Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/spm

(3s.) **v. 28** 2 (2010): 57–71. ISSN-00378712 IN PRESS doi:10.5269/bspm.v28i2.11338

A non resonance under and between the two first eigenvalues in a nonlinear boundary problem

Aomar Anane, Omar Chakrone, Najat Moradi

ABSTRACT: In this paper we study the non resonance of solutions under and between the two first eigenvalues for the problem

 $\begin{aligned} \Delta_p u &= |u|^{p-2} u & \text{in} \quad \Omega \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} &= f(x, u) & \text{on} \quad \partial \Omega. \end{aligned}$

Key Words:: *p*-Laplacian, Nonlinear boundary conditions, Non resonance.

Contents

1	Introduction					
2	Main	n results	58			
3	Proofs of theorems 61					
	3.1	Proof of theorem 2.1	61			
	3.2	Proof of theorem 2.2	62			
	3.3	Proof of theorem 2.3	64			
	3.4	Proof of theorem 2.4	64			
	3.5	Proof of theorem 2.5	70			

1. Introduction

Consider the following nonlinear boundary problem

$$\begin{array}{rcl} \Delta_{p}u & = & \left|u\right|^{p-2}u & \mathrm{in} & \Omega\\ \left|\nabla u\right|^{p-2}\frac{\partial u}{\partial \nu} & = & g\left(x,u\right) & \mathrm{on} & \partial\Omega, \end{array}$$

where Ω is a bounded domain in \mathbb{R}^N , p > 1, $\Delta_p u = div(|\nabla u|^{p-2} \nabla u)$ is the p-Laplacian and $\frac{\partial}{\partial \nu}$ is the outer normal derivative.

The case $g(x, u) = \lambda V(x) |u|^{p-2} u$, where V is the weight such that

$$V^+ \neq 0 \text{ on } \partial\Omega \quad \text{and} \quad V \in L^s(\partial\Omega),$$
(1.1)

where $s > \frac{N-1}{p-1}$ if $1 and <math>s \ge 1$ if N < p, has been treated by J.F.Bonder and J.D.Rossi in [3], they have proved that there exists a sequence of variational

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

²⁰⁰⁰ Mathematics Subject Classification: 35A15, 34A34, 34C15

eigenvalues $\lambda_k \to +\infty$, defined by

$$\left(\lambda_{k}\left(V\right)\right)^{-1} = \sup_{C \in C_{k}} \min_{u \in C} \quad \frac{\int_{\partial \Omega} \left|u\right|^{p} V\left(x\right) \partial \sigma}{\left\|u\right\|_{W^{1,p}(\Omega)}^{p}},$$
(1.2)

where $C_k = \left\{ C \subset W^{1,p}(\Omega) ; C \text{ is compact, symmetric and } \gamma(C) \geq k \right\}$ and γ is the genus's function. The authors have also proved that $\lambda_1(V)$ is the first eigenvalue, isolated, simple and monotone with respect to the weight, and it's defined as $\lambda_1(V) = \min \left\{ \frac{\|u\|_{W^{1,p}(\Omega)}^p}{\int_{\partial\Omega} |u|^p V(x) \partial \sigma} : u \in W^{1,p}(\Omega) \right\}, \lambda_2(V)$ is the seconde one characterized by

$$\left(\lambda_{2}\left(V\right)\right)^{-1} = \sup\left\{\int_{\partial\Omega}\left|u\right|^{p}V\left(x\right)\partial\sigma: \left\|u\right\|_{W^{1,p}\left(\Omega\right)}^{p} = 1 \quad \text{and} \quad u \in A\right\}, \quad (1.3)$$

where

$$A = \left\{ u \in W^{1,p}\left(\Omega\right) : \left|\partial\Omega^{\pm}\left(u\right)\right| \ge c\left(V\right) \right\} \quad \text{if} \quad s > 1 \text{ or } 1$$

and

$$A = \left\{ u \in W^{1,p}\left(\Omega\right) : \int_{\partial \Omega^{\pm}} \left| V\left(x\right) \right| \partial \sigma \ge d\left(V\right) \right\} \quad \text{if} \quad p > N \text{ and } s = 1,$$

