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Positive solutions with changing sign energy to a nonhomogeneous

elliptic problem of fourth order

M.Talbi and N.Tsouli

abstract: In this paper, we study the existence for two positive solutions to
a nonhomogeneous elliptic equation of fourth order with a parameter λ such that
0 < λ < λ̂. The first solution has a negative energy while the energy of the second
one is positive for 0 < λ < λ0 and negative for λ0 < λ < λ̂. The values λ0 and λ̂ are
given under variational form and we show that every corresponding critical point is
solution of the nonlinear elliptic problem (with a suitable multiplicative term).

Key Words: : Ekeland’s principle, p-Laplacian operator, Palais-Smale condi-
tion.
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1. Introduction

We consider the problem with Navier boundary conditions

(Pλ)

{

∆2
pu = λ|u|q−2u+ |u|r−2u in Ω
u = ∆u = 0 on ∂Ω,

Here Ω is a smooth domain in R
N (N ≥ 1), ∆2

p is the p-biharmonic operator defined
by ∆2

pu = ∆(| ∆u |p−2 ∆u), λ is a positive parameter, p, q and r are reals such
that

1 < q < p < r < p∗2, where







p∗2 =
Np

N − 2p
if p < N/2,

p∗2 = +∞ if p ≥ N/2.

Such kind of problems with combined concave and convex nonlinearities were stud-
ied recently by several authors [2,3,4,5,6,7,9,10,11,17] in the case of operator ∆p.
Our main results here can be summarized as follows:
Let us put X = W 2,p

0 (Ω) ∩ W 2,p(Ω). We find two characteristic values λ0 and λ̂

(λ0 < λ̂) under variational form, i.e.

(V ) λ0 = C0(p, q, r) inf
u∈X\{0}

F (u) and λ̂ = Ĉ(p, q, r) inf
u∈X\{0}

F (u),
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such that two branches of positive solutions to (Pλ) exist for λ ∈]0, λ̂[ (the functional
F will be given below). Moreover, the energy of the first positive solution is negative
for λ ∈]0, λ̂[ while the energy of the second positive solution changes sign at λ0,
i.e. it is positive forλ ∈]0, λ0[ and negative for λ ∈]λ0, λ̂[. Notice that these two
positive solutions are found simultaneously and that our approach does not use the
mountain-pass lemma.
On the other hand, we show that every solution of (V ) is a solution of the problem
(Pλ) (with a suitable multiplicative term). This second point lets expect that the
first nonlinear eigenvalue ζ of (V ), i.e.

ζ = sup{λ > 0 : (Pλ) has a nonnegative solution}

may satisfy a variational problem similar to (V ) (see [4] for p = 2). Let us precise
that λ̂ coincides with ζ when q → p and that λ̂ constitutes a good minoration of ζ
in the general case 1 < q < p.

We consider the transformation of Poisson problem used by P.Drábek and
M.Ôtani (cf. [12]):
We recall some properties of the Dirichlet problem for the Poisson equation:

{

−∆u = f in Ω,
u = 0 on ∂Ω.

(1.1)

It is well known that (1.1) is uniquely solvable in W 2,p(Ω) ∩ W 1,p
0 (Ω) for all f ∈

Lp(Ω) and for any p ∈]1,+∞[.
We denote by :
X = W 2,p(Ω) ∩W 1,p

0 (Ω),

‖u‖p = (

∫

Ω

|u|pdx)1/p the norm in Lp(Ω),

‖u‖2,p = (‖∆u‖pp + ‖u‖pp)
1/p the norm in X,

‖u‖∞ the norm in L∞(Ω),
and < ., . > is the duality bracket between Lp(Ω) and Lp′

(Ω), where p′ = p/(p−1).
Denote by Λ the inverse operator of −∆ : X → Lp(Ω).
The following lemma gives us some properties of the operator Λ (cf. [12], [16] )

Lemma 1.1 (i) (Continuity): There exists a constant cp > 0 such that

‖Λf‖2,p ≤ cp‖f‖p

holds for all p ∈]1,+∞[ and f ∈ Lp(Ω).

(ii) (Continuity) Given k ∈ N
∗, there exists a constant cp,k > 0 such that

‖Λf‖Wk+2,p ≤ cp,k‖f‖Wk,p

holds for all p ∈]1,+∞[ and f ∈ W k,p(Ω).
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(iii) (Symmetry) The following identity:
∫

Ω

Λu · vdx =

∫

Ω

u · Λvdx

holds for all u ∈ Lp(Ω) and v ∈ Lp′

(Ω) with p ∈]1,+∞[.

