Positive solutions with changing sign energy to a nonhomogeneous elliptic problem of fourth order

M.Talbi and N.Tsouli

ABSTRACT: In this paper, we study the existence for two positive solutions to a nonhomogeneous elliptic equation of fourth order with a parameter λ such that $0<\lambda<\hat{\lambda}$. The first solution has a negative energy while the energy of the second one is positive for $0<\lambda<\lambda_{0}$ and negative for $\lambda_{0}<\lambda<\hat{\lambda}$. The values λ_{0} and $\hat{\lambda}$ are given under variational form and we show that every corresponding critical point is solution of the nonlinear elliptic problem (with a suitable multiplicative term).

Key Words: : Ekeland's principle, p-Laplacian operator, Palais-Smale condition

Contents

1 Introduction
2 Preliminary results

3 Existence results

1. Introduction

We consider the problem with Navier boundary conditions

$$
\left\{\begin{array}{rlrc}
\Delta_{p}^{2} u & =\lambda|u|^{q-2} u+|u|^{r-2} u & & \text { in } \\
u & =\Delta u=0 & & \text { on } \\
u & \partial \Omega
\end{array}\right.
$$

Here Ω is a smooth domain in $\mathbb{R}^{N}(N \geq 1), \Delta_{p}^{2}$ is the p-biharmonic operator defined by $\Delta_{p}^{2} u=\Delta\left(|\Delta u|^{p-2} \Delta u\right), \lambda$ is a positive parameter, p, q and r are reals such that

$$
1<q<p<r<p_{2}^{*}, \text { where } \begin{cases}p_{2}^{*}=\frac{N p}{N-2 p} & \text { if } p<N / 2 \\ p_{2}^{*}=+\infty & \text { if } p \geq N / 2\end{cases}
$$

Such kind of problems with combined concave and convex nonlinearities were studied recently by several authors $[2,3,4,5,6,7,9,10,11,17]$ in the case of operator Δ_{p}. Our main results here can be summarized as follows:
Let us put $X=W_{0}^{2, p}(\Omega) \cap W^{2, p}(\Omega)$. We find two characteristic values λ_{0} and $\hat{\lambda}$ $\left(\lambda_{0}<\hat{\lambda}\right)$ under variational form, i.e.

$$
\begin{equation*}
\lambda_{0}=C_{0}(p, q, r) \inf _{u \in X \backslash\{0\}} F(u) \quad \text { and } \quad \hat{\lambda}=\hat{C}(p, q, r) \inf _{u \in X \backslash\{0\}} F(u), \tag{V}
\end{equation*}
$$

such that two branches of positive solutions to $\left(P_{\lambda}\right)$ exist for $\left.\lambda \in\right] 0, \hat{\lambda}[$ (the functional F will be given below). Moreover, the energy of the first positive solution is negative for $\lambda \in] 0, \hat{\lambda}\left[\right.$ while the energy of the second positive solution changes sign at λ_{0}, i.e. it is positive for $\lambda \in] 0, \lambda_{0}[$ and negative for $\lambda \in] \lambda_{0}, \hat{\lambda}[$. Notice that these two positive solutions are found simultaneously and that our approach does not use the mountain-pass lemma.
On the other hand, we show that every solution of (V) is a solution of the problem $\left(P_{\lambda}\right)$ (with a suitable multiplicative term). This second point lets expect that the first nonlinear eigenvalue ζ of (V), i.e.

$$
\zeta=\sup \left\{\lambda>0:\left(P_{\lambda}\right) \quad \text { has a nonnegative solution }\right\}
$$

may satisfy a variational problem similar to (V) (see [4] for $p=2$). Let us precise that $\hat{\lambda}$ coincides with ζ when $q \rightarrow p$ and that $\hat{\lambda}$ constitutes a good minoration of ζ in the general case $1<q<p$.

We consider the transformation of Poisson problem used by P.Drábek and M.Ôtani (cf. [12]):

We recall some properties of the Dirichlet problem for the Poisson equation:

$$
\left\{\begin{array}{l}
-\Delta u=f \quad \text { in } \Omega \tag{1.1}\\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

It is well known that (1.1) is uniquely solvable in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ for all $f \in$ $L^{p}(\Omega)$ and for any $\left.p \in\right] 1,+\infty[$.
We denote by :
$X=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$,
$\|u\|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$ the norm in $L^{p}(\Omega)$,
$\|u\|_{2, p}=\left(\|\Delta u\|_{p}^{p}+\|u\|_{p}^{p}\right)^{1 / p}$ the norm in X,
$\|u\|_{\infty}$ the norm in $L^{\infty}(\Omega)$,
and $<.,$.$\rangle is the duality bracket between L^{p}(\Omega)$ and $L^{p^{\prime}}(\Omega)$, where $p^{\prime}=p /(p-1)$.
Denote by Λ the inverse operator of $-\Delta: X \rightarrow L^{p}(\Omega)$.
The following lemma gives us some properties of the operator Λ (cf. [12], [16])
Lemma 1.1 (i) (Continuity): There exists a constant $c_{p}>0$ such that

$$
\|\Lambda f\|_{2, p} \leq c_{p}\|f\|_{p}
$$

holds for all $p \in] 1,+\infty\left[\right.$ and $f \in L^{p}(\Omega)$.
(ii) (Continuity) Given $k \in \mathbb{N}^{*}$, there exists a constant $c_{p, k}>0$ such that

$$
\|\Lambda f\|_{W^{k+2, p}} \leq c_{p, k}\|f\|_{W^{k, p}}
$$

holds for all $p \in] 1,+\infty\left[\right.$ and $f \in W^{k, p}(\Omega)$.
(iii) (Symmetry) The following identity:

$$
\int_{\Omega} \Lambda u \cdot v d x=\int_{\Omega} u \cdot \Lambda v d x
$$

holds for all $u \in L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$ with $\left.p \in\right] 1,+\infty[$.
(iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\left.\alpha \in\right] 0,1[$; moreover, there exists $c_{\alpha}>0$ such that

$$
\|\Lambda f\|_{C^{1, \alpha}} \leq c_{\alpha}\|f\|_{\infty}
$$

(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\bar{\Omega})$ and $f \geq 0$ then $w=\Lambda f \in C^{1, \alpha}(\bar{\Omega})$, for all $\left.\alpha \in\right] 0,1\left[\right.$ and w satisfies: $w>0$ in $\Omega, \frac{\partial w}{\partial n}<0$ on $\partial \Omega$.
(vi) (Order preserving property) Given $f, g \in L^{p}(\Omega)$ if $f \leq g$ in Ω, then $\Lambda f<\Lambda g$ in Ω.

Remark $1.1(\forall u \in X)\left(\forall v \in L^{p}(\Omega)\right) \quad v=-\Delta u \Longleftrightarrow u=\Lambda v$.
Let us denote N_{p} the Nemytskii operator defined by

$$
\begin{cases}N_{p}(v)(x)=|v(x)|^{p-2} v(x) & \text { if } v(x) \neq 0 \\ N_{p}(v)(x)=0 & \text { if } v(x)=0\end{cases}
$$

and we have $\forall v \in L^{p}(\Omega), \forall w \in L^{p^{\prime}}(\Omega)$:

$$
N_{p}(v)=w \Longleftrightarrow v=N_{p^{\prime}}(w)
$$

We define the functionals $P, Q, R: L^{p}(\Omega) \rightarrow \mathbb{R}$ as follows:

$$
P(v)=\|v\|_{p}^{p}, \quad Q(v)=\|\Lambda v\|_{q}^{q} \quad \text { and } \quad R(v)=\|\Lambda v\|_{r}^{r} .
$$

The operator Λ enables us to transform problem $\left(P_{\lambda}\right)$ to an other problem which we will study in the space $L^{p}(\Omega)$.