with $\partial\Omega^+(u) = \partial\Omega \cap \{u > 0\}, \ \partial\Omega^-(u) = \partial\Omega \cap \{u < 0\}, \ |B| = meas_{\sigma}(B)$ denotes the N-1 dimensional measure of a subset $B \subset \partial\Omega, \ c(V) = \left(\frac{S_{p^*}}{\lambda_2(V) \|V\|_{L^s(\partial\Omega)}}\right)^{\eta}, \ d(V) = \frac{S_{\infty}}{\lambda_2(V)}$ where S_q is the best constant in the Sobolev trace embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\partial\Omega), \ p^* = \frac{p(N-1)}{N-p}$ for $1 for <math>p \ge N, \ \eta = \frac{s(N-1)}{sp-N}$ for $1 and <math>\eta = 2s'$ for p > N and s > 1, here s' is the conjugate of s. This problem will be named P(V).

In [2], one has proved that, in the case $g(x, u) = \lambda V(x) |u|^{p-2} u + h$ with V satisfies the same last conditions and $h \in L^s(\partial\Omega)$, the solutions are in $C^{1,\alpha}(\overline{\Omega})$ for some α in]0,1[. Now we will study the case g(x, u) = f(x, u) + h, with $h \in L^{p'}(\partial\Omega)$ where p' is the conjugate of p and $f : \partial\Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function, we show a non resonance of solutions under and between the two first eigenvalues.

2. Main results

In the theorems that follow we study a monotonicity of the two first eigenvalues with respect to the weight. One consider two weight's functions V_1 and V_2 satisfying the condition (1.1). Without loss of generality, one can assume that the weights are in the same space $L^s(\partial\Omega)$.

Theorem 2.1 If $V_1(x) \leq V_2(x)$ a.e in $\partial \Omega$ then $\lambda_1(V_1) > \lambda_1(V_2)$.

Theorem 2.2 If $V_1(x) \leq V_2(x)$ a.e in $\partial\Omega$ and if one of this conditions is satisfied

(i) s > 1 or 1 1</sub> = V₂}| < c(V₁),
(ii) s = 1 and p > N with ∫_{∂Ω∩{V₁=V₂}} |V₁(x)| ∂σ < d(V₁),
then λ₂(V₁) > λ₂(V₂).

Remark 2.1 The notation \leq means that one has a large inequality a.e in $\partial\Omega$ and a strict inequality in a subset with a positive measure.

In the theorems 2.4 and 2.5 we prove the existence of solutions to the problem

$$\Delta_{p}u = |u|^{p-2}u \quad \text{in} \quad \Omega$$

$$\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = f(x,u) + h \quad \text{on} \quad \partial\Omega,$$
(2.1)

where $h \in L^{p'}(\partial\Omega)$, p' is the conjugate of p and $f: \partial\Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function, with conditions on the behavior of the ratios $\frac{f(x,s)}{|s|^{p-2}}$ and $p\frac{F(x,s)}{|s|^p}$ under the first eigenvalue and between the two first eigenvalues of the problem

$$\Delta_{p}u = |u|^{p-2}u \quad \text{in} \quad \Omega$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda |u|^{p-2}u \quad \text{on} \quad \partial\Omega.$$
(2.2)

Consider the following conditions

(h1) $\forall R > 0, \exists \Phi_R \in L^{p'}(\partial \Omega)$ such that $\max_{|s| \leq R} |f(x,s)| \leq \Phi_R(x)$ a.e in $\partial \Omega$.

(h2)
$$\lambda_1 \leq l(x) := \liminf_{|s| \to +\infty} \frac{f(x,s)}{s|s|^{p-2}} \leq k(x) := \limsup_{|s| \to +\infty} \frac{f(x,s)}{s|s|^{p-2}} \leq \lambda_2$$
 a.e in $\partial\Omega$.

