Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/bspm (3s.) **v. 29** 2 (2011): 9–14. ISSN-00378712 in press doi:10.5269/bspm.v29i2.11649

Some properties of semi-linear uniform spaces

Abdalla Tallafha

ABSTRACT: Semi-linear uniform space is a new space defined by Tallafha, A and Khalil, R in [3], the authors studied some cases of best approximation in such spaces, and gave some open problems in approximation theory in uniform spaces. Besides they defined a set valued map ρ on $X \times X$ and asked two questions about the properties of ρ . The purpose of this paper is to answer these questions. Besides we shall define another set valued map δ on $X \times X$ and give more properties of semi-linear uniform spaces using the maps ρ and δ . Also we shall give an example of a semi-linear uniform space which is not metrizable.

Key Words: metrizable spaces, Uniform spaces.

Contents

1	Introduction	9
2	Semi-linear uniform spaces.	10
3	Properties of the maps ρ , δ .	11
4	New semi-linear uniform spaces.	12

1. Introduction

Let X be a set and D_X be a collection of subsets of $X \times X$, such that each element V of D_X contains the diagonal $\Delta = \{(x, x) : x \in X\}$ and $V = V^{-1} = \{(y, x) : (x, y) \in V\}$, for all $V \in D_X$. D_X is called the family of all entourages of the diagonal. Let Γ be a sub-collection of D_X . Then

Definition 1.1. [1] The pair (X, Γ) is called a **uniform space** if:

- (i) If V_1 and V_2 are in Γ then $V_1 \cap V_2 \in \Gamma$.
- (ii) For every $V \in \Gamma$, there exists $U \in \Gamma$ such that $U \circ U \subset V$.
- (iii) $\bigcap \{V : V \in \Gamma\} = \Delta.$
- (vi) If $V \in \Gamma$ and $V \subseteq W \in D_X$, then $W \in \Gamma$.

Uniform spaces had been studied extensively through years. We refer the reader to [1], and [2], for the basic structure of uniform spaces. In [3], the authors define a set valued map ρ , called metric type, on semi-linear uniform spaces that enables one to study analytical concepts on uniform type spaces. They asked two questions about the properties of ρ . Besides they studied some cases of best approximation in such spaces, and gave some open problems in approximation theory in uniform

²⁰⁰⁰ Mathematics Subject Classification: Primary: 54E35, Secondary: 41A65.

spaces. The object of this paper is to answer the first natural question that one should ask: "is there a semi-linear uniform space which is not metrizable?". Besides we solve question 1 and 2 in [3]. Also we shall define another set valued map δ on $X \times X$, which is used with ρ to give more properties of semi-linear uniform spaces. Also we shall use the set valued map δ and ρ , to defined a new semi-linear uniform spaces. Finally we study the relation between ρ and δ , and we shall show that, $\rho(x, y) = \rho(s, t)$ if and only if $\delta(x, y) = \delta(s, t)$.

2. Semi-linear uniform spaces.

Let (X, Γ) be a uniform space. By a **chain** in $X \times X$ we mean a totally (or linearly) ordered collection of subsets of $X \times X$, where $V_1 \leq V_2$ means $V_1 \subseteq V_2$, [3].

Definition 2.1.[3]. A semi-linear uniform space is a uniform space (X, Γ) , where Γ is a chain and condition (vi) in definition 1.1 is replaced by $\bigcup \{V : V \in \Gamma\} = X \times X$.

Remark: 1- The condition Γ is a chain implies the condition,

(i) V_1 and V_2 are in Γ then $V_1 \cap V_2 \in \Gamma$.

2) We may assume that $X \times X \notin \Gamma$ and $\Delta \notin \Gamma$, since $X \times X \in \Gamma$, does not change the structure of the semi-linear uniform space, even the topology induced on X by (X, Γ) . Also if $\Delta \in \Gamma$, then the topology induced on X by (X, Γ) is the discret one which is metrizable.

Throughout the rest of this paper, (X, Γ) will be assumed semi-linear uniform space, which satisfied $X \times X \notin \Gamma$ and $\Delta \notin \Gamma$.