Definition 1.1 We say that $u \in X \backslash\{o\}$ is a solution of problem $\left(P_{\lambda}\right)$, if
$v=-\Delta u$ is a solution of the following problem

$$
\left(P_{\lambda}^{\prime}\right) \quad\left\{\begin{array}{l}
\text { Find } v \in L^{p}(\Omega) \backslash\{o\}, \text { such that } \\
N_{p}(v)=\lambda \Lambda\left(N_{q}(\Lambda v)\right)+\Lambda\left(N_{r}(\Lambda v)\right) \quad \text { in } \quad L^{p^{\prime}}(\Omega)
\end{array}\right.
$$

For solutions of $\left(P_{\lambda}\right)$ we understand critical points of the associated EulerLagrange functional $E_{\lambda} \in \mathcal{C}^{1}\left(L^{p}(\Omega)\right)$, given by

$$
E_{\lambda}(v)=\frac{1}{p} P(v)-\lambda \frac{1}{q} Q(v)-\frac{1}{r} R(v) .
$$

As in (cf. $[13,19]$), we introduce the modified Euler-Lagrange functional defined on $\mathbb{R} \times L^{p}(\Omega)$ by $\tilde{E}_{\lambda}(t, v)=E-\lambda(t v)$. If v is an arbitrary element of $L^{p}(\Omega), \partial_{t} \tilde{E}_{\lambda}(., v)$ (resp. $\partial_{t t} \tilde{E}_{\lambda}(., v)$)are the first (resp. second) derivative of the real valued function: $t \mapsto \tilde{E}_{\lambda}(t, v)$.

2. Preliminary results

Since the functional \tilde{E}_{λ} is even in t and that we are interested by the positive solutions, we limit our study for $t>0$.

Lemma 2.1 For every $v \in L^{p}(\Omega) \backslash\{0\}$, There is a unique $\lambda(v)>0$ such that the real valued function $t \mapsto \partial \tilde{E}_{\lambda}(t, v)$ has exactly two positive zeros (resp. one positive zero) if $0<\lambda<\lambda(v)$ (resp. $\lambda=\lambda(v)$). This function has no zero for $\lambda>\lambda(v)$.
Proof: Let v be an arbitrary element of $L^{p}(\Omega) \backslash\{0\}$ and let us write

$$
\partial_{t} \tilde{E}_{\lambda}(t, v)=t^{q-1} \tilde{F}_{\lambda}(t, v), \quad \text { where } \tilde{F}_{\lambda}(t, v)=t^{p-q} P(v)-\lambda Q(v)-t^{r-q} R(v)
$$

Then

$$
\partial_{t t} \tilde{E}_{\lambda}(t, v)=(q-1) t^{q-2} \tilde{F}_{\lambda}(t, v)+t^{q-1} \partial_{t} \tilde{F}_{\lambda}(t, v)
$$

holds true, with

$$
\partial_{t} \tilde{F}_{\lambda}(t, v)=t^{p-q-1}\left[(p-q) P(v)-(r-q) t^{r-p} R(v)\right] .
$$

It is clair that the real valued function $t \mapsto \tilde{F}_{\lambda}(t, v)$ is increasing on $] 0, t(v)[$, decreasing on $] t(v),+\infty[$ and attains its unique maximum for $t=t(v)$, where

$$
\begin{equation*}
t(v)=\left(\frac{p-q}{r-q} \frac{P(v)}{R(v)}\right)^{\frac{1}{r-p}} . \tag{2.1}
\end{equation*}
$$

Thus, if $\tilde{F}_{\lambda}(t(v), v)>0$ (resp. $\tilde{F}_{\lambda}(t(v), v)=0$), the function $t \mapsto \tilde{F}_{\lambda}(t, v)$ has two positive zeros (resp. one positive zero) and has no zero if $\tilde{F}_{\lambda}(t(v), v)<0$. On the other hand, a direct computation gives

$$
\tilde{F}_{\lambda}(t(v), v)=\frac{r-p}{p-q}\left(\frac{p-q}{r-q} \frac{P(v)}{R(v)}\right)^{\frac{r-q}{r-p}} R(v)-\lambda Q(v) .
$$

We deduce that $\tilde{F}_{\lambda}(t(v), v)>0\left(\right.$ resp. $\left.\tilde{F}_{\lambda}(t(v), v)<0\right)$ for $\lambda<\lambda(v)$ (resp. $\lambda>$ $\lambda(v))$ and $\tilde{F}_{\lambda(v)}(t(v), v)=0$, where

$$
\begin{equation*}
\lambda(v)=\hat{c} \frac{P^{\frac{r-q}{r-p}}(v)}{Q(v) R^{\frac{p-q}{r-p}}(v)} \tag{2.2}
\end{equation*}
$$

with

$$
\hat{c}=\frac{r-p}{p-q}\left(\frac{p-q}{r-q}\right)^{\frac{r-q}{r-p}} .
$$

Hence, if $\lambda \in] 0, \lambda(v)\left[\right.$, the real valued function $t \mapsto \partial_{t} \tilde{E}_{\lambda}(t, v)$ has two positive zeros, denoted by $t_{1}(v, \lambda)$ and $t_{2}(v, \lambda)$, verifying $0<t_{1}(v, \lambda)<t(v)<t_{2}(v, \lambda)$.
Since $\tilde{F}_{\lambda}\left(t_{1}(v, \lambda), v\right)=\tilde{F}_{\lambda}\left(t_{2}(v, \lambda), v\right)=0, \partial_{t} \tilde{F}_{\lambda}(t, v)>0$ for $t<t(v)$ and $\partial_{t} \tilde{F}_{\lambda}(t, v)<$ 0 for $t>t(v)$, it follows that

$$
\begin{equation*}
\partial_{t t} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)>0 \quad \text { and } \quad \partial_{t t} \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)<0 \tag{2.3}
\end{equation*}
$$

This means that the real valued function $t \mapsto \tilde{E}_{\lambda}(t, v),(t>0)$ achieves its unique local minimum at $t=t_{1}(v, \lambda)$ and its global maximum at $t=t_{2}(v, \lambda)$
Lemma 2.2 If we put $\hat{\lambda}=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \lambda(v)$, then $\hat{\lambda}>0$.