(h3) $\lambda_1 \stackrel{\leq}{=} L(x) := p \liminf_{|s| \to +\infty} \frac{F(x,s)}{|s|^p} \le K(x) := p \limsup_{|s| \to +\infty} \frac{F(x,s)}{|s|^p} \le \lambda_2$ a.e in $\partial\Omega$, with

$$meas_{\sigma} \left\{ x \in \partial\Omega : K\left(x\right) = \lambda_{2} \right\} < 2 \left(\frac{S_{P^{*}}}{\lambda_{2}}\right)^{\eta},$$
(2.3)

where $\eta = \frac{N}{p}$ if $1 and <math>\eta = 2$ if p > N, and $F : \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is defined as $F(x, s) = \int_0^s f(x, t) dt$.

(h2')
$$-\infty < l(x) := \liminf_{|s| \to +\infty} \frac{f(x,s)}{s|s|^{p-2}} \le k(x) := \limsup_{|s| \to +\infty} \frac{f(x,s)}{s|s|^{p-2}} \le \lambda_1 \text{ a.e in } \partial\Omega.$$

(h3') $K(x) := \underset{|s| \to +\infty}{\operatorname{plim}} \sup_{\substack{|s| \to +\infty}} \frac{F(x,s)}{|s|^p} \leqq \lambda_1 \text{ and } K^+ \gneqq 0 \text{ a.e in } \partial\Omega.$

One shows the following results

Theorem 2.3 If V is a weight in $L^{\infty}(\partial\Omega)$ with $\lambda_1 \leq V(x) \leq \lambda_2$ a.e in $\partial\Omega$, and if the problem P(V) admits a non trivial solution u, then

$$meas_{\sigma} \left\{ x \in \partial\Omega : V\left(x\right) = \lambda_{2} \right\} \geq 2 \left(\frac{S_{P^{*}}}{\|V\|_{L^{\infty}(\partial\Omega)}} \right)^{\eta},$$

and u is an eigenfunction associated to λ_2 .

Theorem 2.4 Under the conditions (h1), (h2) and (h3), the problem (2.1) admits at least one solution characterized by a min-max principle.

Theorem 2.5 If (h1), (h2') and (h3') are satisfied then the problem (2.1) admits at least one solution.

Remark 2.2 1) The hypothesis (h2), (h3), (h2') and (h3') mean that $\forall \varepsilon > 0$ there exists $b_{\varepsilon} \in L^{p'}(\partial \Omega)$ and $d_{\varepsilon} \in L^{1}(\partial \Omega)$ such that a.e in $\partial \Omega$ and $\forall s \in \mathbb{R}$ one has

$$-b_{\varepsilon}(x) + (l(x) - \varepsilon) |s|^{p} \le sf(x, s) \le (k(x) + \varepsilon) |s|^{p} + b_{\varepsilon}(x), \qquad (2.4)$$

and

$$-d_{\varepsilon}(x) + (L(x) - \varepsilon) \frac{|s|^{p}}{p} \le F(x, s) \le (K(x) + \varepsilon) \frac{|s|^{p}}{p} + d_{\varepsilon}(x), \qquad (2.5)$$

2) If (h1) and (h2) or (h1) and (h2') are satisfied then there exists a real a > 0and a function $b \in L^{p'}(\partial\Omega)$ such that a.e in $\partial\Omega$ and $\forall s \in \mathbb{R}$ one has

$$|f(x,s)| \le a |s|^{p-1} + b(x).$$
(2.6)

We have to use the theorems

Theorem 2.6 (see [1]) Let $\Phi \in C^1(X, \mathbb{R})$ be a functional satisfying the palaissmale condition (PS) in a Banach space $X, Q_0 \subset X \setminus \{0\}$ a symmetric compact and $E \subset X$ a nonempty symmetric set. If the following conditions are satisfied

(P1) If $Q \subset X \setminus \{0\}$ is a symmetric compact and $\gamma(Q) \ge \theta(Q_0) + 1$, then $Q \cap E \neq \emptyset$.