Definition 2.2.[3] Let (X, Γ) be a semi-linear uniform space. For $(x, y) \in X \times X$, let $\Gamma_{(x,y)} = \{V \in \Gamma : (x,y) \in V\}$. Then, the set valued map ρ on $X \times X$ is defined by $\rho(x,y) = \bigcap \{V : V \in \Gamma_{(x,y)}\}$. The map ρ will be called a set metric on (X, Γ) .

by $\rho(x,y) = \bigcap \{V : V \in \Gamma_{(x,y)}\}$. The map ρ will be called a set metric on (X,Γ) . Clearly $\rho(x,y) = \rho(y,x)$ for all $(x,y) \in X \times X$, and $\Delta \subseteq \rho(x,y)$ for all $(x,y) \in X \times X$, and $\Gamma \setminus \Gamma_{(x,y)} = (\Gamma_{(x,y)})^c = \{V \in \Gamma : (x,y) \notin V\}$, so we shall denote $\Gamma \setminus \Gamma_{(x,y)}$ by $\Gamma_{(x,y)}^c$.

Now we shall define another function δ on $X \times X$.

Definition 2.3. Let (X, Γ) be a semi-linear uniform space. Then, the set valued map δ on $X \times X$ is defined by

$$\delta(x,y) = \begin{cases} \bigcup \{V : V \in \Gamma_{(x,y)}^{c}\}, \text{ if } x \neq y \\ \phi, \text{ if } x = y. \end{cases}$$

Clearly, if x = y then $\Gamma_{(x,y)}^c$ is the empty set so we define $\delta(x,x)$ to be the empty set. Also $\delta(x,y) = \delta(y,x)$ for all $(x,y) \in X \times X$. and $\Delta \subseteq \delta(x,y)$ for all $x \neq y$. As in uniform spaces, the topology induced on X by Γ is defined by a local base B(x,V). **Definition 2.4** [1]. For $x \in X$ and $V \in \Gamma$, we define the open ball of center x and radius V to be $B(x, V) = \{y \in X : (x, y) \in V\}$. Equivalently using our notation $B(x, V) = \{y : \rho(x, y) \subseteq V\}$. Clearly if $y \in B(x, V)$, then there is a $W \in \Gamma$ such that $B(y, W) \subseteq B(x, V)$, so $\beta_x = \{B(x, V) : V \in \Gamma\}$ is a local base at x.

3. Properties of the maps ρ , δ .

In this section we shall give some important properties of the maps ρ , δ . Also we shall give an example of a semi-linear uniform space which is not metrizable.

Proposition 3.1. Let (X, Γ) be a semi-linear uniform space. Then,

i) If $V \in \Gamma^{c}_{(x,y)}$, then $V \subsetneqq \rho(x,y)$.

ii) $\delta(x,y) \subseteq \rho(x,y)$ for all $(x,y) \in X \times X$.

iii) If $V \in \Gamma_{(x,y)}$, then $\delta(x,y) \subseteq V$.

iv) If $(x, y) \in \rho(s, t)$ then $\rho(x, y) \subseteq \rho(s, t)$.

v) If $(x, y) \in \delta(s, t)$ then $\delta(x, y) \subseteq \delta(s, t)$.

Proof: i) Suppose $V \in \Gamma_{(x,y)}^{c}$. Then $V \subseteq U$, for all $U \in \Gamma_{(x,y)}$, so $(x,y) \notin V \subseteq \rho(x,y)$. Since $(x,y) \in \rho(x,y)$, the result follows.

ii) If x = y, the result follows, If not by (i) $\delta(x, y) \subseteq \rho(x, y)$.

iii) Since $\rho(x,y) \subseteq V$, for all $V \in \Gamma_{(x,y)}$ so the result follows by (ii)

iv) $(x,y) \in \rho(s,t)$ implies that $\Gamma_{(s,t)} \subseteq \Gamma_{(x,y)}$ so $\rho(x,y) \subseteq \rho(s,t)$.

v) Since $(x, y) \in \delta(s, t)$, then $s \neq t$ and there exist $U \in \Gamma_{(x,y)} \cap \Gamma_{(s,t)}^c$.

