under Definition 5.2. 2

The converse of the above theorem is not true in general, as shown in the following
examples.

Example 5.7 Let X = {a, b, c, d} and m = {∅, X, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, {a, b, c}}, then the m-space (X,m) is m-e∗-T1/2 under the Definition
5.2 but not is m-e∗-T1/2 under the Definition 3.17. In effect, the m-closed sets are:
{∅, X, {b, c, d}, {a, c, d}, {a, b, d}, {c, d}, {b, d},
{a, d}, {d}}.
m-e∗O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, d}, {b, c}, {c, d},
{a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}.
m-e∗C(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, d}, {b, c}, {c, d},
{d}, {a, b, d}, {b, c, d}, {a, c, d}}.
m-e∗-g-closed = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, d}, {b, c},
{c, d}, {d}, {a, b, d}, {b, c, d}, {a, c, d}}
m-δC(X) = {∅, X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, {a, c, d}}.

Observe that the m-e∗-generalized closed sets are all m-e∗-closed. Therefore,
(X,m) is an m-(e∗)-T1/2 space under Definition 5.2 but not is an m-e∗-T1/2 space
under Definition 3.17, because {a} is an m-e∗-closed set that not is m-δ-closed. It
said that the Definition 5.2 is more stronger that Definition 3.17.
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Example 5.8 Consider the set of the real numbers R with the m-structure m =
{∅,R, {0}}.
Let x ∈ R, and consider y ∈ R, if y 6= 0 then the only m-open set that contains y
is U = R, follows that

{x} ∩m-int(m-cl(U)) = {x}

If y = 0 then the m-open set that contains y are V = {0} and V = R, follows that

{x} ∩m-int(m-cl(V )) = {x}

.
In any case, we obtain that y ∈ m-δ-cl({x}), and hence m-δ-cl({x}) = R. An
follows that {x} ⊂ m-cl(m-int(m-δ-cl({x}))) and therefore {x} is an m-e∗-open
set.
Using the Theorem 5.3 follows that (R,m) is an m-(e∗)-T1/2 space under Definition
5.2.
But (R,m) is not an m-e∗-T1/2 space under the Definition 3.17, because R-{0} is
m-e∗-closed but not is m-δ-closed, since m-δ-cl(R-{0}) = R.
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