(iv) (Regularity) Given f ∈ L∞(Ω), we have Λf ∈ C1,α(Ω̄) for all α ∈]0, 1[;
moreover, there exists cα > 0 such that

‖Λf‖C1,α ≤ cα‖f‖∞.

(v) (Regularity and Hopf-type maximum principle) Let f ∈ C(Ω̄) and f ≥ 0 then
w = Λf ∈ C1,α(Ω̄), for all α ∈]0, 1[ and w satisfies: w > 0 in Ω, ∂w

∂n < 0 on
∂Ω.

(vi) (Order preserving property ) Given f, g ∈ Lp(Ω) if f ≤ g in Ω, then Λf < Λg
in Ω.

Remark 1.1 (∀u ∈ X)(∀v ∈ Lp(Ω)) v = −∆u ⇐⇒ u = Λv.
Let us denote Np the Nemytskii operator defined by

{

Np(v)(x) = |v(x)|p−2v(x) if v(x) 6= 0
Np(v)(x) = 0 if v(x) = 0,

and we have ∀v ∈ Lp(Ω),∀w ∈ Lp′

(Ω) :

Np(v) = w ⇐⇒ v = Np′(w).

We define the functionals P,Q,R : Lp(Ω) → R as follows:

P (v) =‖ v ‖pp, Q(v) = ||Λv||qq and R(v) = ||Λv||rr.

The operator Λ enables us to transform problem (Pλ) to an other problem which
we will study in the space Lp(Ω).

Definition 1.1 We say that u ∈ X \ {o} is a solution of problem (Pλ), if
v = −∆u is a solution of the following problem

(P ′
λ)

{

Find v ∈ Lp(Ω) \ {o}, such that
Np(v) = λΛ(Nq(Λv)) + Λ(Nr(Λv)) in Lp′

(Ω).

For solutions of (Pλ) we understand critical points of the associated Euler-
Lagrange functional Eλ ∈ C1(Lp(Ω)), given by

Eλ(v) =
1

p
P (v)− λ

1

q
Q(v)−

1

r
R(v).

As in (cf. [13,19]), we introduce the modified Euler-Lagrange functional defined on
R×Lp(Ω) by Ẽλ(t, v) = E−λ(tv). If v is an arbitrary element of Lp(Ω), ∂tẼλ(., v)
(resp. ∂ttẼλ(., v))are the first (resp. second) derivative of the real valued function:
t 7→ Ẽλ(t, v).
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2. Preliminary results

Since the functional Ẽλ is even in t and that we are interested by the positive
solutions, we limit our study for t > 0.

Lemma 2.1 For every v ∈ Lp(Ω) \ {0}, There is a unique λ(v) > 0 such that the
real valued function t 7→ ∂Ẽλ(t, v) has exactly two positive zeros (resp. one positive
zero ) if 0 < λ < λ(v) (resp. λ = λ(v)). This function has no zero for λ > λ(v).

Proof : Let v be an arbitrary element of Lp(Ω) \ {0} and let us write

∂tẼλ(t, v) = tq−1F̃λ(t, v), where F̃λ(t, v) = tp−qP (v)− λQ(v)− tr−qR(v).

Then
∂ttẼλ(t, v) = (q − 1)tq−2F̃λ(t, v) + tq−1∂tF̃λ(t, v),

holds true, with

∂tF̃λ(t, v) = tp−q−1[(p− q)P (v)− (r − q)tr−pR(v)].

It is clair that the real valued function t 7→ F̃λ(t, v) is increasing on ]0, t(v)[, de-
creasing on ]t(v),+∞[ and attains its unique maximum for t = t(v), where

t(v) = (
p− q

r − q

P (v)

R(v)
)

1
r−p . (2.1)

Thus, if F̃λ(t(v), v) > 0 (resp. F̃λ(t(v), v) = 0), the function t 7→ F̃λ(t, v) has two
positive zeros (resp. one positive zero) and has no zero if F̃λ(t(v), v) < 0. On the
other hand, a direct computation gives

F̃λ(t(v), v) =
r − p

p− q
(
p− q

r − q

P (v)

R(v)
)

r−q

r−pR(v)− λQ(v).

We deduce that F̃λ(t(v), v) > 0 (resp. F̃λ(t(v), v) < 0) for λ < λ(v) (resp. λ >
λ(v)) and F̃λ(v)(t(v), v) = 0, where

λ(v) = ĉ
P

r−q

r−p (v)

Q(v)R
p−q

r−p (v)
, (2.2)

with
ĉ =

r − p

p− q
(
p− q

r − q
)

r−q

r−p .