(P2)
$$\alpha$$
: = $\max_{Q_0} \Phi < \inf_E \Phi$: = β ,

then c: = $\inf_{h \in \Gamma} \max_{u \in h(\overline{D})} \Phi$ is a critical value to the functional Φ , where D =

 $co(Q_0)$ is the convex envelope of Q_0 and $\Gamma = \{h \in C(\overline{D}, X \setminus \{0\}) : h = id \text{ on } Q_0\}$. Moreover $c \geq \beta$.

Theorem 2.7 Let X be a Banach space reflexive and $\Phi : X \longrightarrow \mathbb{R}$ a functional satisfying

- (i) Φ is weakly lower semi-continuous,
- (ii) Φ is coercive,

then Φ attends his minimum.

Remark 2.3 In theorem 2.6, $\theta(F)$ is defined for a closed and symmetric subset F in $X \setminus \{0\}$ by:

$$\theta\left(F\right) \ := \ \sup \ \left\{k \in \mathbb{N} \ / \ \exists \ f: \ S^{k-1} \ \longrightarrow \ F \ \ continuous \ and \ odd\right\}$$

 $where \; S^{k-1} = \left\{ x \in \mathbb{R}^k : \left\| x \right\|_{\mathbb{R}^k} = 1 \right\} \; \textit{if} \; F \neq \emptyset, \; \textit{and} \; \theta \left(\emptyset \right) \;\; = \;\; 0.$

3. Proofs of theorems

3.1. PROOF OF THEOREM 2.1. Let u_1 be an eigenfunction associated to $\lambda_1(V)$ then

$$\lambda_{1}(V) = \frac{\|u_{1}\|_{W^{1,p}(\Omega)}^{p}}{\int_{\partial\Omega} |u_{1}|^{p} V(x) \, \partial\sigma}$$

and u_1 do not change sign in $\partial\Omega$. Supposing that $u_1 \geq 0$ in $\partial\Omega$, one show that $u_1 > 0$ on $\partial\Omega$. Indeed, if there exists $x \in \partial\Omega$ such that $u_1(x) = 0$, by the regularity proven in [2], $u_1 \in C^{1,\alpha}(\overline{\Omega})$ and by the maximum principle of Vazquez

$$\frac{\partial u_1}{\partial \nu}\left(x\right) < 0,$$

 \mathbf{SO}

$$0 > |\nabla u_1|^{p-2} \frac{\partial u_1}{\partial \nu} (x) = \lambda_1 (V) V (x) |u_1 (x)|^{p-2} u_1 (x) = 0,$$

witch is impossible. Let V_1 and V_2 be two weight's functions such that for a.e in $\partial\Omega$ one has $V_1(x) \leq V_2(x)$ and u_1 be an eigenfunction associated to $\lambda_1(V_2)$, then

$$\left(\lambda_{1}\left(V_{1}\right)\right)^{-1} = \frac{\int_{\partial\Omega}\left|u_{1}\right|^{p}V_{1}\left(x\right)\partial\sigma}{\left\|u_{1}\right\|_{W^{1,p}\left(\Omega\right)}^{p}}$$

Since $u_1(x) \neq 0$ for all $x \in \partial \Omega$ and $V_1(x) \leqq V_2(x)$ a.e in $\partial \Omega$ one has

$$\frac{\int_{\partial\Omega} |u_1|^p V_1(x) \, \partial\sigma}{\|u_1\|_{W^{1,p}(\Omega)}^p} \quad < \quad \frac{\int_{\partial\Omega} |u_1|^p V_2(x) \, \partial\sigma}{\|u_1\|_{W^{1,p}(\Omega)}^p},$$

also

$$\frac{\int_{\partial\Omega}\left|u_{1}\right|^{p}V_{2}\left(x\right)\partial\sigma}{\left\|u_{1}\right\|_{W^{1,p}\left(\Omega\right)}^{p}}\leq\sup\left\{\frac{\int_{\partial\Omega}\left|u\right|^{p}V_{2}\left(x\right)\partial\sigma}{\left\|u\right\|_{W^{1,p}\left(\Omega\right)}^{p}}:u\in W^{1,p}\left(\Omega\right)\right\}=\left(\lambda_{1}\left(V_{2}\right)\right)^{-1},$$