Proof: By Sobolev injection theorem, we have $X \hookrightarrow L^{q}(\Omega)$ and $X \hookrightarrow L^{r}(\Omega)$. Thus there exists two positive constants c_{1} and c_{2} such that

$$
\|\Lambda v\|_{q} \leq c_{1}\|v\|_{p} \quad \text { et } \quad\|\Lambda v\|_{r} \leq c_{2}\|v\|_{p}
$$

Then (2.2) implies for every $v \in L^{p}(\Omega) \backslash\{0\}$

$$
\lambda(v) \geq \frac{\hat{c}}{c_{1}^{q} c_{2}^{\frac{r(p-q)}{r-p}}}>0
$$

Consider $\lambda \in] 0, \hat{\lambda}\left[\right.$ and let $\left(v_{n}\right)$ be minimizing sequence of $v \mapsto \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)$ in $L^{p}(\Omega) \backslash\{0\}$ (resp. of $v \mapsto \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)$).
Put $V_{n}=t_{1}\left(v_{n}, \lambda\right) v_{n}$ and $W_{n}=t_{2}\left(v_{n}, \lambda\right) v_{n}$.
Lemma 2.3 The sequences $\left(V_{n}\right)$ and $\left(W_{n}\right)$ verify:

$$
\text { (i) } \left.\quad \limsup _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}<+\infty \quad \text { (resp. } \limsup _{n \rightarrow+\infty}\left\|W_{n}\right\|_{p}<+\infty\right)
$$

(ii) $\quad \liminf _{n \rightarrow+\infty}^{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}>0 \quad$ (resp. $\left.\operatorname{limininf}_{n \rightarrow+\infty}^{n \rightarrow+\infty}\left\|W_{n}\right\|_{p}>0\right)$

Proof: (i) We know that $\partial_{t} \tilde{E}_{\lambda}\left[t_{1}\left(v_{n}, \lambda\right), v_{n}\right)=0$.
Hence

$$
\begin{equation*}
\left\|V_{n}\right\|_{p}^{p}=\lambda\left\|\Lambda V_{n}\right\|_{q}^{q}+\left\|\Lambda V_{n}\right\|_{r}^{r} \tag{2.4}
\end{equation*}
$$

Suppose that there is a subsequence of $\left(V_{n}\right)$, still denoted by $\left(V_{n}\right)$ such that $\lim _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}=+\infty$. Us $r>q$, there exist a constant $c>0$ such that
$\left\|\Lambda V_{n}\right\|_{q} \leq c\left\|\Lambda V_{n}\right\|_{r}$. Then the relation (2.4) implies that $\lim _{n \rightarrow+\infty}\left\|\Lambda V_{n}\right\|_{r}=+\infty$. The fact that $0<q<r$ enables us to deduce: $\left\|\Lambda V_{n}\right\|_{q}^{q}=o_{n}\left(\left\|\Lambda V_{n}\right\|_{r}^{r}\right)$. Then

$$
\left\|V_{n}\right\|_{p}^{p}=\left\|\Lambda V_{n}\right\|_{r}^{r}\left(1+o_{n}(1)\right),
$$

and

$$
E_{\lambda}\left(V_{n}\right)=\left\|\Lambda V_{n}\right\|_{r}^{r}\left(\frac{1}{p}-\frac{1}{r}+o_{n}(1)\right)
$$

which implies that $E_{\lambda}\left(V_{n}\right)$ tends to $+\infty$ as n goes to $+\infty$ and this is impossible. The same arguments with a minimizing sequence $\left(v_{n}\right)$ of $v \mapsto \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)$ show that $\limsup _{n \rightarrow+\infty}\left\|W_{n}\right\|_{p}<+\infty$.
(ii) Relation (2.4) and the fact that $\partial_{t t} \tilde{E}_{\lambda}\left[t_{1}\left(v_{n}, \lambda\right), v_{n}\right)>0$, implies

$$
\begin{equation*}
(p-1)\left\|V_{n}\right\|_{p}^{p}-\lambda(q-1)\left\|\Lambda V_{n}\right\|_{q}^{q}-(r-1)\left\|\Lambda V_{n}\right\|_{r}^{r}>0 \tag{2.5}
\end{equation*}
$$

If we combine (2.4) and (2.5), we obtain for every $n \in \mathbb{N}$

$$
\lambda(p-q)\left\|\Lambda V_{n}\right\|_{q}^{q}+(p-r)\left\|\Lambda V_{n}\right\|_{r}^{r}>0
$$

So

$$
\begin{aligned}
E_{\lambda}\left(V_{n}\right) & =\lambda \frac{q-p}{p q} Q\left(V_{n}\right)+\frac{r-p}{p r} R\left(V_{n}\right) \\
& \leq \frac{-1}{p q}\left(\lambda(p-q) Q\left(V_{n}\right)+(p-r) R\left(v_{n}\right)\right) \\
& <0
\end{aligned}
$$

suppose that there is a subsequence of $\left(V_{n}\right)$, still denoted by $\left(V_{n}\right)$ such that $\lim _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}=0$. By Sobolev injection theorem we deduce that $\lim _{n \rightarrow+\infty}\left\|\Lambda V_{n}\right\|_{q}=0$ and $\lim _{n \rightarrow+\infty}\left\|\Lambda V_{n}\right\|_{r}=0$. It follows that $\lim _{n \rightarrow+\infty} E_{\lambda}\left(V_{n}\right)=0$, i.e $\inf _{L^{p}(\Omega) \backslash\{0\}} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)=0$, which is impossible since $\tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)<0$ for $v \in L^{p}(\Omega) \backslash\{0\}$ every n.
Let $\left(v_{n}\right)$ be a minimizing sequence of $v \mapsto \tilde{E}_{\lambda}\left(t_{2}(v), v\right)$ in $L^{p}(\Omega) \backslash\{0\}$. Sinse $\partial_{t} \tilde{E}_{\lambda}\left(t_{2}\left(v_{n}\right), v_{n}\right)=0$ and $\partial_{t t} \tilde{E}_{\lambda}\left(t_{2}\left(v_{n}\right), v_{n}\right)<0$, it follows that

$$
\begin{cases}\left\|W_{n}\right\|_{p}^{p} & -\lambda\left\|\Lambda W_{n}\right\|_{q}^{q}-\left\|\Lambda W_{n}\right\|_{r}^{r}=0 \\ (p-1) & \left\|W_{n}\right\|_{p}^{p}-\lambda(q-1)\left\|\Lambda W_{n}\right\|_{q}^{q}-(r-1)\left\|\Lambda W_{n}\right\|_{r}^{r}<0\end{cases}
$$

Combining the two last inequalities and by Sobolev injection theorem there exist a constant c^{\prime} such that for every n we have

$$
(p-q)\left\|W_{n}\right\|_{p}^{p}<(r-q)\left\|\Lambda W_{n}\right\|_{r}^{r} \leq c^{\prime}\left\|W_{n}\right\|_{p}^{r}
$$

Hence

$$
(p-q) \leq c^{\prime}\left\|W_{n}\right\|_{p}^{r-p}
$$

Now, suppose that there is a subsequence of $\left(W_{n}\right)$, still denoted by $\left(W_{n}\right)$ such that $\lim _{n \rightarrow+\infty}\left\|W_{n}\right\|_{p}=0$. This implies that $p-q \leq 0$. which is impossible since $p>q$.

Lemma 2.4 The functionals $v \mapsto \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)$ and $v \mapsto \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)$ are bonded bellow in $L^{p}(\Omega)$.

