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Some generalizations in certain classes of rings with involution

Shuliang Huang1

abstract: Let R be a 2-torsion free σ-prime ring with an involution σ, I a nonzero
σ-ideal of R. In this paper we explore the commutativity of R satisfying any one
of the properties: (i) d(x) ◦ F (y) = 0 for all x, y ∈ I. (ii) [d(x), F (y)] = 0 for all
x, y ∈ I. (iii) d(x) ◦ F (y) = x ◦ y for all x, y ∈ I. (iv) d(x)F (y) − xy ∈ Z(R) for
all x, y ∈ I. We also discuss (α, β)-derivations of σ-prime rings and prove that if G
is an (α, β)-derivation which acts as a homomorphism or as an anti-homomorphism
on I, then G = 0 or G = β on I.

Key Words:σ-prime ring; derivation; generalized derivation; (α, β)-derivation;
commutativity.
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1. Introduction

Throughout the present paper R will denote an associative ring with center
Z(R). For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx and
the symbol x ◦ y denotes the anti-commutator xy + yx. In all that follows the
symbol Saσ(R), first introduced by Oukhtite, will denote the set of symmetric and
skew symmetric elements of R, i.e. Saσ(R) = {x ∈ R | σ(x) = ±x}. An involution
σ of a ring R is an anti-automorphism of order 2 (i.e. an additive mapping satis-
fying σ(xy) = σ(y)σ(x) and σ2(x) = x for all x, y ∈ R.) An ideal I of R is said to
be a σ-ideal if σ(I) = I. An example, due to Rehman: Let Z be the ring of inte-

gers. Set R =

{(

a b

0 c

)

| a, b, c ∈ Z

}

. We define a map σ : R → R as follows:

σ

(

a b

0 c

)

=

(

c −b

0 a

)

. It is easy to check that I =

{(

0 b

0 0

)

| b ∈ Z

}

is

a σ-ideal of R. Note that an ideal I of a ring R may be not a σ-ideal: Let Z be
the ring of integers and let R = Z × Z. Consider a map σ : R → R defined by
σ((a, b)) = (b, a) for all (a, b) ∈ R. For an ideal I = Z×{0} of R, I is not a σ-ideal
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of R since σ(I) = {0}×Z 6= I. A ring R is called 2-torsion free, if whenever 2x = 0,
with x ∈ R, then x = 0. Recall that a ring R is prime if for any a, b ∈ R, aRb = 0
implies a = 0 or b = 0. A ring R equipped with an involution σ is said to be a
σ-prime ring if for any a, b ∈ R, aRb = aRσ(b) = 0 implies a = 0 or b = 0. It is
worthwhile to note that every prime ring having an involution σ is σ-prime but the
converse is in general not true. Such an example due to Oukhtite is as following:
Let R be a prime ring, S = R × R◦ where R◦ is the opposite ring of R, define
σ(x, y) = (y, x). From (0, x)S(x, 0) = 0, it follows that S is not prime. For the σ-
primeness of S, we suppose that (a, b)S(x, y) = 0 and (a, b)Sσ((x, y)) = 0, then we
get aRx× yRb = 0 and aRy × xRb = 0, and hence aRx = yRb = aRy = xRb = 0,
or equivalently (a, b) = 0 or (x, y) = 0. This example shows that every prime
ring can be injected in a σ-prime ring and from this point of view σ-prime rings
constitute a more general class of prime rings. An additive mapping d : R −→ R

is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An additive
mapping F : R −→ R is called a generalized derivation associated with d if there
exists a derivation d : R −→ R such that F (xy) = F (x)y + xd(y) holds for all
x, y ∈ R. Let α and β be homomorphisms of R, an additive mapping G : R −→ R

is called an (α, β)-derivation if G(xy) = G(x)α(y)+β(x)G(y) holds for all x, y ∈ R.
Obviously, every (1, 1)-derivation on R is just a derivation on R, where 1 is the
identity mapping. Let S be a nonempty subset of R and G an (α, β)-derivation of
R. If G(xy) = G(x)G(y) or G(xy) = G(y)G(x) for all x, y ∈ S, then G is called an
(α, β)-derivation which acts as a homomorphism or anti-homomorphism on S.