consequently

$$(\lambda_1 (V_1))^{-1} < (\lambda_1 (V_2))^{-1}.$$

3.2. PROOF OF THEOREM 2.2. One takes V_1 and V_2 such that $V_1(x) \leq V_2(x)$ a.e in $\partial\Omega$ and u_2 an eigenfunction associated to $\lambda_2(V_1)$, then for all $v \in W^{1,p}(\Omega)$

$$\int_{\Omega} |\nabla u_2|^{p-2} \nabla u_2 \nabla v dx + \int_{\Omega} |u_2|^{p-2} u_2 v dx = \lambda_2 (V_1) \int_{\partial \Omega} |u_2|^{p-2} u_2 V_1 (x) v \partial \sigma.$$
(3.1)

One considers $U_2^{\pm} = \overline{span\{u_2^+, u_2^-\}}, C = U_2^{\pm} \cap \{u \in W^{1,p}(\Omega) : \|u\|_{W^{1,p}(\Omega)}^p = p\},$ and $v = \alpha u_2^+ + \beta u_2^- \in C$. Applying the equality (3.1) at u_2^+ and u_2^- one finds

$$\int_{\Omega} |\nabla u_2|^{p-2} \nabla u_2 \nabla u_2^+ dx + \int_{\Omega} |u_2|^{p-2} u_2 u_2^+ dx = \lambda_2 (V_1) \int_{\partial \Omega} |u_2|^{p-2} u_2 u_2^+ V_1 (x) \, \partial \sigma$$

and

$$\int_{\Omega} |\nabla u_2|^{p-2} \nabla u_2 \nabla u_2^- dx + \int_{\Omega} |u_2|^{p-2} u_2 u_2^- dx = \lambda_2 (V_1) \int_{\partial \Omega} |u_2|^{p-2} u_2 u_2^- V_1 (x) \, \partial \sigma,$$

that means that

$$\int_{\Omega} \left| \nabla u_2^+ \right|^p dx + \int_{\Omega} \left| u_2^+ \right|^p dx = \lambda_2 \left(V_1 \right) \int_{\partial \Omega} \left| u_2^+ \right|^p V_1 \left(x \right) \partial \sigma,$$

and

$$\int_{\Omega} \left| \nabla u_2^- \right|^p dx + \int_{\Omega} \left| u_2^- \right|^p dx = \lambda_2 \left(V_1 \right) \int_{\partial \Omega} \left| u_2^- \right|^p V_1 \left(x \right) \partial \sigma.$$

It's clear that $\gamma(C) = 2$, and $|v|^p = |\alpha|^p |u_2^+|^p + |\beta|^p |u_2^-|^p$, so

$$\int_{\Omega} |\nabla v|^p \, dx + \int_{\Omega} |v|^p \, dx = \lambda_2 \left(V_1 \right) \int_{\partial \Omega} |v|^p \, V_1 \left(x \right) \partial \sigma.$$

But $||v||_{W^{1,p}(\Omega)}^p = p$, then $\frac{1}{\lambda_2(V_1)} = \frac{1}{p} \int_{\partial \Omega} |v|^p V_1 \partial \sigma$, this's true for all $v \in C$. Let

$$\zeta = \min\left\{\frac{\int_{\partial\Omega} |u|^p V_2(x) \, \partial\sigma}{\|u\|_{W^{1,p}(\Omega)}^p} \quad / \quad u \in C\right\}.$$

One poses $a = \int_{\partial\Omega} |u_2^+|^p V_2(x) \partial\sigma$, $b = \int_{\partial\Omega} |u_2^-|^p V_2(x) \partial\sigma$, $c = ||u_2^+||_{W^{1,p}(\Omega)}^p$ and $d = ||u_2^-||_{W^{1,p}(\Omega)}^p$, then one has

$$\begin{aligned} \zeta &= \min_{(\alpha,\beta)\in\mathbb{R}^2} \left\{ \frac{1}{p} \int_{\partial\Omega} |u|^p V_2(x) \,\partial\sigma : u = \alpha u_2^+ + \beta u_2^- \text{ and } \|u\|_{W^{1,p}(\Omega)}^p = p \right\} \\ &= \min_{(\alpha,\beta)\in\mathbb{R}^2} \left\{ \frac{1}{p} \left(a \, |\alpha|^p + b \, |\beta|^p \right) : c \, |\alpha|^p + d \, |\beta|^p = p \right\}. \end{aligned}$$