Proof: Let $\left(v_{n}\right)$ be a minimizing sequence of the functional $v \mapsto \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)$. We know that $\partial_{t} \tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)=0$, then

$$
\left[t_{1}\left(v_{n}, \lambda\right)\right]^{p}\left\|v_{n}\right\|_{p}^{p}=\lambda\left[t_{1}\left(v_{n}, \lambda\right)\right]^{q}\left\|\Lambda v_{n}\right\|_{q}^{q}+\left[t_{1}\left(v_{n}, \lambda\right)\right]^{r}\left\|\Lambda v_{n}\right\|_{r}^{r}
$$

Hence

$$
\tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)=\lambda\left(\frac{1}{p}-\frac{1}{q}\right)\left[t_{1}\left(v_{n}, \lambda\right)\right]^{q}\left\|\Lambda v_{n}\right\|_{q}^{q}+\left(\frac{1}{p}-\frac{1}{r}\right)\left[t_{1}\left(v_{n}, \lambda\right)\right]^{r}\left\|\Lambda v_{n}\right\|_{r}^{r}
$$

As $p<r$, we conclude that

$$
\begin{equation*}
\tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right) \geq \lambda\left(\frac{1}{p}-\frac{1}{q}\right)\left[t_{1}\left(v_{n}, \lambda\right)\right]^{q}\left\|\Lambda v_{n}\right\|_{q}^{q} . \tag{2.6}
\end{equation*}
$$

Sobolev injection of X in $L^{q}(\Omega)$ and the fact that $\limsup _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}<+\infty$, implies that there exists c and k positive such that for every n in \mathbb{N}, we have $\left\|V_{n}\right\|_{p}<k$. and $\left\|\Lambda V_{n}\right\|_{q} \leq c\left\|V_{n}\right\|_{p}<k c$. As $q<p$, the inequality (2.6) implies

$$
\tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)>\left(\frac{1}{p}-\frac{1}{q}\right) \lambda k^{q} c^{q}
$$

We show by the same method that the functional $v \mapsto \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)$ is bonded bellow.
Put

$$
\begin{align*}
& \alpha_{1}(\lambda)=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right) . \tag{2.7}\\
& \alpha_{2}(\lambda)=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right) . \tag{2.8}
\end{align*}
$$

We have the following lemma:
Lemma 2.5 If $\lambda \in] 0, \hat{\lambda}[$, then

$$
\alpha_{1}(\lambda)=\inf _{v \in S, v \geq 0} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right) \quad \text { and } \quad \alpha_{2}(\lambda)=\inf _{v \in S, v \geq 0} \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)
$$

where S is the unit sphere of $L^{p}(\Omega)$.
Proof: Let $t>0$. If $\partial_{t} \tilde{E}_{\lambda}(t, v)>0$, then $\left.t \in\right] t_{1}(v, \lambda), t_{2}(v, \lambda)[$.
Since $|\Lambda v| \leq \Lambda|v|$, we deduce that

$$
\partial_{t} \tilde{E}_{\lambda}\left(t_{i}(|v|, \lambda), v\right) \geq \partial_{t} \tilde{E}_{\lambda}\left(t_{i}(|v|, \lambda),|v|\right)=0, \quad i=1,2
$$

It follows that $] t_{1}(|v|, \lambda), t_{2}(|v|, \lambda)[\subseteq] t_{1}(v, \lambda), t_{2}(v, \lambda)[$.
Hence, $t_{1}(|v|, \lambda) \geq t_{1}(v, \lambda)$.
Using the fact that $t \mapsto \tilde{E}_{\lambda}(t,|v|)$ is decreasing on $\left.] 0, t_{1}(|v|, \lambda)\right]$, we get

$$
\tilde{E}_{\lambda}\left(t_{1}((v, \lambda),|v|) \geq \tilde{E}_{\lambda}\left(t_{1}(|v|, \lambda),|v|\right)\right.
$$

and since $|\Lambda v| \leq \Lambda|v|$, we get

$$
\tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right) \geq \tilde{E}_{\lambda}\left(t_{1}(v, \lambda),|v|\right)
$$

Hence we conclude that

$$
\tilde{E}_{\lambda}\left(t_{1}(|v|, \lambda),|v|\right) \leq \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)
$$

Since $|\Lambda v| \leq \Lambda|v|$ and the function $t \mapsto \tilde{E}_{\lambda}(t, v)$ is creasing on $\left[t_{1}(v, \lambda), t_{2}(v, \lambda)\right]$, we obtain

$$
\begin{aligned}
\tilde{E}_{\lambda}\left(t_{2}(|v|, \lambda),|v|\right) & \leq \tilde{E}_{\lambda}\left(t_{2}(|v|, \lambda), v\right) \\
& \leq \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)
\end{aligned}
$$

Finally, we have showed that for every $v \in L^{p}(\Omega) \backslash\{0\}$

$$
\begin{equation*}
\tilde{E}_{\lambda}\left(t_{i}(|v|, \lambda),|v|\right) \leq \tilde{E}_{\lambda}\left(t_{i}(v, \lambda), v\right), \quad \text { where } \quad i=1,2 \tag{2.9}
\end{equation*}
$$

Moreover, for every $\gamma>0$, we get

$$
\begin{aligned}
\tilde{E}_{\lambda}\left(\gamma t, \frac{v}{\gamma}\right) & =\tilde{E}_{\lambda}(t, v) \\
\partial_{t} \tilde{E}_{\lambda}\left(\gamma t, \frac{v}{\gamma}\right) & =\frac{1}{\gamma} \partial_{t} \tilde{E}_{\lambda}(t, v), \\
\partial_{t t} \tilde{E}_{\lambda}\left(\gamma t, \frac{v}{\gamma}\right) & =\frac{1}{\gamma^{2}} \partial_{t t} \tilde{E}_{\lambda}(t, v)
\end{aligned}
$$

It follows that

$$
\begin{align*}
& t_{1}(v, \lambda)=\frac{1}{\gamma} t_{1}\left(\frac{v}{\gamma}, \lambda\right) \tag{2.10}\\
& t_{2}(v, \lambda)=\frac{1}{\gamma} t_{2}\left(\frac{v}{\gamma}, \lambda\right) \tag{2.11}
\end{align*}
$$

By the virtu of (2.9), (2.10) and (2.11), we conclude that

$$
\begin{align*}
& \alpha_{1}(\lambda)=\inf _{v \in S, v \geq 0} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right) \tag{2.12}\\
& \alpha_{2}(\lambda)=\inf _{v \in S, v \geq 0} \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right) \tag{2.13}
\end{align*}
$$

where S is the unit sphere of $L^{p}(\Omega)$.
Lemma 2.6 Let $\left(v_{n}\right) \subset S$ be a minimizing sequence of (2.12) (resp. of (2.13)). Then, $\left(V_{n}\right):=\left(t_{1}\left(v_{n}, \lambda\right) v_{n}\right)$ (resp. $\left(W_{n}\right):=\left(t_{2}\left(v_{n}, \lambda\right) v_{n}\right)$) are Palais-Smale sequences for the functional E_{λ}.