Hence, if λ ∈]0, λ(v)[, the real valued function t 7→ ∂tẼλ(t, v) has two positive
zeros, denoted by t1(v, λ) and t2(v, λ), verifying 0 < t1(v, λ) < t(v) < t2(v, λ).
Since F̃λ(t1(v, λ), v) = F̃λ(t2(v, λ), v) = 0, ∂tF̃λ(t, v) > 0 for t < t(v) and ∂tF̃λ(t, v) <
0 for t > t(v), it follows that

∂ttẼλ(t1(v, λ), v) > 0 and ∂ttẼλ(t2(v, λ), v) < 0. (2.3)

This means that the real valued function t 7→ Ẽλ(t, v), (t > 0) achieves its unique
local minimum at t = t1(v, λ) and its global maximum at t = t2(v, λ).2

Lemma 2.2 If we put λ̂ = inf
v∈Lp(Ω)\{0}

λ(v), then λ̂ > 0.
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Proof : By Sobolev injection theorem, we have X →֒ Lq(Ω) and X →֒ Lr(Ω). Thus
there exists two positive constants c1 and c2 such that

||Λv||q ≤ c1||v||p et ||Λv||r ≤ c2||v||p.

Then (2.2) implies for every v ∈ Lp(Ω) \ {0}

λ(v) ≥
ĉ

cq1c
r(p−q)
r−p

2

> 0.

2

Consider λ ∈]0, λ̂[ and let (vn) be minimizing sequence of v 7→ Ẽλ(t1(v, λ), v) in
Lp(Ω) \ {0} (resp. of v 7→ Ẽλ(t2(v, λ), v)).
Put Vn = t1(vn, λ)vn and Wn = t2(vn, λ)vn.

Lemma 2.3 The sequences (Vn) and (Wn) verify :

(i) lim sup
n→+∞

||Vn||p < +∞ (resp. lim sup
n→+∞

||Wn||p < +∞ )

(ii) lim inf
n→+∞

||Vn||p > 0 (resp. lim inf
n→+∞

||Wn||p > 0)

Proof : (i) We know that ∂tẼλ[t1(vn, λ), vn) = 0.
Hence

||Vn||
p
p = λ||ΛVn||

q
q + ||ΛVn||

r
r. (2.4)

Suppose that there is a subsequence of (Vn), still denoted by (Vn) such that
lim

n→+∞
||Vn||p = +∞. Us r > q, there exist a constant c > 0 such that

||ΛVn||q ≤ c||ΛVn||r. Then the relation (2.4) implies that lim
n→+∞

||ΛVn||r = +∞.

The fact that 0 < q < r enables us to deduce: ||ΛVn||
q
q = on(||ΛVn||

r
r). Then

||Vn||
p
p = ||ΛVn||

r
r(1 + on(1)),

and

Eλ(Vn) = ||ΛVn||
r
r(
1

p
−

1

r
+ on(1)).

which implies that Eλ(Vn) tends to +∞ as n goes to +∞ and this is impossible.
The same arguments with a minimizing sequence (vn) of v 7→ Ẽλ(t2(v, λ), v) show
that lim sup

n→+∞
||Wn||p < +∞.

(ii) Relation (2.4) and the fact that ∂ttẼλ[t1(vn, λ), vn) > 0, implies

(p− 1)||Vn||
p
p − λ(q − 1)||ΛVn||

q
q − (r − 1)||ΛVn||

r
r > 0. (2.5)

If we combine (2.4) and (2.5), we obtain for every n ∈ N

λ(p− q)||ΛVn||
q
q + (p− r)||ΛVn||

r
r > 0.



30 M.Talbi and N.Tsouli

So

Eλ(Vn) = λ
q − p

pq
Q(Vn) +

r − p

pr
R(Vn)

≤
−1

pq
(λ(p− q)Q(Vn) + (p− r)R(vn))

< 0.

suppose that there is a subsequence of (Vn), still denoted by (Vn) such that
lim

n→+∞
||Vn||p = 0. By Sobolev injection theorem we deduce that

lim
n→+∞

||ΛVn||q = 0 and lim
n→+∞

||ΛVn||r = 0. It follows that lim
n→+∞

Eλ(Vn) = 0, i.e

inf
v∈Lp(Ω)\{0}

Ẽλ(t1(v, λ), v) = 0, which is impossible since Ẽλ(t1(vn, λ), vn) < 0 for

every n.
Let (vn) be a minimizing sequence of v 7→ Ẽλ(t2(v), v) in Lp(Ω) \ {0}. Sinse
∂tẼλ(t2(vn), vn) = 0 and ∂ttẼλ(t2(vn), vn) < 0, it follows that

{

||Wn||
p
p −λ||ΛWn||

q
q − ||ΛWn||

r
r = 0,

(p− 1) ||Wn||
p
p − λ(q − 1)||ΛWn||

q
q − (r − 1)||ΛWn||

r
r < 0.