If $V \in \Gamma_{(x,y)}^{^{c}}$, then $V \subseteq U \subseteq \delta(s,t)$, and hence $\delta(x,y) \subseteq \delta(s,t)$.

Proposition 3.2. Let (X, Γ) be a semi-linear uniform space. Then,

I) If $U \in \Gamma$ satisfies $U \subsetneq \rho(x, y)$, then $U \subseteq \delta(x, y)$.

II) If $U \in \Gamma$ satisfies $\delta(x, y) \subseteq U$, then $\rho(x, y) \subseteq U$.

iii) If $U \in \Gamma$ satisfies $\delta(x, y) \subseteq U \subseteq \rho(x, y)$, then $U = \delta(x, y)$ or $U = \rho(x, y)$.

iv) If $(s,t) \notin \delta(x,y)$ then $\delta(x,y) \subseteq \delta(s,t)$.

v) If $(s,t) \notin \rho(x,y)$ then $\rho(x,y) \subseteq \delta(s,t)$.

vi) If $\delta(x,y) \subsetneqq \delta(s,t)$, the there exist $U \in \Gamma$, such that $\delta(x,y) \subsetneqq U \subseteq \delta(s,t)$.

vii) If $\rho(x,y) \subseteq \rho(s,t)$, the there exist $U \in \Gamma$, such that $\rho(x,y) \subseteq U \subseteq \rho(s,t)$.

Proof: i) If $U \subsetneq \rho(x, y)$, then $(x, y) \notin U$ and $x \neq y$. So $U \subseteq \delta(x, y)$.

ii) If x = y then $\rho(x, y) \subseteq U$ for all $U \in \Gamma$. If not, since $\delta(x, y) \subsetneqq U$, then $(x, y) \in U$.

iii) The assumption implies that $x \neq y$, so the result is obvious from (i) or (ii).

iv) If s = t, then x = y and the result follows. If $s \neq t$, then the result follows if $x \neq y$. Other wise, let $U \in \Gamma_{(s,t)}$, then $V \subseteq U$, for all $V \in \Gamma_{(x,y)}^{\circ}$, so $\delta(x,y) \subseteq \delta(s,t)$.

v) If $(s,t) \notin \rho(x,y)$, then $s \neq t$ and, there exist $V \in \Gamma_{(x,y)}$, such that $(s,t) \notin V$, so $\rho(x,y) \subseteq V \subseteq \rho(s,t)$.

vi) The assumption implies that $s \neq t$. If x = y then any $U \in \Gamma_{(s,t)}^{c}$ satisfies the result. Suppose that $x \neq y$, so $\delta(x,y) \subsetneq \delta(s,t)$, implies the existence of a

point (a, b) such that $(a, b) \in \delta(s, t)$ and $(a, b) \notin \delta(x, y)$. So there exist $U \in \Gamma_{(a,b)}$, $U \subseteq \delta(s, t)$, and $\delta(x, y) \subsetneqq U$.

vii) Suppose $\rho(x, y) \subsetneq \rho(s, t)$. Then there exist a point (a, b) such that $(a, b) \in \rho(s, t)$ and $(a, b) \notin \rho(x, y)$. Hence there exist $U \in \Gamma_{(x,y)}$ such that $(a, b) \notin U$, and $U \subsetneq \rho(s, t)$.

In the following examples we shall show that in Proposition 2.2, we can not replace $(\subseteq by \subsetneq)$ or $(\subsetneq by \subseteq)$ in (i) and (ii). More precisely,

1) $U \subsetneq \rho(x, y) \nrightarrow U \subsetneq \delta(x, y)$. 2) $U \subseteq \rho(x, y) \nrightarrow U \subseteq \delta(x, y)$. 3) $\delta(x, y) \subsetneq U \nrightarrow \rho(x, y) \subsetneq U$. 4) $\delta(x, y) \subseteq U \twoheadrightarrow \rho(x, y) \subseteq U$.