Recently, some well-known results concerning prime rings have been proved for
σ-prime rings by Oukhtite et al. (see[1-9], where further references can be found).
Over the past thirty years, there has been an ongoing interest concerning the rela-
tionship between the commutativity of a prime ring R and the behavior of a special
mapping on that ring ([13], where further references can be found). In the year
2005, Ashraf et al. [10] proved some commutativity theorems for prime rings. In
Section 3, we will generalize these results to generalized derivations on rings with
involution.
On the other hand, Bell and Kappe [11] proved that if d is a derivation of a prime
ring R which acts as a homomorphism or an anti-homomorphism on a nonzero
ideal I of R, then d = 0 on R. In [12], Albas and Argac extended this result to
generalized derivations. Further, Oukhtite [8] proved the above result is also true
for σ-prime rings. In Section 4, we extend the mentioned result in the setting of
(α, β)-derivations of σ-prime rings.

2. Some preliminaries

In all that follows, we assume that R is a 2-torsion free σ-prime ring, where σ

is an involution of R. We begin with the following results which will be used to
prove our theorems.
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Lemma 2.1 (1, Lemma 3.1) . Let R be a 2-torsion free σ-prime ring and I a
nonzero σ-ideal of R. If a, b ∈ R such that aIb = aIσ(b) = 0, then a = 0 or b = 0.

Lemma 2.2 (2, Lemma 2.3) . Let R be a 2-torsion free σ-prime ring, I a
nonzero σ-ideal and d a derivation on R commuting with σ. If d2(I) = 0 , then
d = 0.

Lemma 2.3 (1,Theorem 3.2) . Let R be a 2-torsion free σ-prime ring, d a
nonzero derivation and I a nonzero σ-ideal of R. If d(I) ⊆ Z(R), then R is
commutative.

Lemma 2.4 (2,Theorem 1.2) ). Let R be a 2-torsion free σ-prime ring, I a
nonzero σ-ideal and d a nonzero derivation on R commuting with σ. If [d(x), d(y)] =
0 for all x, y ∈ I, then R is commutative.

3. Generalized derivations of σ-prime rings

Theorem 3.1 Let R be a 2-torsion free σ-prime ring with an involution σ, I

a nonzero σ-ideal. If R admits a nonzero generalized derivation F associated a
nonzero derivation d commuting with σ such that d(x) ◦ F (y) = 0 for all x, y ∈ I,
then R is commutative.

Proof: By hypothesis, we have d(x) ◦ F (y) = 0 for all x, y ∈ I. Replacing y by yr

to get d(x) ◦ F (yr) = 0, which implies that

(d(x) ◦ y)d(r)− y[d(x), d(r)] + (d(x) ◦ F (y))r − F (y)[d(x), r] = 0 (1)

for all x, y ∈ I and r ∈ R. Now using that d(x) ◦ F (y) = 0, the relation (1) yields
that (d(x) ◦ y)d(r)− y[d(x), d(r)]− F (y)[d(x), r] = 0, which can reduce to

(d(x) ◦ y)d2(x)− y[d(x), d2(x)] = 0 (2)

if we replace r by d(x), for all x, y ∈ I and r ∈ R. Replacing y by zy in (2) to get
(d(x) ◦ zy)d2(x)− zy[d(x), d2(x)] = 0, which implies that

z(d(x) ◦ y)d2(x) + [d(x), z]yd2(x)− zy[d(x), d2(x)] = 0

for all x, y, z ∈ I. In view of (2), the above relation leads to the following

[d(x), y]zd2(x) = 0 (3)

for all x, y, z ∈ I.
Since I is a σ-ideal and dσ = σd, for all x ∈ I

⋂

Saσ(R), we have either
[d(x), y] = 0 or d2(x) = 0 by Lemma 2.1. Using the fact that x−σ(x) ∈ I

⋂

Saσ(R)
for all x ∈ I, then [d(x− σ(x)), y] = 0 or d2(x− σ(x)) = 0 for all y ∈ I.

If [d(x − σ(x)), y] = 0, then [d(x), y] = [σ(d(x)), y], for all y ∈ I. As I is a
σ-ideal, it follows from (3) that [d(x), y]zd2(x) = 0 = σ([d(x), y])zd2(x), and hence
Lemma 2.1 yields that [d(x), y] = 0 or d2(x) = 0.