Combining the two last inequalities and by Sobolev injection theorem there exist
a constant c′ such that for every n we have

(p− q)||Wn||
p
p < (r − q)||ΛWn||

r
r ≤ c′||Wn||

r
p.

Hence
(p− q) ≤ c′||Wn||

r−p
p .

Now, suppose that there is a subsequence of (Wn), still denoted by (Wn) such that
lim

n→+∞
||Wn||p = 0. This implies that p− q ≤ 0. which is impossible since p > q.2

Lemma 2.4 The functionals v 7→ Ẽλ(t1(v, λ), v) and v 7→ Ẽλ(t2(v, λ), v) are
bonded bellow in Lp(Ω).

Proof : Let (vn) be a minimizing sequence of the functional v 7→ Ẽλ(t1(v, λ), v).
We know that ∂tẼλ(t1(vn, λ), vn) = 0, then

[t1(vn, λ)]
p||vn||

p
p = λ[t1(vn, λ)]

q||Λvn||
q
q + [t1(vn, λ)]

r||Λvn||
r
r.

Hence

Ẽλ(t1(vn, λ), vn) = λ(
1

p
−

1

q
)[t1(vn, λ)]

q||Λvn||
q
q + (

1

p
−

1

r
)[t1(vn, λ)]

r||Λvn||
r
r.

As p < r, we conclude that

Ẽλ(t1(vn, λ), vn) ≥ λ(
1

p
−

1

q
)[t1(vn, λ)]

q||Λvn||
q
q. (2.6)
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Sobolev injection of X in Lq(Ω) and the fact that lim sup
n→+∞

||Vn||p < +∞, implies

that there exists c and k positive such that for every n in N, we have ||Vn||p < k.
and ||ΛVn||q ≤ c||Vn||p < kc. As q < p, the inequality (2.6) implies

Ẽλ(t1(vn, λ), vn) > (
1

p
−

1

q
)λkqcq.

We show by the same method that the functional v 7→ Ẽλ(t2(v, λ), v) is bonded
bellow. 2

Put
α1(λ) = inf

v∈Lp(Ω)\{0}
Ẽλ(t1(v, λ), v). (2.7)

α2(λ) = inf
v∈Lp(Ω)\{0}

Ẽλ(t2(v, λ), v). (2.8)

We have the following lemma:

Lemma 2.5 If λ ∈]0, λ̂[, then

α1(λ) = inf
v∈S,v≥0

Ẽλ(t1(v, λ), v) and α2(λ) = inf
v∈S,v≥0

Ẽλ(t2(v, λ), v),

where S is the unit sphere of Lp(Ω).

Proof : Let t > 0. If ∂tẼλ(t, v) > 0, then t ∈]t1(v, λ), t2(v, λ)[.
Since |Λv| ≤ Λ|v|, we deduce that

∂tẼλ(ti(|v|, λ), v) ≥ ∂tẼλ(ti(|v|, λ), |v|) = 0, i = 1, 2.

It follows that ]t1(|v|, λ), t2(|v|, λ)[ ⊆ ]t1(v, λ), t2(v, λ)[.
Hence, t1(|v|, λ) ≥ t1(v, λ).
Using the fact that t 7→ Ẽλ(t, |v|) is decreasing on ]0, t1(|v|, λ)], we get

Ẽλ(t1((v, λ), |v|) ≥ Ẽλ(t1(|v|, λ), |v|)

and since |Λv| ≤ Λ|v|, we get

Ẽλ(t1(v, λ), v) ≥ Ẽλ(t1(v, λ), |v|).

Hence we conclude that

Ẽλ(t1(|v|, λ), |v|) ≤ Ẽλ(t1(v, λ), v).

Since |Λv| ≤ Λ|v| and the function t 7→ Ẽλ(t, v) is creasing on [t1(v, λ), t2(v, λ)], we
obtain

Ẽλ(t2(|v|, λ), |v|) ≤ Ẽλ(t2(|v|, λ), v).

