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abstract: We describe up to an isomorphism the algebraic structure of the
maximal divisible subgroup dV R[G] of the group V R[G] of normalized units in a
group ring R[G], provided that G is an abelian group such that Gt/Gp is (infinite)
bounded and R is a field of prime characteristic p. This supplies recent author’s
results in Rad. Mat. (2004), Commun. Algebra (2011), Bull. Braz. Math. Soc.
(2010) and J. Alg. Numb. Th. Acad. (2010).
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1. Introduction

Throughout this short paper, let G be a multiplicative abelian group as is
the custom when discussing group rings and R a commutative unitary ring of
prime characteristic p. As usual, suppose R[G] is the group ring of G over R
with unit group UR[G] and its normalized component V R[G]; note that the direct
decomposition UR[G] = V R[G] × R∗ holds where R∗ is the unit group of R.
Moreover, let dG and Gt to denote the maximal divisible subgroup and the maximal
torsion subgroup of G, respectively; notice that the direct decomposition Gt =∐

p Gp is true whenever Gp is the p-primary component of G. Likewise, let N(R)
be the nil-radical of R.

Traditionally, for any set S, we let |S| denote its cardinality and for any natural
number n, we let ζn denote the primitive nth root of unity. Moreover, as usual, if R
is a field, R(ζn) denotes the binomial extension of R by adding ζn with dimension
equal to (R(ζn) : R) but if R is a ring, R[ζn] denotes the free R-module algebraically
generated as a ring by ζn with dimension equal to [R[ζn] : R]. Denote by L(p) the
maximal (p-)perfect subring of a ring L with characteristic p, and by G(p) the
maximal p-divisible subgroup of a group G. Also, id(L) = {e ∈ L : e2 = e} is the
set of all idempotents in L.

All other unstated explicitly notions and notations are standard and follow
those from [8].
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A problem of major interest in the theory of commutative modular group rings
is to characterize the maximal divisible subgroup. This subject is motivated in
accordance to the direct decomposition V R[G] = dV R[G]×K for some subgroup
K of V R[G].

In [9], dVpR[G] was described up to isomorphism in terms of R and G. Further-
more, we extended in [2] (see also [3]) this result describing the isomorphism class
of dV R[G], provided R is a field and G is a group such that Gt = Gp. Next, we
improved our technique in [4] and [5] and, as a result, we obtained a comprehensive
description of dV R[G] assuming only that Gt = Gp. Finally, in [6] a satisfactory
characterization of dV R[G] was given uniquely in terms associated with R and G
and their sections, provided that R is an indecomposable ring (or even more, R is
a direct product of finitely many indecomposable subrings) and G is a group with
the restriction that Gt/Gp is finite.

So, the goal of this brief article is to strengthen this last achievement establishing
the isomorphism structure of dV R[G] for infinite quotient Gt/Gp. However, we
shall restrict our attention only when R is a field or R is a finite ring.

2. Main Results

First, one simple but very useful reduction lemma.
Lemma 1. Suppose G is a group such that Gt/Gp is bounded. Then G is the direct

sum of a bounded group and a p-mixed group.
Proof. Since Gt/Gp

∼=
∐

q 6=p Gq is bounded and
∐

q 6=p Gq is pure in G (this is
true because it is pure in Gt being its direct factor and Gt is pure in G), it is a
folklore fact that

∐
q 6=p Gq is a direct factor of G too, G = (

∐
q 6=p Gq) × M say

for some M ≤ G. Clearly M ∼= G/
∐

q 6=p Gq is p-mixed owing to the fact that
Mt

∼= (G/
∐

q 6=p Gq)t = Gt/
∐

q 6=p Gq
∼= Gp. △

We now recall one crucial assertion from [4] and [5] that will be used in the
sequel.
Theorem 2. Suppose A is a p-mixed group and L a ring of prime characteristic

p. Then the following isomorphism is valid:
dV L[A] ∼=

∐
λ Z(p∞)×

∐
µ(dA/dAp)

where λ = max(|L(p)|, |A(p)|) if dAp 6= 1, or λ = max(|N(L(p))|, |A(p)|) if dAp = 1,
A(p) 6= 1 and N(L(p)) 6= 0, or λ = 0 if either dAp = 1 or A(p) = 1 and N(L(p)) = 0,
whereas µ = |id(L)| ≥ ℵ0 or µ = log2|id(L)| if |id(L)| < ℵ0.