Proof: We will show this lemma only for the sequence $\left(V_{n}\right)$, the proof for $\left(W_{n}\right)$ can be done in the same way.
Let $\lambda \in] 0, \hat{\lambda}\left[\right.$. Then $\lim _{n \rightarrow+\infty} E_{\lambda}\left(V_{n}\right)=\alpha_{1}(\lambda)$.
Now we show that $\lim _{n \rightarrow+\infty} E_{\lambda}^{\prime}\left(V_{n}\right)=0$.
Notice that for every $v \in L^{p}(\Omega) \backslash\{0\}$, we have $\partial_{t} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)=0$ and $\partial_{t t} \tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right) \neq$ 0 . The implicit function theorem implies that the functional $v \mapsto t_{1}(v, \lambda)$ is C^{1} since \tilde{E}_{λ} is. Let us introduce the C^{1} functional $f_{1, \lambda}$ defined on S by

$$
f_{1, \lambda}(v)=\tilde{E}_{\lambda}\left(t_{1}(v, \lambda), v\right)=E_{\lambda}\left(t_{1}(v, \lambda) v\right)
$$

Hence

$$
\alpha_{1}(\lambda)=\inf _{v \in S} f_{1, \lambda}(v)=\inf _{v \in S, v \geq 0} f_{1, \lambda}(v) \quad \text { and } \quad \lim _{n \rightarrow+\infty} f_{1, \lambda}\left(v_{n}\right)=\alpha_{1}(\lambda)
$$

Using the Ekeland variational principle on the complete manifold $\left(S,\| \|_{p}\right)$ to the functional $f_{1, \lambda}$, we conclude that

$$
\left|f_{1, \lambda}^{\prime}\left(v_{n}\right)(\varphi)\right| \leq \frac{1}{n}\|\varphi\|_{p}, \quad \text { for every } \quad \varphi \in T_{v_{n}} S,
$$

where $T_{v_{n}} S$ is the tangent space to S at the point v_{n}.
Moreoever, since $\partial_{t} \tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right) \equiv 0$, then for every $\varphi \in T_{v_{n}} S$, one has

$$
\begin{aligned}
f_{1, \lambda}^{\prime}\left(v_{n}\right)(\varphi)= & \partial_{t} \tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right) \partial_{v} t_{1}\left(v_{n}, \lambda\right)(\varphi) \\
& +\partial_{v} \tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)(\varphi) \\
= & \partial_{v} \tilde{E}_{\lambda}\left(t_{1}\left(v_{n}, \lambda\right), v_{n}\right)(\varphi),
\end{aligned}
$$

where $\partial_{v} t_{1}\left(v_{n}, \lambda\right)$ denotes the derivative of $t_{1}(., \lambda)$ with respect to its first variable at the point $\left(v_{n}, \lambda\right)$.
Furthermore, let

$$
\begin{aligned}
P: L^{p}(\Omega) \backslash\{0\} & \rightarrow \mathbb{R} \times S \\
v & \mapsto \\
& \left(P_{1}(v), P_{2}(v)\right)=\left(\|v\|_{p}, \frac{v}{\|v\|_{p}}\right)
\end{aligned}
$$

Applying Hölder's inequality, we get for every $(v, \varphi) \in L^{p}(\Omega) \backslash\{0\} \times L^{p}(\Omega)$:

$$
\left\|P_{2}^{\prime}(v)(\varphi)\right\|_{p} \leq 2 \frac{\|\varphi\|_{p}}{\|v\|_{p}}
$$

From lemma 2.3 and by the fact that $\left\|V_{n}\right\|_{p}=t\left(v_{n}, \lambda\right)$, there exists positive constant C such that

$$
t_{1}\left(v_{n}, \lambda\right) \geq C, \forall n \in \mathbb{N}
$$

Hence for every $\varphi \in L^{p}(\Omega)$, we obtain

$$
\begin{aligned}
\left|E^{\prime}-\lambda\left(V_{n}\right)(\varphi)\right|= & \mid \partial_{t} \tilde{E}_{\lambda}\left(P_{1}\left(V_{n}\right), P_{2}\left(V_{n}\right)\right) P_{1}^{\prime}\left(V_{n}\right)(\varphi) \\
& +\partial_{v} \tilde{E}_{\lambda}\left(P_{1}\left(V_{n}\right), P_{2}\left(V_{n}\right)\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi) \mid \\
= & \left|\partial_{v} \tilde{E}_{\lambda}\left(t\left(v_{n}\right), v_{n}\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right| \\
= & \left|f_{1, \lambda}^{\prime}\left(v_{n}\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right| \\
\leq & \frac{1}{n}\left\|P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right\|_{p} \\
\leq & \frac{2}{n} \frac{\|\varphi\|_{p}}{C}
\end{aligned}
$$

We easily conclude that

$$
\lim _{n \rightarrow+\infty} E^{\prime}-\lambda\left(V_{n}\right)=0 \quad \text { in } \quad L^{p^{\prime}}(\Omega)
$$

Remark 2.1 Until now, the minimizing sequences we consider are in S and are nonnegative.

3. Existence results

Theorem 3.1 Let $1<q<p<r<p_{2}^{*}$ and $\left.\lambda \in\right] 0, \hat{\lambda}\left[\right.$. Then the problem $\left(P_{\lambda}\right)$ has at least two positive solutions.

Proof: We will use the notations of the previous lemmas.
Since the sequences $\left(V_{n}\right)$ and $\left(W_{n}\right)$ are Palais-Smale for the functional E_{λ}, it suffices to show that $E_{\lambda}(0<\lambda<\hat{\lambda})$ satisfy Palais-Smale condition.
By lemma 2.3, we deduce that $\left(V_{n}\right)$ is bonded in $L^{p}(\Omega)$. Passing if necessary to a subsequence, we get

$$
\left\{\begin{align*}
V_{n} & \rightharpoonup V_{1} \text { in } L^{p}(\Omega), \tag{3.1}\\
\Lambda V_{n} & \rightharpoonup \Lambda V_{1} \quad \text { in } X, \\
\Lambda V_{n} & \left.\rightarrow \Lambda V_{1} \quad \text { in } L^{r}(\Omega), \quad \text { (and in } \quad L^{q}(\Omega)\right)
\end{align*}\right.
$$

On the other hand we have,

$$
\begin{aligned}
\left\langle N_{p}\left(V_{n}\right), V_{n}-V_{1}\right\rangle= & \left\langle E_{\lambda}^{\prime}\left(V_{n}\right), V_{n}-V_{1}\right\rangle+\lambda \int_{\Omega} N_{q}\left(\Lambda V_{n}\right)\left(\Lambda V_{n}-\Lambda V_{1}\right) d x \\
& +\int_{\Omega} N_{r}\left(\Lambda V_{n}\right)\left(\Lambda V_{n}-\Lambda V\right) d x
\end{aligned}
$$

Moreover, $E_{\lambda}^{\prime}\left(V_{n}\right) \rightarrow 0, N_{q}\left(\Lambda V_{n}\right) \rightarrow N_{q}\left(\Lambda V_{1}\right)$ and $N_{r}\left(\Lambda V_{n}\right) \rightarrow N_{r}\left(\Lambda V_{1}\right)$.
Then $\left\langle N_{p}\left(V_{n}\right), V_{n}-V_{1}\right\rangle \rightarrow 0$.
The fact that N_{p} is $(S+)$ type implies that $V_{n} \rightarrow V_{1}$ dans $L^{p}(\Omega)$.
We know that for any minimizing sequence $\left(v_{n}\right)$ of (2.12), there is a subsequence still denoted by $\left(v_{n}\right)$ such that $V_{n}=t_{1}\left(v_{n}, \lambda\right) v_{n}$ and $t_{1}\left(v_{n}, \lambda\right)=\left\|V_{n}\right\|_{p}$. Hence

$$
t_{1}\left(v_{n}, \lambda\right) \rightarrow\left\|V_{1}\right\|_{p}=t_{1}
$$

which implies that

$$
v_{n} \rightarrow V_{1} / t_{1}=v_{1}, \quad \text { and } \quad t_{1}=t_{1}\left(v_{1}, \lambda\right)
$$

where $v_{1} \in S$.
In the same way, for any minimizing sequence $\left(v_{n}\right) \subset S$ of (2.13), passing if necessary to a subsequence, there is $\left.t_{2} \in\right] 0,+\infty[$ such that