≤ Ẽλ(t2(v, λ), v).
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Finally, we have showed that for every v ∈ Lp(Ω) \ {0}

Ẽλ(ti(|v|, λ), |v|) ≤ Ẽλ(ti(v, λ), v), where i = 1, 2. (2.9)

Moreover, for every γ > 0 , we get

Ẽλ(γt,
v

γ
) = Ẽλ(t, v),

∂tẼλ(γt,
v

γ
) =

1

γ
∂tẼλ(t, v),

∂ttẼλ(γt,
v

γ
) =

1

γ2
∂ttẼλ(t, v).

It follows that
t1(v, λ) =

1

γ
t1(

v

γ
, λ), (2.10)

t2(v, λ) =
1

γ
t2(

v

γ
, λ). (2.11)

By the virtu of (2.9), (2.10) and (2.11), we conclude that

α1(λ) = inf
v∈S,v≥0

Ẽλ(t1(v, λ), v), (2.12)

α2(λ) = inf
v∈S,v≥0

Ẽλ(t2(v, λ), v), (2.13)

where S is the unit sphere of Lp(Ω). 2

Lemma 2.6 Let (vn) ⊂ S be a minimizing sequence of (2.12) (resp. of (2.13)).
Then, (Vn) := (t1(vn, λ)vn) (resp. (Wn) := (t2(vn, λ)vn)) are Palais-Smale se-
quences for the functional Eλ.

Proof : We will show this lemma only for the sequence (Vn), the proof for (Wn)
can be done in the same way.
Let λ ∈]0, λ̂[. Then lim

n→+∞
Eλ(Vn) = α1(λ).

Now we show that lim
n→+∞

E′
λ(Vn) = 0.

Notice that for every v ∈ Lp(Ω)\{0}, we have ∂tẼλ(t1(v, λ), v) = 0 and ∂ttẼλ(t1(v, λ), v) 6=
0. The implicit function theorem implies that the functional v 7→ t1(v, λ) is C1 since
Ẽλ is. Let us introduce the C1 functional f1,λ defined on S by

f1,λ(v) = Ẽλ(t1(v, λ), v) = Eλ(t1(v, λ)v).

Hence

α1(λ) = inf
v∈S

f1,λ(v) = inf
v∈S,v≥0

f1,λ(v) and lim
n→+∞

f1,λ(vn) = α1(λ).

Using the Ekeland variational principle on the complete manifold (S, || ||p) to the
functional f1,λ, we conclude that
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|f ′
1,λ(vn)(ϕ)| ≤

1

n
||ϕ||p, for every ϕ ∈ Tvn

S,

where Tvn
S is the tangent space to S at the point vn.

Moreoever, since ∂tẼλ(t1(vn, λ), vn) ≡ 0, then for every ϕ ∈ Tvn
S, one has

f ′
1,λ(vn)(ϕ) = ∂tẼλ(t1(vn, λ), vn)∂vt1(vn, λ)(ϕ)

+∂vẼλ(t1(vn, λ), vn)(ϕ)

= ∂vẼλ(t1(vn, λ), vn)(ϕ),

where ∂vt1(vn, λ) denotes the derivative of t1(., λ) with respect to its first variable
at the point (vn, λ).
Furthermore, let

P : Lp(Ω)\{0} → R× S

v 7→ (P1(v), P2(v)) = (‖ v ‖p,
v

‖ v ‖p
).

Applying Hölder’s inequality, we get for every (v, ϕ) ∈ Lp(Ω)\{0} × Lp(Ω) :

‖P ′
2(v)(ϕ)‖p ≤ 2

‖ϕ‖p
‖v‖p

.

From lemma 2.3 and by the fact that ‖Vn‖p = t(vn, λ), there exists positive constant
C such that

t1(vn, λ) ≥ C, ∀n ∈ N.

Hence for every ϕ ∈ Lp(Ω), we obtain

|E′ − λ(Vn)(ϕ)| = |∂tẼλ(P1(Vn), P2(Vn))P
′
1(Vn)(ϕ)

+∂vẼλ(P1(Vn), P2(Vn))P
′
2(Vn)(ϕ)|

= |∂vẼλ(t(vn), vn)P
′
2(Vn)(ϕ)|

= |f ′
1,λ(vn)P

′
2(Vn)(ϕ)|

≤
1

n
‖ P ′

2(Vn)(ϕ) ‖p

≤
2

n

‖ ϕ ‖p
C

We easily conclude that

lim
n→+∞

E′ − λ(Vn) = 0 in Lp′

(Ω).