So, we have at our disposal all the information needed to prove the first main
result.
Theorem 3. Suppose that R is a field and that G is a group such that Gt/Gp is

infinite bounded. Then the following isomorphism formula is fulfilled:

dUR[G] ∼=
∐

λ

Z(p∞)×
∐

µ

(dG/dGp)×

∞∐

n=0

∐

a(n)

dR(ζn)
∗

where λ = max(|Rpω

|, |G(p)|) if dGp 6= 1 or λ = 0 if either dGp = 1 or G(p) =∐
q 6=p Gq whereas µ = |Gt/Gp|, and a(n) =

|{g∈Gt/Gp:order(g)=n}|
(R(ζn):R) .
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Proof. Applying Lemma 1, one can write G = B × M where B =
∐

q 6=p Gq
∼=

Gt/Gp is bounded and M is p-mixed. Consequently, R[G] ∼= (R[B])[M ] and hence
UR[G] ∼= U(R[B])[M ] = V (R[B])[M ] × UR[B]. Thus, dUR[G] ∼= dV (R[B])[M ] ×
dUR[B].

Furthermore, we shall describe these two direct factors separately:

For the characterization of first factor dV (R[B])[M ] we employ Theorem 2
substituting L = R[B] and A = M ; observe that R[B] is a commutative unitary
ring of char(R[B]) = p. Taking into account [7], especially that id(R[B]) = |B| =
|Gt/Gp|, the classical fact that R(p) = Rpω

and some other well-known arguments
like dG = dM whence dGp = dMp, M (p) ∼= G(p)/

∐
q 6=p Gq, L(p) = Rpω

[B] and

hence N(L(p)) = N(Rpω

)[B] = 0 (see Proposition 4 below), the desired equalities
of λ and µ are obtained.

For the description of the second factor we appeal to [1] to infer that UR[
∐

q 6=p Gq]
∼=

∐∞
n=0

∐
a(n) R(ζn)

∗ where a(n) is given as above. Therefore, it follows at once

that dUR[
∐

q 6=p Gq] ∼=
∐∞

n=0

∐
a(n) dR(ζn)

∗, and we are done. △

Proposition 4. If C is an abelian group whose Cp = 1, then N(R[C]) = N(R)[C].

Proof. Assume x = r1c1+ · · ·+rscs ∈ N(R[C]). Hence there is an m ∈ N such that

(r1c1 + · · ·+ rscs)
pm

= rp
m

1 cp
m

1 + · · ·+ rp
m

s cp
m

s = 0. Since x is written in canonical

form and Cp = 1, it follows that rp
m

1 cp
m

1 + · · · + rp
m

s cp
m

s is in canonical record as

well. Consequently, rp
m

1 = · · · = rp
m

s = 0 and thus r1, · · · , rs ∈ N(R). Finally x
obviously lies in N(R)[C] as required. This proves that N(R[C]) ⊆ N(R)[C]. The
converse inclusion is elementary, so that it is equivalent to the desired equality. △

The second chief result is the following.

Theorem 5. Let R be finite and G a group for which Gt/Gp is finite. Then the

following isomorphism formula is fulfilled:

dV R[G] ∼=
∐

λ

Z(p∞)×
∐

µ

(dG/dGp)

where λ = |G(p)| if dGp 6= 1 or dGp = 1, G(p) 6=
∐

q 6=p Gq and N(R(p)) 6= 0

as well as λ = 0 if either dGp = 1 and N(R(p)) = 0, or G(p) =
∐

q 6=p Gq

and N(R(p)) = 0, whereas µ =
∑

d/exp(Gt/Gp)

∑
1≤i≤log2|id(R)| ai(d) with ai(d) =

|{g∈Gt/Gp:order(g)=d}|
[Ri[ζd]:Ri]

.

Proof. As above, Lemma 1 implies that G = B×M where B =
∐

q 6=p Gq
∼= Gt/Gp

is finite and M is p-mixed. Therefore, R[G] ∼= R[B][M ] whence V R[G] × U(R) =
UR[G] ∼= U(R[B])[M ] = V (R[B])[M ] × UR[B] and thus dV R[G] ∼= dV (R[B])[M ]
since both U(R) and UR[B] are finite and thereby their maximal divisible sub-
groups are equal to 1. We next apply Theorem 2 to L = R[B] and A = M .
Observe that L is a finite commutative unitary ring of char(L) = p. So, id(L)
is finite as computed in [7]. It easily follows as in the previous theorem that
L(p) = R(p)[B] since B is p-divisible and, moreover, in view of Proposition 4 we
have N(L(p)) = N(R(p))[B], hence N(L(p)) = 0 exactly when N(R(p)) = 0. On
the other hand, dG = dM whence dGp = dMp, M (p) ∼= G(p)/

∐
q 6=p Gq with
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|M (p)| = |G(p)| whenever |M (p)| ≥ ℵ0 since
∐

q 6=p Gq is finite. △
Remark. The last statement can also be derived from Corollary 4 of [6]. Nev-
ertheless, the above proof is slightly more conceptual and easy than that of the
original source [6].

A problem which immediately arises is the following:
Problem. Extend the preceding theorems to the case when Gt/Gp is unbounded
and R is a field, or to the case when Gt/Gp is infinite bounded and R is a finite
ring.
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