By the Lagrange's theorem about the extremum, this one is attained for $\alpha = 0$ or $\beta = 0$, i.e

$$\zeta = \min \left(\frac{a}{c}, \frac{b}{d}\right),$$

and it's attained for $u_0 = \pm \sqrt[p]{\frac{u_2^+}{\|u_2^+\|_{W^{1,p}(\Omega)}}}$ or $u_0 = \pm \sqrt[p]{\frac{u_2^-}{\|u_2^-\|_{W^{1,p}(\Omega)}}}$. Thus we obtain

$$\frac{1}{\lambda_{2}(V_{1})} = \frac{1}{p} \int_{\partial \Omega} |u_{0}|^{p} V_{1}(x) \, \partial \sigma$$

and

$$\frac{1}{p} \int_{\partial \Omega} \left| u_0 \right|^p V_2\left(x \right) \partial \sigma = \min_{u \in C} \frac{\int_{\partial \Omega} \left| u \right|^p V_2\left(x \right) \partial \sigma}{\left\| u \right\|_{W^{1,p}(\Omega)}^p},$$

with $\{x \in \partial \Omega : u_0(x) \neq 0\}$ is either $\partial \Omega^+(u_2)$ or $\partial \Omega^-(u_2)$.

• Under the condition (i).

With the hypothesis $|\{x \in \partial \Omega : V_1(x) = V_2(x)\}| < c(V_1)$ and since $|\partial \Omega^{\pm}(u_2)| \ge c(V_1)$, one gets

$$|\{x \in \partial \Omega : V_1(x) < V_2(x)\} \cap \{u_0(x) \neq 0\}| > 0.$$

Indeed, if not we have

$$c(V_1) > |\{x \in \partial\Omega : V_1(x) = V_2(x)\} \cap \{u_0 \neq 0\}| = |\{u_0 \neq 0\}| = |\partial\Omega^{\pm}(u_2)|,$$

that's not true.

• Under the condition (ii).

If
$$|\{x \in \partial \Omega : V_1(x) < V_2(x)\} \cap \{u_0(x) \neq 0\}| = 0$$
, then
 $d(V_1) > \int_{\partial \Omega \cap \{V_1 = V_2\}} |V_1(x)| \partial \sigma \geq \int_{\partial \Omega \cap \{V_1 = V_2\} \cap \{u_0 \neq 0\}} |V_1(x)| \partial \sigma$,

but

$$\int_{\partial\Omega\cap\{V_1=V_2\}\cap\{u_0\neq 0\}} |V_1(x)| \,\partial\sigma = \int_{\{u_0\neq 0\}} |V_1(x)| \,\partial\sigma = \int_{\partial\Omega^{\pm}(u_2)} |V_1(x)| \,\partial\sigma,$$

this contradicts the result $\int_{\partial \Omega^{\pm}(u_2)} |V_1(x)| \, \partial \sigma \ge d(V_1).$

Then, if (i) or (ii), we obtain the following inequality

$$\frac{1}{p} \int_{\partial \Omega} |u_0|^p V_1(x) \, \partial \sigma \quad < \quad \frac{1}{p} \int_{\partial \Omega} |u_0|^p V_2(x) \, \partial \sigma$$

with $\gamma(C) = 2$, consequently

$$\min_{u \in C} \int_{\partial \Omega} \left| u \right|^p V_2\left(x \right) \partial \sigma \quad \leq \quad \sup_{C \in \Gamma_2} \min_{u \in C} \quad \frac{\int_{\partial \Omega} \left| u \right|^p V_2\left(x \right) \partial \sigma}{\left\| u \right\|_{W^{1,p}(\Omega)}^p} = \frac{1}{\lambda_2\left(V_2 \right)}.$$

Finally $\frac{1}{\lambda_2(V_1)} < \frac{1}{\lambda_2(V_2)}$.