2

Remark 2.1 Until now, the minimizing sequences we consider are in S and are
nonnegative.

3. Existence results

Theorem 3.1 Let 1 < q < p < r < p∗2 and λ ∈]0, λ̂[. Then the problem (Pλ) has
at least two positive solutions.
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Proof : We will use the notations of the previous lemmas.
Since the sequences (Vn) and (Wn) are Palais-Smale for the functional Eλ, it suf-
fices to show that Eλ (0 < λ < λ̂) satisfy Palais-Smale condition.
By lemma 2.3, we deduce that (Vn) is bonded in Lp(Ω). Passing if necessary to a
subsequence, we get







Vn ⇀ V1 in Lp(Ω),
ΛVn ⇀ ΛV1 in X,
ΛVn → ΛV1 in Lr(Ω), (and in Lq(Ω)).

(3.1)

On the other hand we have,

〈Np(Vn), Vn − V1〉 = 〈 E′
λ(Vn), Vn − V1〉+ λ

∫

Ω

Nq(ΛVn)(ΛVn − ΛV1)dx

+

∫

Ω

Nr(ΛVn)(ΛVn − ΛV )dx.

Moreover, E′
λ(Vn) → 0, Nq(ΛVn) → Nq(ΛV1) and Nr(ΛVn) → Nr(ΛV1).

Then 〈Np(Vn), Vn − V1〉 → 0.
The fact that Np is (S+) type implies that Vn → V1 dans Lp(Ω).
We know that for any minimizing sequence (vn) of (2.12), there is a subsequence
still denoted by (vn) such that Vn = t1(vn, λ)vn and t1(vn, λ) = ||Vn||p. Hence

t1(vn, λ) → ||V1||p = t1,

which implies that

vn → V1/t1 = v1, and t1 = t1(v1, λ),

where v1 ∈ S.
In the same way, for any minimizing sequence (vn) ⊂ S of (2.13), passing if neces-
sary to a subsequence, there is t2 ∈]0,+∞[ such that

{

t2(vn, λ)vn → t2 in R,
vn → v2 = V2/t2,

where V2 is the limit of the sequence (Wn) := (t2(vn, λ)vn) in Lp(Ω) and t2 =
||V2||p = t2(v2, λ).

At this stage, it is easy to see that V1 6= V2. Indeed, since ∂ttẼλ(t1(v1, λ), v1) > 0
and ∂ttẼλ(t2(v2, λ), v2) < 0, it follows that ∂ttEλ(t1, V1/t1) > 0 and
∂ttEλ(t2, V2/t2) < 0. This achieves the proof. 2

In the sequel the solutions V1 and V2 of (P ′
λ), for λ ∈]0, λ̂[, will be denoted by

V1,λ and V2,λ. Also, t1,λ, t2,λ, v1,λ and v2,λ will stand for t1(v1, λ), t2(v2, λ), v1 and
v2 respectively.
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Theorem 3.2 Let 1 < q < p < r < p∗2. Then

(i) Eλ(V1,λ) < 0 for λ ∈]0, λ̂[,

(ii)

{

Eλ(V2,λ) > 0 for λ ∈]0, λ0[,

Eλ(V2,λ) < 0 for λ ∈]λ0, λ̂[,

where
λ0 =

q

r
(
r

p
)

r−q

r−p λ̂.

Proof : (i) Let us recall that ∂tẼλ(t1,λ, v1,λ) = 0 and ∂ttẼλ(t1,λ, v1,λ) > 0. Then

{

P (V1,λ)− λQ(V1,λ)−R(V1,λ) = 0,
(p− 1)P (V1,λ)− λ(q − 1)Q(V1,λ)− (r −1)R(V1,λ) > 0.

Using the fact that 1 < q < p < r, we get

λ(p− q)Q(V1,λ) + (p− r)R(V1,λ) > 0.

Hence
Eλ(V1,λ) = λ

q − p

pq
Q(V1,λ) +

r − p

pr
R(V1,λ)

≤
−1

pq
(λ(p− q)Q(V1,λ) + (p− r)R(v1,λ))

< 0.

(ii) Let v be an arbitrary element of Lp(Ω) \ {0} and let us write

Ẽλ(t, v) = tqG̃λ(t, v), where G̃λ(t, v) =
tp−q

p
P (v)−

λ

q
Q(v)−

tr−q

r
R(v).