Example 3.3. Let $t \in (0, \infty)$. Let $V_t = \{(x, y) : y - t < x < y + t, y \in \mathbb{R}\}$, and $\Gamma = \{V_t : 0 < t < \infty, \}$. Then (\mathbb{R}, Γ) , is a semi-linear uniform space. It follows $\delta(1,0) = \{(x,y) : y - 1 < x < y + 1, y \in \mathbb{R}\}$, $\rho(1,0) = \{(x,y) : y - 1 \le x \le y + 1, y \in \mathbb{R}\}$, and so, $V_1 \subsetneq \rho(1,0)$ and $V_1 = \delta(1,0)$.

Example 3.4. Let $t \in (0, \infty)$, Let $V_t = \{(x, y) : y - t \le x \le y + t, y \in \mathbb{R}\}$, and $\Gamma = \{V_t : 0 < t < \infty, \}$. Then (\mathbb{R}, Γ) , is a semi-linear uniform space. So $\delta(1, 0) = \{(x, y) : y - 1 < x < y + 1, y \in \mathbb{R}\}$ and $\rho(1, 0) = \{(x, y) : y - 1 \le x \le y + 1, y \in \mathbb{R}\}$, so

 $V_1 = \rho(1,0)$ and $\delta(1,0) \subseteq V_1$.

In [3], the authors asked the following questions in semi-linear uniform spaces. **Question1:** Is $\rho(x, y) \subseteq \rho(x, z) \cap \rho(z, y)$?. **Question 2.** If $\rho(x, z) = \rho(x, w)$, for some $x \in X$, must w = z?. **Question 3.** If E is compact, must E be proximinal?.

The answer of question 1 is negative, even if \cap is replaced by \cup , since in Example 2.3. $\rho(1,0) = \{(x,y) : y-1 \le x \le y+1, y \in \mathbb{R}\}, \rho(1,\frac{1}{2}) = \{(x,y) : y-\frac{1}{2} \le x \le y+\frac{1}{2}, y \in \mathbb{R}\} = \rho(\frac{1}{2},0)$. So $\rho(1,0) \nsubseteq \rho(1,\frac{1}{2}) \cup \rho(\frac{1}{2},0)$.

The following example is a semi-linear uniform space which is not metrizable. Also this example answers Question 2, negatively.

Example 3.5. Let $U_t = \{(x, y) : x^2 + y^2 < t\} \cup \{(x, x) : x \in \mathbb{R}\}$. Then (\mathbb{R}, Γ) , is a semi-linear uniform space which is not metrizable, where, $\Gamma = \{U_t : 0 < t < \infty\}$, and $\rho(3, 4) = \{(x, y) : x^2 + y^2 \le 25\} = \rho(3, -4)$.

4. New semi-linear uniform spaces.

In this section we shall define a new semi-linear uniform space using old one.

Theorem 4.1. Let (X, Γ) be a semi-linear uniform space. Then,

i) $\{\rho(x,y) : (x,y) \in X \times X\}$ is a chain.

ii) $\{\delta(x,y) : (x,y) \in X \times X, x \neq y\}$ is a chain.

Proof: i) Clearly $\{\rho(x, y) : (x, y) \in X \times X\}$ is a partially ordered set under the set inclusion. Let $\rho(x, y), \rho(s, t)$ be two different elements. Suppose $\rho(x, y) \nsubseteq \rho(s, t)$.

From (*iii*), Proposition 2.1, $(x, y) \notin \rho(s, t)$ which implies the existence of $U \in \Gamma_{(s,t)} \cap \Gamma_{(x,y)}^{c}$. Hence by (*i*), same Proposition, $U \subseteq \rho(x, y)$, so $(s,t) \in U \subseteq \rho(x, y)$, and the result follows from (*iii*) in Proposition 2.1.

ii) Similarly $\{\delta(x,y) : (x,y) \in X \times X, x \neq y\}$ is partially ordered by set inclusion. Let $\delta(x,y), \delta(s,t)$ be two different elements. Suppose $\delta(x,y) \nsubseteq \delta(s,t)$. From (iv), Proposition 2.1, $(x,y) \notin \delta(s,t)$. So $\Gamma_{(s,t)}^c \subseteq \Gamma_{(x,y)}^c$.