12 Shuliang Huang

If d2(x − σ(x)) = 0, then d2(x) = σ(d2(x)) and (6) gives [d(x), y] = 0 or
d2(x) = 0. Consequently, for all x ∈ I, either [d(x), I] = 0 or d2(x) = 0.

Now let I1 = {x ∈ I | [d(x), I] = 0} and I2 = {x ∈ I | d2(x) = 0}. Then I1, I2
are both additive subgroups of I and I1

⋃

I2 = I. But a group can’t be a union of
its two proper subgroups, and hence I1 = I or I2 = I. On the one hand, if I1 = I,
then

[d(x), y] = 0, (4)

for all x, y ∈ I. Replacing y by ry in (4) to get [d(x), r]y = 0 for all x, y ∈ I and
r ∈ R. As d commutes with σ, the fact that I is a σ-ideal gives us [d(x), r] = 0 i.e.
d(I) ⊆ Z(R), and hence R is commutative by Lemma 2.3. Of course, we can also
replace y by yd(z) in (4) and use (4) to get y[d(x), d(z)] = 0 for all x, y, z ∈ I. As
d commutes with σ, the fact that I is a σ-ideal shows that [d(x), d(z)] = 0 for all
x, z ∈ I, and hence R is commutative by Lemma 2.4. On the other hand, if I2 = I,
then d2(x) = 0 for all x ∈ I. In other words, d2(I) = 0 and hence d = 0 by Lemma
2.2, a contradiction. 2

Theorem 3.2 Let R be a 2-torsion free σ-prime ring with an involution σ, I

a nonzero σ-ideal. If R admits a nonzero generalized derivation F associated a
nonzero derivation d commuting with σ such that [d(x), F (y)] = 0 for all x, y ∈ I,
then R is commutative.

Proof: We are given that
[d(x), F (y)] = 0 (5)

for all x, y ∈ I. Replacing y by yz in (5) and using (5) to get

F (y)[d(x), z] + y[d(x), d(z)] + [d(x), y]d(z) = 0 (6)

for all x, y, z ∈ I. Replacing z by zd(x) in (6) and using (6) to get

yz[d(x), d2(x)] + y[d(x), z]d2(x) + [d(x), y]zd2(x) (7)

for all x, y, z ∈ I. Replacing y by wy in (7) and using (7) to get

[d(x), w]yzd2(x) = 0 (8)

for all x, y, z, w ∈ I.
For all x ∈ I

⋂

Saσ(R), (8) yields that [d(x), w]yId2(x) = 0 = [d(x), w]yIσ(d2(x))
for all x, y, w ∈ I. Thus, we have either [d(x), w]y = 0 or d2(x) = 0 by Lemma 2.1.
Suppose that [d(x), w]y = 0 i.e. [d(x), w]I = 0, then it is easy to see [d(x), w] = 0.
Consequently, for all x ∈ I, either [d(x), I] = 0 or d2(x) = 0. Note that the argu-
ments used in the proof of Theorem 3.1 are still valid in the present situation, as
required. 2

Theorem 3.3 Let R be a 2-torsion free σ-prime ring with an involution σ, I

a nonzero σ-ideal. If R admits a generalized derivation F associated a nonzero
derivation d commuting with σ such that d(x) ◦ F (y) = x ◦ y for all x, y ∈ I, then
R is commutative.
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Proof: If F = 0, then x ◦ y = 0 for all x, y ∈ I. Replacing y by yz and using
that x ◦ y = 0 to get y[x, z] = 0 for all x, y, z ∈ I. In particular, [x, z]I[x, z] = 0 =
[x, z]Iσ([x, z]), then [x, z] = 0 in view of Lemma 2.1. From ([8], proof of Theorem
1.1) this yields that R is commutative.