It follows that
∂tẼλ(t, v) = qtq−1G̃λ(t, v) + tq∂G̃λ(t, v),

with
∂tG̃λ(t, v) = tp−q−1(

p− q

p
P (v)−

r − q

r
tr−pR(v)).

It is clear that the real valued function t → G̃λ(t, v) is increasing on ]0, t0(v)[,
decreasing on ]t0(v),+∞[ and attains its unique maximum for t = t0(v), where

t0(v) = (
r

p
)

1
r−p t(v), (3.2)

and t(v) is defined by the relation (2.1).
On the other hand, a direct computation gives

G̃λ(t0(v), v) =
1

r
(
r

p
)

r−q

r−p
r − p

p− q
(
p− q

r − q

P (v)

R(v)
)

r−q

r−pR(v)− λ
Q(v)

q
.
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Similarly, G̃λ(t0(v), v) > 0 (resp. G̃λ(t0(v), v) < 0) if λ < λ0(v) (resp. λ >
λ0(v)) and
G̃λ0(v)(t0(v), v) = 0, where

λ0(v) =
q

r
(
r

p
)

r−q

r−pλ(v), (3.3)

with λ(v) given by (2.2). Thus, we get






Ẽλ(t0(v), v) > 0 if λ < λ0(v),

Ẽλ(t0(v), v) = 0 if λ = λ0(v),

Ẽλ(t0(v), v) < 0 if λ > λ0(v).

(3.4)

First, since the function
]0, 1[ → R

t →
ln t

1− t

is increasing, then for every real numbers x and y such that 0 < x < y, one has

ln(
1

x
) >

1− x

1− y
ln(

1

y
) = ln(

1

y
)

1− x

1− y ,

and consequently
0 < x(1/y)

1−x
1−y < 1.

In the particular case x =
q

r
and y =

p

r
, we get

0 <
q

r
(
r

p
)

r−q

r−p < 1,

and therfore 0 < λ0(v) < λ(v).
Moreover, for every v ∈ Lp(Ω)\{0}, one has G̃λ0(v)(t, v) < 0 for t ∈]0,+∞[\{t0(v)}

and G̃λ0(v)(t0(v), v) = 0. Hence, the real valued function t → Ẽλ0(v)(t, v), (t > 0),
attains its unique maximum at t = t0(v) and we obtain the following interesting
identity

t2(v, λ0(v)) = t0(v). (3.5)

On the other hand, let
λ0 = inf

v∈Lp(Ω)\{0}
λ0(v). (3.6)

(2.2) et (3.2) implies that

λ0(v) =
p

q
(
r

p
)

r−q

r−p ĉ
P

r−q

r−p (v)

Q(v)R
p−q

r−p (v)
.

Let us put
M = {v ∈ Lp(Ω), Q(v)R

p−q

r−p (v) = 1}.
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It is clair that M is weakly closed.
Moreover the functional v 7→ P

r−q

r−p (v) is weakly lower semi-continuous and coercive
on M . Thus this functional attaints its minimum on M . The homogeneities of
v 7→ P

r−q

r−p (v) and v 7→ Q(v)R
p−q

r−p (v) enables us to conclude that there is v∗ ∈ S
such that

inf
v∈M

λ0(v) = inf
v∈Lp(Ω)\{0}

λ0(v) = inf
v∈S

λ0(v) = λ0(v
∗) = λ0.

Now, let λ ∈]0, λ0[, Then, for every v ∈ Lp(Ω) \ {0} one has λ < λ0(v) and
consequently, Ẽλ(t0(v), v) > 0 holds from (3.4), . Then the function t 7→ Ẽλ(t, v),
(t > 0) attains its maximum at t2(v, λ) such that Ẽλ(t2(v, λ), v) > 0 for every
v ∈ Lp(Ω) \ {0}. In particular, we have Ẽλ(t2(v2,λ, λ), v2,λ) > 0, i.e. Eλ(V2,λ) > 0.
If λ = λ0, then

Eλ0
(V2,λ0

) = Ẽλ0
(t2(v2,λ0

), v2,λ0
)

= inf
v∈S

Ẽλ0
(t2(v, λ0), v)

≤ Ẽλ0
(t2(v

∗, λ0(v
∗)), v∗)

= Ẽλ0(v∗)(t0(v
∗), v∗)

= 0,

which implies that Eλ0
(V2,λ0

) ≤ 0. In addition, it is known from (3.4) that Ẽλ0
(t0(v), v) ≥

0, for every v ∈ Lp(Ω) \ {0}. Then, since Ẽλ0
(t2(v2,λ0

, λ0), v2,λ0
) is a global maxi-

mum of the function t 7→ Ẽλ0
(t, v2,λ0

), (t > 0), we have

Ẽλ0
(t2(v2,λ0

, λ0), v2,λ0
) ≥ Ẽλ0

(t0(v2,λ0
), v2,λ0

) ≥ 0.