Let $\rho = \{\rho(x, y) : (x, y) \in X \times X, x \neq y\}$, and $\delta = \{\delta(x, y) : (x, y) \in X \times X, x \neq y\}$. Then we have

Theorem 4.2: Let (X, Γ) be a semi-linear uniform space. Then,

i) (X, ρ) is a semi-linear uniform space.

ii) (X, δ) is a semi-linear uniform space.

Proof: Clearly each element in $(X, \rho), (X, \delta)$ is symmetric, contains the diagonal, moreover by Theorem 3.1 ρ, δ are chains. Let $(x, y) \in X \times X$. Then there exist $U \in \Gamma$, such that $(x, y) \in U$, so $(x, y) \in \rho(x, y)$, let $(s, t) \notin U$, then $(x, y) \in \delta(s, t)$ and $\bigcup \{\rho(x, y) : \rho(x, y) \in \rho\} = X \times X = \bigcup \{\delta(x, y) : \delta(x, y) \in \delta\}$. To complete the proof we need the following

 $\begin{array}{l} \mathbf{1}\text{-}\bigcap\left\{\delta\left(x,y\right):\delta\left(x,y\right)\in\boldsymbol{\delta}\right\}=\Delta. \text{ Clearly }\Delta\subseteq \bigcap\left\{\delta\left(x,y\right):\delta\left(x,y\right)\in\boldsymbol{\delta}\right\}. \text{ Suppose }\Delta\subsetneq\subseteq \bigcap\left\{\delta\left(x,y\right):\delta\left(x,y\right)\in\boldsymbol{\delta}\right\}. \text{ Let }(s,t)\in \bigcap\left\{\delta\left(x,y\right):\delta\left(x,y\right)\in\boldsymbol{\delta}\right\}, \, s\neq t, \text{so by }(\mathbf{v}), \text{ Proposition 2.1, }\bigcap\left\{\delta\left(x,y\right):\left(x,y\right)\in X\times X\right\}=\delta\left(s,t\right), \text{ which is impossible sine }(s,t)\notin\delta\left(s,t\right). \end{array}$

2- Let $\delta(x, y) \in \delta$, we want to find (s, t) such that $\delta(s, t) \circ \delta(s, t) \subseteq \delta(x, y)$. Since $x \neq y$, let $U \in \Gamma^{\circ}_{(x,y)}$, so there exist V such that $V \circ V \subseteq U$. Let $(s, t) \in V$. Thus by (iii) Proposition 2.1 $\delta(s, t) \subseteq V$, and $\delta(s, t) \circ \delta(s, t) \subseteq V \circ V \subseteq U \subseteq \delta(x, y)$.

3- $\bigcap \{\rho(x,y) : \rho(x,y) \in \rho\} = \Delta$. Clearly $\Delta \subseteq \bigcap \{\rho(x,y) : \rho(x,y) \in \rho\}$. Suppose $\Delta \subsetneq \bigcap \{\rho(x,y) : \rho(x,y) \in \rho\}$, and let $(s,t) \in \bigcap \{\rho(x,y) : \rho(x,y) \in \rho\}$, $s \neq t$. Then by (**iv**) and Proposition 2.1, we get $\bigcap \{\rho(x,y) : \rho(x,y) \in \rho\} = \rho(s,t)$, Since $s \neq t$, there exist $U \in \Gamma_{(s,t)}^{\circ}$, so by (**i**) Proposition 2.1, $V \subsetneq \rho(s,t)$. Let $(a,b) \in V, a \neq b$. Then $\rho(a,b) \subseteq V \subsetneqq \rho(s,t) \subseteq \rho(a,b)$.