If F 6= 0, then d(x) ◦ F (y) = x ◦ y for all x, y ∈ I. Replacing y by yr to get

(d(x) ◦ y)d(r)− y[d(x), d(r)] + (d(x) ◦ F (y))r − F (y)[d(x), r] = (x ◦ y)r − y[x, r]

which reduces to

(d(x) ◦ y)d(r)− y[d(x), d(r)]− F (y)[d(x), r] + y[x, r] = 0 (9)

for all x, y ∈ I and r ∈ R. In (9), replacing r by d(x) to get

(d(x) ◦ y)d2(x)− y[d(x), d2(x)] + y[x, d(x)] = 0 (13)

for all x, y ∈ I. Replacing y by zy in (10) and using (10) to get

[d(x), z]yd2(x) = 0 (11)

for all x, y, z ∈ I. Now again use the arguments used in the proof of Theorem 3.1,
we get the required result. 2

Theorem 3.4 Let R be a 2-torsion free σ-prime ring with an involution σ, I

a nonzero σ-ideal. If R admits a generalized derivation F associated a nonzero
derivation d commuting with σ such that d(x)F (y) − xy ∈ Z(R) for all x, y ∈ I,
then R is commutative.

Proof: If F = 0, then xy ∈ Z(R) for all x, y ∈ I. In particular, [xy, z] = 0 and
hence x[y, z] + [x, z]y = 0 for all x, y, z ∈ I. Replacing x by wx to get [w, z]xy = 0
for all w, x, y, z ∈ I and therefore [w, z]Iy = 0 = [w, z]Iσ(y). Applying Lemma 2.1,
we get [w, z] = 0 for all w, z ∈ I and from ([8], proof of Theorem 1.1) we get the
required result. 2

If F 6= 0, then d(x)F (y) − xy ∈ Z(R) for all x, y ∈ I. Replacing y by yz to
get (d(x)F (y) − xy)z + d(x)yd(z) ∈ Z(R), which implies [d(x)yd(z), z] = 0 for all
x, y, z ∈ I. Hence it follows that d(x)[yd(z), z]+[d(x), z]yd(z) = 0 for all x, y, z ∈ I.
Replacing y by d(x)y in the above to get

[d(x), z]d(x)yd(z) = 0 (12)

for all x, y, z ∈ I. For all z ∈ I
⋂

Saσ(R), (12) yields that [d(x), z]d(x) = 0 or
d(z) = 0 by Lemma 2.1. For any z ∈ I, the fact z − σ(z) ∈ I

⋂

Saσ(R) yields
that either d(z − σ(z)) = 0 or [d(x), z − σ(z)]d(x) = 0. If d(z − σ(z)) = 0,
then d(z) = σ(d(z)) and hence (12) yields that [d(x), z]d(x) = 0 or d(z) = 0. If
[d(x), z−σ(z)]d(x) = 0, using that z+σ(z) ∈ I

⋂

Saσ(R) then [d(x), z+σ(z)]d(x) =
0 or d(z + σ(z)) = 0. Assume that [d(x), z + σ(z)]d(x) = 0, then 2[d(x), z]d(x) = 0
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and hence [d(x), z]d(x) = 0. Assume that d(z + σ(z)) = 0, then d(z) = −σ(d(z))
and hence (12) yields that [d(x), z]d(x) = 0 or d(z) = 0. Consequently, for all
z ∈ I, either [d(x), z]d(x) = 0 or d(z) = 0.

Now let I1 = {z ∈ I | [d(x), z]d(x) = 0} and I2 = {z ∈ I | d(z) = 0}. Then
I1, I2 are both additive subgroups of I and I1

⋃

I2 = I. By Brauer’s trick, either
I1 = I or I2 = I.

On the one hand, if I1 = I then [d(x), z]d(x) = 0, and hence [d(x), yz]d(x) = 0,
from ([5], proof of Theorem 2.1) R is commutative.

On the other hand, if I2 = I then d(I) = 0 and R is commutative by Lemma 2.3.

The following example demonstrates that the above results are not true in
the case of arbitrary rings.

Example 3.1. Let Z be the ring of integers. Set R =

{(

a b

0 c

)

| a, b, c ∈ Z

}

and I =

{(

0 b

0 0

)

| b ∈ Z

}

. We define the following maps: σ

(

a b

0 c

)

=
(

c −b

0 a

)

. F

(

a b

0 c

)

=

(

a 2b
0 0

)

. d

(

a b

0 c

)

=

(

0 b

0 0

)

. Then it is

easy to see that I is a σ-ideal of R with an involution σ and F is a generalized
derivation associated with a nonzero derivation d commuting with σ. Moreover,
it is straightforward to check that F satisfies the properties: (i) d(x) ◦ F (y) =
0 (ii) [d(x), F (y)] = 0 (iii) d(x) ◦ F (y) = x ◦ y (iv) d(x)F (y) − xy ∈ Z(R) for all
x, y ∈ I. However, R is not commutative.