$$
\left\{\begin{aligned}
t_{2}\left(v_{n}, \lambda\right) v_{n} & \rightarrow t_{2} \quad \text { in } \mathbb{R} \\
v_{n} & \rightarrow v_{2}=V_{2} / t_{2}
\end{aligned}\right.
$$

where V_{2} is the limit of the sequence $\left(W_{n}\right):=\left(t_{2}\left(v_{n}, \lambda\right) v_{n}\right)$ in $L^{p}(\Omega)$ and $t_{2}=$ $\left\|V_{2}\right\|_{p}=t_{2}\left(v_{2}, \lambda\right)$.
At this stage, it is easy to see that $V_{1} \neq V_{2}$. Indeed, since $\partial_{t t} \tilde{E}_{\lambda}\left(t_{1}\left(v_{1}, \lambda\right), v_{1}\right)>0$ and $\partial_{t t} \tilde{E}_{\lambda}\left(t_{2}\left(v_{2}, \lambda\right), v_{2}\right)<0$, it follows that $\partial_{t t} E_{\lambda}\left(t_{1}, V_{1} / t_{1}\right)>0$ and $\partial_{t t} E_{\lambda}\left(t_{2}, V_{2} / t_{2}\right)<0$. This achieves the proof.

In the sequel the solutions V_{1} and V_{2} of $\left(P_{\lambda}^{\prime}\right)$, for $\left.\lambda \in\right] 0, \hat{\lambda}[$, will be denoted by $V_{1, \lambda}$ and $V_{2, \lambda}$. Also, $t_{1, \lambda}, t_{2, \lambda}, v_{1, \lambda}$ and $v_{2, \lambda}$ will stand for $t_{1}\left(v_{1}, \lambda\right), t_{2}\left(v_{2}, \lambda\right), v_{1}$ and v_{2} respectively.

Theorem 3.2 Let $1<q<p<r<p_{2}^{*}$. Then
(i) $E_{\lambda}\left(V_{1, \lambda}\right)<0 \quad$ for $\left.\quad \lambda \in\right] 0, \hat{\lambda}[$,
(ii) $\begin{cases}E_{\lambda}\left(V_{2, \lambda}\right)>0 & \text { for } \lambda \in] 0, \lambda_{0}[, \\ E_{\lambda}\left(V_{2, \lambda}\right)<0 & \text { for } \lambda \in] \lambda_{0}, \hat{\lambda}[,\end{cases}$
where

$$
\lambda_{0}=\frac{q}{r}\left(\frac{r}{p}\right)^{\frac{r-q}{r-p}} \hat{\lambda}
$$

Proof: (i) Let us recall that $\partial_{t} \tilde{E}_{\lambda}\left(t_{1, \lambda}, v_{1, \lambda}\right)=0$ and $\partial_{t t} \tilde{E}_{\lambda}\left(t_{1, \lambda}, v_{1, \lambda}\right)>0$. Then

$$
\left\{\begin{array}{l}
P\left(V_{1, \lambda}\right)-\lambda Q\left(V_{1, \lambda}\right)-R\left(V_{1, \lambda}\right)=0 \\
(p-1) P\left(V_{1, \lambda}\right)-\lambda(q-1) Q\left(V_{1, \lambda}\right)-(r \quad-1) R\left(V_{1, \lambda}\right)>0
\end{array}\right.
$$

Using the fact that $1<q<p<r$, we get

$$
\lambda(p-q) Q\left(V_{1, \lambda}\right)+(p-r) R\left(V_{1, \lambda}\right)>0
$$

Hence

$$
\begin{aligned}
E_{\lambda}\left(V_{1, \lambda}\right) & =\lambda \frac{q-p}{p q} Q\left(V_{1, \lambda}\right)+\frac{r-p}{p r} R\left(V_{1, \lambda}\right) \\
& \leq \frac{-1}{p q}\left(\lambda(p-q) Q\left(V_{1, \lambda}\right)+(p-r) R\left(v_{1, \lambda}\right)\right) \\
& <0
\end{aligned}
$$

(ii) Let v be an arbitrary element of $L^{p}(\Omega) \backslash\{0\}$ and let us write

$$
\tilde{E}_{\lambda}(t, v)=t^{q} \tilde{G}_{\lambda}(t, v), \quad \text { where } \quad \tilde{G}_{\lambda}(t, v)=\frac{t^{p-q}}{p} P(v)-\frac{\lambda}{q} Q(v)-\frac{t^{r-q}}{r} R(v) .
$$

It follows that

$$
\partial_{t} \tilde{E}_{\lambda}(t, v)=q t^{q-1} \tilde{G}_{\lambda}(t, v)+t^{q} \partial \tilde{G}_{\lambda}(t, v)
$$

with

$$
\partial_{t} \tilde{G}_{\lambda}(t, v)=t^{p-q-1}\left(\frac{p-q}{p} P(v)-\frac{r-q}{r} t^{r-p} R(v)\right) .
$$

It is clear that the real valued function $t \rightarrow \tilde{G}_{\lambda}(t, v)$ is increasing on $] 0, t_{0}(v)[$, decreasing on $] t_{0}(v),+\infty\left[\right.$ and attains its unique maximum for $t=t_{0}(v)$, where

$$
\begin{equation*}
t_{0}(v)=\left(\frac{r}{p}\right)^{\frac{1}{r-p}} t(v) \tag{3.2}
\end{equation*}
$$

and $t(v)$ is defined by the relation (2.1).
On the other hand, a direct computation gives

$$
\tilde{G}_{\lambda}\left(t_{0}(v), v\right)=\frac{1}{r}\left(\frac{r}{p}\right)^{\frac{r-q}{r-p}} \frac{r-p}{p-q}\left(\frac{p-q}{r-q} \frac{P(v)}{R(v)}\right)^{\frac{r-q}{r-p}} R(v)-\lambda \frac{Q(v)}{q} .
$$

Similarly, $\tilde{G}_{\lambda}\left(t_{0}(v), v\right)>0\left(\right.$ resp. $\left.\quad \tilde{G}_{\lambda}\left(t_{0}(v), v\right)<0\right)$ if $\lambda<\lambda_{0}(v)($ resp. $\quad \lambda>$ $\left.\lambda_{0}(v)\right)$ and $\tilde{G}_{\lambda_{0}(v)}\left(t_{0}(v), v\right)=0$, where

$$
\begin{equation*}
\lambda_{0}(v)=\frac{q}{r}\left(\frac{r}{p}\right)^{\frac{r-q}{r-p}} \lambda(v) \tag{3.3}
\end{equation*}
$$

with $\lambda(v)$ given by (2.2). Thus, we get

$$
\left\{\begin{array}{l}
\tilde{E}_{\lambda}\left(t_{0}(v), v\right)>0 \quad \text { if } \quad \lambda<\lambda_{0}(v), \tag{3.4}\\
\tilde{E}_{\lambda}\left(t_{0}(v), v\right)=0 \quad \text { if } \lambda=\lambda_{0}(v), \\
\tilde{E}_{\lambda}\left(t_{0}(v), v\right)<0 \quad \text { if } \lambda>\lambda_{0}(v) .
\end{array}\right.
$$