4- Let $\rho(x, y) \in \boldsymbol{\rho}$. We want to find (s, t) such that $\rho(s, t) \circ \rho(s, t) \subseteq \rho(x, y)$. Since $x \neq y$, let $U \in \Gamma^{c}_{(x,y)}$. So there exists V such that $V \circ V \subseteq U$, Let $(s, t) \in V$, so $\rho(s, t) \circ \rho(s, t) \subseteq V \circ V \subseteq U \subseteq \rho(x, y)$.

Clearly $X \times X$ and Δ not an elements of ρ, δ , respectively.

Theorem 4.3. Let (X, Γ) be a semi-linear uniform space. Then, $\Theta = \rho \cup \delta \cup \Gamma$ is a chain.

Proof: Clearly Θ is well ordered by set inclusion. Let θ_1, θ_2 be two different elements in Θ . Then we have the following cases,

1) $\theta_1 = \rho(x, y)$ for some $(x, y) \in X \times X$, and $\theta_2 = \delta(s, t)$ for some $(s, t) \in X \times X$. So if $(s, t) \in \theta_1$, then the result follows by (iv) Proposition 2.1. Otherwise, if $(s, t) \notin \theta_1$, then the result follows by (v) Proposition 2.2.)

2) $\theta_1 = \rho(x, y)$ for some $(x, y) \in X \times X$, and $\theta_2 = U$ for some $U \in \Gamma$. Clearly if $(x, y) \in U$, then $\rho(x, y) \subseteq U$. On the other hand the result follows by (i) Proposition 2.1.

Abdalla Tallafha

3) $\theta_1 = \delta(x, y)$ for some $(x, y) \in X \times X$, and $\theta_2 = U$ for some $U \in \Gamma$, as in (2), if $(x, y) \in U$, then $\delta(x, y) \subseteq U$, otherwise $U \subseteq \delta(x, y)$. The other cases are trivial.

Clearly if $(X, \Gamma_1), (X, \Gamma_2)$ are two semi-linear uniform spaces and $\Gamma_1 \cup \Gamma_2$, is a chain, then $(X, \Gamma_1 \cup \Gamma_2)$ is a semi-linear uniform space. So we have,

Corollary 4.4. (X, Θ) is a semi-linear uniform space.

To study a property in a semi-linear uniform space, some times it is easier to deal with the map ρ rather than δ and visa versa. Now we shall show that it doesn't make a difference which map you work with.

Lemma 4.5. Let (X, Γ) be a semi-linear uniform space. Then, $\rho(x, y) \subseteq \rho(s, t)$ if and only if $\delta(x, y) \subseteq \delta(s, t)$.

Proof: Suppose $\rho(x,y) \subseteq \rho(s,t)$, let $(a,b) \in \delta(x,y)$. So there exist $U \in \Gamma^{c}_{(x,y)} \cap$ $\Gamma_{(a,b)}$. By (i) Proposition 2.1. $U \subsetneqq \rho(x,y)$. Hence $U \subsetneqq \rho(s,t)$, so by (i) Proposition 2.2, $U \subseteq \delta(s,t)$. Therefor $(a,b) \in \delta(s,t)$. For the converse if $\delta(x,y) \subseteq \delta(s,t)$, then $\Gamma_{(x,y)}^{c} \subseteq \Gamma_{(s,t)}^{c}, \text{ so } \Gamma_{(s,t)} \subseteq \Gamma_{(x,y)}.$ Lemma 4.6 gives the following nice result.

Theorem 4.6. Let (X, Γ) be a semi-linear uniform space. Then, $\rho(x, y) = \rho(s, t)$ if and only if $\delta(x, y) = \delta(s, t)$.

References

- [1] Engelking, R. Outline of General Topology, North-Holand, Amsterdam, 1968.
- [2] James, I.M., Topological and Uniform Spaces. Undergraduate Texts in Mathematics. Springer-Verlag 1987.
- [3] Tallafha, A. and Khalil, R., Best Approximation in Uniformity type spaces. European Journal of Pure and Applied Mathematics, Vol. 2, No. 2, 2009, (231-238).

Abdalla Tallafha Department of Mathematics, Jordan University Amman, Jordan E-mail address: a.tallafha@ju.edu.jo