Remark 3.1. Some more concrete examples showing the hypothesis of σ-primeness
is necessary for R in literature appear in the works of Oukhtite [14], [15] and [16].

4. (α, β)-derivations of σ-prime rings

Theorem 4.1 Let R be a 2-torsion free σ-prime ring with an involution σ, I

a nonzero σ-ideal and G an (α, β)-derivation commuting with σ, where β is a
automomorphism of R such that σβ = βσ. If G acts as an homomorphism or as
an anti-homomorphism on I, then G = 0 or G = β on I.

Proof: Assume that G acts as a homomorphism on I. By our hypothesis, we have
G(xy) = G(x)G(y), which can be rewritten as

G(x)G(y) = G(x)α(y) + β(x)G(y) (13)

for all x, y ∈ I.
Replacing x by xz in (13), to get

G(xz)G(y) = G(xz)α(y) + β(xz)G(y) = G(x)G(z)α(y) + β(xz)G(y)

for all x, y, z ∈ I.
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And hence
G(xz)G(y) = G(x)G(z)α(y) + β(xz)G(y) (14)

for all x, y, z ∈ I. Note that G is a homomorphism on I, we have also

G(xz)G(y) = G(x)G(z)G(y) = G(x)G(zy) = G(x)G(z)α(y) +G(x)β(z)G(y)

for all x, y, z ∈ I. An hence

G(xz)G(y) = G(x)G(z)α(y) +G(x)β(z)G(y) (15)

for all x, y, z ∈ I. Combing (14) with (15), we have (G(x)− β(x))β(z)G(y) = 0 for
all x, y, z ∈ I, and hence (G(x) − β(x))β(I)G(y) = 0. Set J = β(I), it is easy to
see that J is a nonzero σ-ideal. In other words, we have

((G(x)− β(x))JG(y) = 0 (16)

Now (16) yields ((G(x)− β(x))JG(y) = 0 = ((G(x)− β(x))Jσ(G(y)) since both G

commutes with σ, and hence by Lemma 2.1 either G(x) − β(x) = 0 or G(y) = 0
for all x, y ∈ I, namely, G = β or G = 0 on I.
Now assume that G acts as an anti-homomorphism on I, then G(xy) = G(y)G(x),
which can be rewritten as

G(y)G(x) = G(x)α(y) + β(x)G(y) (17)

for all x, y ∈ I. Replacing x by xy in (17) to get G(y)G(xy) = G(xy)α(y) +
β(xy)G(y), which implies that G(y)G(x)α(y) + G(y)β(x)G(y) = G(y)G(x)α(y) +
β(xy)G(y), hence we have

G(y)β(x)G(y) = β(xy)G(y) (18)

for all x, y ∈ I. Replacing x by rx in (18) and using (18) to get

[G(y), β(r)]β(x)G(y) = 0 (19)

or equivalently, if we set J = β(I) then we have

[G(y), β(r)]JG(y) = 0 (20)

for all y ∈ I and r ∈ R. For all y ∈ I
⋂

Saσ(R), we have [G(y), β(r)]JG(y) =
0 = [G(y), β(r)]Jσ(G(y)) from (20), and hence [G(y), β(r)] = 0 or G(y) = 0
by Lemma 2.1. But G(y) = 0 also implies that [G(y), β(r)] = 0. Accordingly,
for all y ∈ I

⋂

Saσ(R) we have [G(y), β(r)] = 0 for all r ∈ R. For all y ∈
I, as y − σ(y) ∈ I

⋂

Saσ(R) yields that [G(y − σ(y)), β(r)] = 0. Therefore
[G(y), β(r)] = [G(σ(y)), β(r)] and the relation (24) gives us [G(y), β(r)]JG(y) =
0 = [G(σ(y)), β(r)]JG(y) = σ([G(σ(y)), β(r)])JG(y). Using Lemma 2.1, we get
[G(y), β(r)] = 0 or G(y) = 0, in which case [G(y), β(r)] = 0. Consequently, for all
y ∈ I we have [G(y), β(r)] = 0 i.e., [G(y), R] = 0 and then G(I) ⊆ Z(R). Hence G

acts as a homomorphism on I so that G = 0 or G = β on I. 2
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