First, since the function

$$
\begin{aligned}
] 0,1[& \rightarrow \mathbb{R} \\
t & \rightarrow \frac{\ln t}{1-t}
\end{aligned}
$$

is increasing, then for every real numbers x and y such that $0<x<y$, one has

$$
\ln \left(\frac{1}{x}\right)>\frac{1-x}{1-y} \ln \left(\frac{1}{y}\right)=\ln \left(\frac{1}{y}\right)^{\frac{1-x}{1-y}}
$$

and consequently

$$
0<x(1 / y)^{\frac{1-x}{1-y}}<1
$$

In the particular case $x=\frac{q}{r}$ and $y=\frac{p}{r}$, we get

$$
0<\frac{q}{r}\left(\frac{r}{p}\right)^{\frac{r-q}{r-p}}<1
$$

and therfore $0<\lambda_{0}(v)<\lambda(v)$.
Moreover, for every $v \in L^{p}(\Omega) \backslash\{0\}$, one has $\tilde{G}_{\lambda_{0}(v)}(t, v)<0$ for $\left.t \in\right] 0,+\infty\left[\backslash\left\{t_{0}(v)\right\}\right.$ and $\tilde{G}_{\lambda_{0}(v)}\left(t_{0}(v), v\right)=0$. Hence, the real valued function $t \rightarrow \tilde{E}_{\lambda_{0}(v)}(t, v),(t>0)$, attains its unique maximum at $t=t_{0}(v)$ and we obtain the following interesting identity

$$
\begin{equation*}
t_{2}\left(v, \lambda_{0}(v)\right)=t_{0}(v) \tag{3.5}
\end{equation*}
$$

On the other hand, let

$$
\begin{equation*}
\lambda_{0}=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \lambda_{0}(v) . \tag{3.6}
\end{equation*}
$$

(2.2) et (3.2) implies that

$$
\lambda_{0}(v)=\frac{p}{q}\left(\frac{r}{p}\right)^{\frac{r-q}{r-p}} \hat{c} \frac{P^{\frac{r-q}{r-p}}(v)}{Q(v) R^{\frac{p-q}{r-p}}(v)}
$$

Let us put

$$
M=\left\{v \in L^{p}(\Omega), Q(v) R^{\frac{p-q}{r-p}}(v)=1\right\}
$$

It is clair that M is weakly closed.
Moreover the functional $v \mapsto P^{\frac{r-q}{r-p}}(v)$ is weakly lower semi-continuous and coercive on M. Thus this functional attaints its minimum on M. The homogeneities of $v \mapsto P^{\frac{r-q}{r-p}}(v)$ and $v \mapsto Q(v) R^{\frac{p-q}{r-p}}(v)$ enables us to conclude that there is $v^{*} \in S$ such that

$$
\inf _{v \in M} \lambda_{0}(v)=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \lambda_{0}(v)=\inf _{v \in S} \lambda_{0}(v)=\lambda_{0}\left(v^{*}\right)=\lambda_{0}
$$

Now, let $\lambda \in] 0, \lambda_{0}\left[\right.$, Then, for every $v \in L^{p}(\Omega) \backslash\{0\}$ one has $\lambda<\lambda_{0}(v)$ and consequently, $\tilde{E}_{\lambda}\left(t_{0}(v), v\right)>0$ holds from (3.4), Then the function $t \mapsto \tilde{E}_{\lambda}(t, v)$, $(t>0)$ attains its maximum at $t_{2}(v, \lambda)$ such that $\tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right)>0$ for every $v \in L^{p}(\Omega) \backslash\{0\}$. In particular, we have $\tilde{E}_{\lambda}\left(t_{2}\left(v_{2, \lambda}, \lambda\right), v_{2, \lambda}\right)>0$, i.e. $E_{\lambda}\left(V_{2, \lambda}\right)>0$. If $\lambda=\lambda_{0}$, then

$$
\begin{aligned}
E_{\lambda_{0}}\left(V_{2, \lambda_{0}}\right) & =\tilde{E}_{\lambda_{0}}\left(t_{2}\left(v_{2, \lambda_{0}}\right), v_{2, \lambda_{0}}\right) \\
& =\inf _{v \in S} \tilde{E}_{\lambda_{0}}\left(t_{2}\left(v, \lambda_{0}\right), v\right) \\
& \leq \tilde{E}_{\lambda_{0}}\left(t_{2}\left(v^{*}, \lambda_{0}\left(v^{*}\right)\right), v^{*}\right) \\
& =\tilde{E}_{\lambda_{0}\left(v^{*}\right)}\left(t_{0}\left(v^{*}\right), v^{*}\right) \\
& =0
\end{aligned}
$$

which implies that $E_{\lambda_{0}}\left(V_{2, \lambda_{0}}\right) \leq 0$. In addition, it is known from (3.4) that $\tilde{E}_{\lambda_{0}}\left(t_{0}(v), v\right) \geq$ 0 , for every $v \in L^{p}(\Omega) \backslash\{0\}$. Then, since $\tilde{E}_{\lambda_{0}}\left(t_{2}\left(v_{2, \lambda_{0}}, \lambda_{0}\right), v_{2, \lambda_{0}}\right)$ is a global maximum of the function $t \mapsto \tilde{E}_{\lambda_{0}}\left(t, v_{2, \lambda_{0}}\right),(t>0)$, we have

$$
\tilde{E}_{\lambda_{0}}\left(t_{2}\left(v_{2, \lambda_{0}}, \lambda_{0}\right), v_{2, \lambda_{0}}\right) \geq \tilde{E}_{\lambda_{0}}\left(t_{0}\left(v_{2, \lambda_{0}}\right), v_{2, \lambda_{0}}\right) \geq 0
$$

We conclude that

$$
E_{\lambda_{0}}\left(V_{2, \lambda_{0}}\right)=\tilde{E}_{\lambda_{0}}\left(t_{2}\left(v_{2, \lambda_{0}}, \lambda_{0}\right), v_{2, \lambda_{0}}\right)=0 .
$$

Finally, suppose that $\lambda_{0}<\lambda<\hat{\lambda}$.
We know that for every $(t, v) \in] 0,+\infty\left[\times L^{p}(\Omega) \backslash\{0\}\right.$, the real valued function $\lambda \mapsto \tilde{E}_{\lambda}(t, v)$ is decreasing on $\left[\lambda_{0}, \hat{\lambda}\right]$, hence we deduce

$$
\begin{aligned}
\tilde{E}_{\lambda}\left(t_{2}\left(v_{2, \lambda}, \lambda\right), v_{2, \lambda}\right) & =\inf _{v \in S} \tilde{E}_{\lambda}\left(t_{2}(v, \lambda), v\right) \\
& \leq \tilde{E}_{\lambda}\left(t_{2}\left(v^{*}, \lambda\right), v^{*}\right) \\
& <\tilde{E}_{\lambda_{0}}\left(t_{2}(v, \lambda), v\right) .
\end{aligned}
$$

Moreover, the real valued function $t \mapsto \tilde{E}_{\lambda_{0}}\left(t, v^{*}\right),(t>0)$, attains its unique maximum for $t=t_{0}\left(v^{*}\right)$.Then

$$
\begin{aligned}
\tilde{E}_{\lambda_{0}}\left(t_{2}\left(v^{*}, \lambda\right), v^{*}\right) & \leq \tilde{E}_{\lambda_{0}}\left(t_{0}\left(v^{*}\right), v^{*}\right) \\
& =\tilde{E}_{\lambda_{0}\left(v^{*}\right)}\left(t_{0}\left(v^{*}\right), v^{*}\right) \\
& =0
\end{aligned}
$$

Hence $\tilde{E}_{\lambda}\left(t_{2}\left(v_{2, \lambda}, \lambda\right), v_{2, \lambda}\right)<0$, which achieves this proof.
Theorem 3.3 if v^{*} is a solution of (3.6), then $t_{0}\left(v^{*}\right) v^{*}$ is a solution of $\left(P_{\lambda_{0}}^{\prime}\right)$.