We conclude that

Eλ0
(V2,λ0

) = Ẽλ0
(t2(v2,λ0

, λ0), v2,λ0
) = 0.

Finally, suppose that λ0 < λ < λ̂.
We know that for every (t, v) ∈]0,+∞[×Lp(Ω) \ {0}, the real valued function
λ 7→ Ẽλ(t, v) is decreasing on [λ0, λ̂], hence we deduce

Ẽλ(t2(v2,λ, λ), v2,λ) = inf
v∈S

Ẽλ(t2(v, λ), v)

≤ Ẽλ(t2(v
∗, λ), v∗)

< Ẽλ0
(t2(v, λ), v).

Moreover, the real valued function t 7→ Ẽλ0
(t, v∗), (t > 0), attains its unique

maximum for t = t0(v
∗).Then

Ẽλ0
(t2(v

∗, λ), v∗) ≤ Ẽλ0
(t0(v

∗), v∗)

= Ẽλ0(v∗)(t0(v
∗), v∗)

= 0.

Hence Ẽλ(t2(v2,λ, λ), v2,λ) < 0, which achieves this proof. 2

Theorem 3.3 if v∗ is a solution of (3.6), then t0(v
∗)v∗ is a solution of (P ′

λ0
).
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Proof : Let v∗ be a solution of (3.6), then λ0 = λ0(v
∗) and for every h ∈ Lp(Ω), we

have

E′
λ0
(t0(v

∗)v∗)(h) =
1

p
tp−1
0 (v∗)〈P ′(v∗), h〉 −

λ0

q
tq−1
0 (v∗)〈Q′(v∗), h〉

−
1

r
tr−1
0 (v∗)〈R′(v∗), h〉

=
P (v∗)(t0(v

∗))p−1

p
(
〈P ′(v∗), h〉

P (v∗)

−
pλ0

q
tq−p
0

〈Q′(v∗), h〉

P (v∗)
−

p

r
tr−p
0

〈R′(v∗), h〉

P (v∗)
).

By the virtu of relations (2.1), (2.2), (3.2) and (3.3), a direct computation gives
for every h ∈ Lp(Ω)

pλ0

q
tq−p
0

〈Q′(v∗), h〉

P (v∗)
=

r − p

r − q

〈Q′(v∗), h〉

Q(v∗)
,

and
p

r
tr−p
0

〈R′(v∗), h〉

P (v∗)
) =

p− q

r − q

〈R′∗(v∗), h〉

R(v∗)
.

Then

E′
λ0
(t0(v

∗)v∗)(h) = K(
r − q

r − p

〈P ′(v∗), h〉

P (v∗)
−

〈Q′(v∗), h〉

Q(v∗)
−

p− q

r − p

〈R′(v∗), h〉

R(v∗)
),

where

K =
r − p

r − q

P (v∗)

p
[t0(v

∗)]p−1.

In the other hand, the relations (2.2) and (3.3) implies that for every h ∈ Lp(Ω)

〈λ′
0(v

∗), h〉 = λ0(v
∗)(

r − q

r − p

〈P ′(v∗), h〉

P (v∗)
−

〈Q′(v∗), h〉

Q(v∗)
−

p− q

r − p

〈R′(v∗), h〉

R(v∗)
).

Since 〈λ′
0(v

∗), h〉 = 0 for every h ∈ Lp(Ω), we deduce that

〈E′
λ0
(t0(v

∗)v∗), h〉 =
K

λ0
〈λ′

0(v
∗), h〉 = 0,

for every h ∈ Lp(Ω).
Which implies that t0(v

∗)v∗ is a solution of (P ′
λ0
).

Remark 3.1 It is very interesting to notice that in the case of homogeneous
Dirichlet boundary condition, we have

lim
q→p

λ̂ = inf
v∈Lp(Ω)\{0}

∫

Ω
|v(x)|pdx

∫

Ω
|Λv(x)|pdx

,

Hence, in the case where p = q, λ̂ is the first eigenvalue of the problem (P ′
λ),

i.e. the problem (P ′
λ) has positive solutions for λ ∈]0, λ̂] and has no positive

solution for λ > λ̂.
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