Proof: Let v^{*} be a solution of (3.6), then $\lambda_{0}=\lambda_{0}\left(v^{*}\right)$ and for every $h \in L^{p}(\Omega)$, we have

$$
\begin{aligned}
E_{\lambda_{0}}^{\prime}\left(t_{0}\left(v^{*}\right) v^{*}\right)(h)= & \frac{1}{p} t_{0}^{p-1}\left(v^{*}\right)\left\langle P^{\prime}\left(v^{*}\right), h\right\rangle-\frac{\lambda_{0}}{q} t_{0}^{q-1}\left(v^{*}\right)\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle \\
& -\frac{1}{r} t_{0}^{r-1}\left(v^{*}\right)\left\langle R^{\prime}\left(v^{*}\right), h\right\rangle \\
= & \frac{P\left(v^{*}\right)\left(t_{0}\left(v^{*}\right)\right)^{p-1}}{p}\left(\frac{\left\langle P^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}\right. \\
& \left.-\frac{p \lambda_{0}}{q} t_{0}^{q-p} \frac{\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}-\frac{p}{r} t_{0}^{r-p} \frac{\left\langle R^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}\right) .
\end{aligned}
$$

By the virtu of relations (2.1), (2.2), (3.2) and (3.3), a direct computation gives for every $h \in L^{p}(\Omega)$

$$
\frac{p \lambda_{0}}{q} t_{0}^{q-p} \frac{\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}=\frac{r-p}{r-q} \frac{\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle}{Q\left(v^{*}\right)}
$$

and

$$
\left.\frac{p}{r} t_{0}^{r-p} \frac{\left\langle R^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}\right)=\frac{p-q}{r-q} \frac{\left\langle R^{* *}\left(v^{*}\right), h\right\rangle}{R\left(v^{*}\right)}
$$

Then

$$
E_{\lambda_{0}}^{\prime}\left(t_{0}\left(v^{*}\right) v^{*}\right)(h)=K\left(\frac{r-q}{r-p} \frac{\left\langle P^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}-\frac{\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle}{Q\left(v^{*}\right)}-\frac{p-q}{r-p} \frac{\left\langle R^{\prime}\left(v^{*}\right), h\right\rangle}{R\left(v^{*}\right)}\right)
$$

where

$$
K=\frac{r-p}{r-q} \frac{P\left(v^{*}\right)}{p}\left[t_{0}\left(v^{*}\right)\right]^{p-1}
$$

In the other hand, the relations (2.2) and (3.3) implies that for every $h \in L^{p}(\Omega)$

$$
\left\langle\lambda_{0}^{\prime}\left(v^{*}\right), h\right\rangle=\lambda_{0}\left(v^{*}\right)\left(\frac{r-q}{r-p} \frac{\left\langle P^{\prime}\left(v^{*}\right), h\right\rangle}{P\left(v^{*}\right)}-\frac{\left\langle Q^{\prime}\left(v^{*}\right), h\right\rangle}{Q\left(v^{*}\right)}-\frac{p-q}{r-p} \frac{\left\langle R^{\prime}\left(v^{*}\right), h\right\rangle}{R\left(v^{*}\right)}\right) .
$$

Since $\left\langle\lambda_{0}^{\prime}\left(v^{*}\right), h\right\rangle=0$ for every $h \in L^{p}(\Omega)$, we deduce that

$$
\left\langle E_{\lambda_{0}}^{\prime}\left(t_{0}\left(v^{*}\right) v^{*}\right), h\right\rangle=\frac{K}{\lambda_{0}}\left\langle\lambda_{0}^{\prime}\left(v^{*}\right), h\right\rangle=0,
$$

for every $h \in L^{p}(\Omega)$.
Which implies that $t_{0}\left(v^{*}\right) v^{*}$ is a solution of $\left(P_{\lambda_{0}}^{\prime}\right)$.

Remark 3.1 It is very interesting to notice that in the case of homogeneous Dirichlet boundary condition, we have

$$
\lim _{q \rightarrow p} \hat{\lambda}=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|v(x)|^{p} d x}{\int_{\Omega}|\Lambda v(x)|^{p} d x},
$$

Hence, in the case where $p=q, \hat{\lambda}$ is the first eigenvalue of the problem $\left(P_{\lambda}^{\prime}\right)$, i.e. the problem $\left(P_{\lambda}^{\prime}\right)$ has positive solutions for $\left.\left.\lambda \in\right] 0, \hat{\lambda}\right]$ and has no positive solution for $\lambda>\hat{\lambda}$.

References

1. R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).
2. C. O. Alves, Existence of Positive Solutions for a Problem with Lack of Compactness Involving the p-Laplacian, Nonlinear Analysis- TMA, 51 (2002), 1187-1206.
3. C. O. Alves, P. C. Carrião and O. H. Miyagaki, Signed solution for a class of quasilinear elliptic problem with critical growth, Commun. Pure Appl. Anal. 1 (2002), no. 4, 531-545.
4. A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543.
5. A. Ambrosetti, J. Garcia Azorero and I.Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996) no. 1, 219-242.
6. A. Ambrosetti, J. Garcia Azorero and I.Peral, Existence and multiplicity results for some nonlinear elliptic equations: a survey, Rend. Mat. Appl. (7) 20 (2000), 167-198.
7. T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3555-3561.
8. J.Berkovits and V.Mustonen, Nonlinear mappings of monotone type (classification and degree theory), 1988, Math. Univer. Oulu, Linnanmaa, Oulu, Finland.
9. L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal. 24 (1995), 1639-1648.
10. J. F. Bonder and J. D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001) 195-223.
11. J. F. Bonder and J. D. Rossi, Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains, Commun. Pure Appl. Anal. 1 (2002), no. 3, 359-378.
12. P. Dràbek and M. Ôtani, Global Bifurcation Result for the p-Biharmonic Operator, Electronic Journal Differential Equations 2001(2001), No 48, pp. 1-19.
13. P. Dràbek and S. Pohozaev, Positive Solutions for the p-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726.
14. I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974) 324-353.
15. A. El Hamidi, Multiple Solutions with Changing Sign Energy to a Nonlinear Elliptic Equations, Comm. Pure Appl. Anal. 3 (2004) 253-265.
16. D. Gilbar and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second ed., Springer New York Tokyo (1983).
17. P. Korman, On uniqueness of positive solutions for a class of semilinear equations, Discrete Contin. Dyn. Syst. 8 (2002), no. 4, 865-871.
18. M. Talbi and N. Tso uli, Existence of Solutions for a Nonlinear Elliptic Problem of Fourth Order with Weight, Mediterr. j. math. 3 (2006), 87-96.
19. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, (1996).
[^0]
[^0]: M.Talbi and N.Tsouli

 Département de Mathématiques et Informatique
 Faculté des Sciences,
 Université Mohamed 1, Oujda, Maroc
 talbi_md@yahoo.fr
 tsouli@sciences.univ-oujda.ac.ma