3.3. PROOF OF THEOREM 2.3. V is taken such that $\lambda_1 \notin V(x)$ a.e in $\partial\Omega$, so, by the theorem 2.1, one has $\lambda_1(V) < \lambda_1(\lambda_1) = 1$, and if u is a non trivial solution to the problem P(V), then 1 is an eigenvalue, thus u changes sign on $\partial\Omega$, and $|\partial\Omega^{\pm}(u)| \ge c(V) = \left(\frac{S_{P^*}}{\|V\|_{L^{\infty}(\partial\Omega)}}\right)^{\eta}$ and $|\partial\Omega(u) \cap \{u=0\}| \ge c(V)$ where $\eta = \frac{N}{p}$ if $1 and <math>\eta = 2$ if p > N. From (1.3) we have

$$(\lambda_2)^{-1} = \sup\left\{\int_{\partial\Omega} |v|^p \,\partial\sigma : \|v\|_{W^{1,p}(\Omega)}^p = 1 \text{ and } |\partial\Omega^{\pm}(v)| \ge c \,(1) = \left(\frac{S_{P^*}}{\lambda_2}\right)^\eta\right\},$$

and $\|V\|_{L^{\infty}(\partial\Omega)} \leq \lambda_2$ implies that $c(V) \geq c(1)$, then

$$\frac{u}{\left\|u\right\|_{W^{1,p}\left(\Omega\right)}} \in \left\{v \in W^{1,p}\left(\Omega\right) : \left\|v\right\|_{W^{1,p}\left(\Omega\right)}^{p} = 1 \quad \text{and} \quad \left|\partial\Omega^{\pm}\left(v\right)\right| \ge c\left(1\right)\right\},$$

 \mathbf{SO}

$$\lambda_2 \int_{\partial \Omega} |u|^p \, \partial \sigma \quad \leq \quad \|u\|_{W^{1,p}(\Omega)}^p \quad = \quad \int_{\partial \Omega} V(x) \, |u|^p \, \partial \sigma$$

One deduct that $\int_{\partial\Omega} (\lambda_2 - V(x)) |u|^p \partial \sigma \leq 0$, but $V(x) \leq \lambda_2$ a.e in $\partial\Omega$, thus one has $V(x) = \lambda_2$ a.e in $\{x \in \partial\Omega : u(x) \neq 0\}$, consequently

$$meas_{\sigma} \left\{ x \in \partial\Omega : V\left(x\right) = \lambda_{2} \right\} \geq 2 \left(\frac{S_{P^{*}}}{\|V\|_{L^{\infty}(\partial\Omega)}} \right)^{\eta}$$

In addition to this, we have for all w in $W^{1,p}(\Omega)$

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla w dx + \int_{\Omega} |u|^{p-2} uw = \int_{\partial \Omega} V(x) |u|^{p-2} uw = \lambda_2 \int_{\partial \Omega} |u|^{p-2} uw.$$

i.e u is an eigenfunction associated to λ_2 .

3.4. PROOF OF THEOREM 2.4. One introduces the energy's function Φ associated to the problem (2.1)

$$\Phi\left(u\right) = \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} F\left(x,u\right) - \int_{\partial\Omega} hu \ \partial\sigma.$$

Under the conditions (h1), (h2) and (h3) Φ is well defined, C^1 and for all u and v in $W^{1,p}\left(\Omega\right)$

$$\left\langle \Phi'\left(u\right),v\right\rangle = \int_{\Omega} \left|\nabla u\right|^{p-2} \nabla u \nabla v dx + \int_{\Omega} \left|u\right|^{p-2} u v \partial \sigma - \int_{\partial\Omega} f\left(x,u\right) v \partial \sigma - \int_{\partial\Omega} h v \partial \sigma.$$
(3.2)

i) Let us show that Φ is (PS)

By contradiction, we suppose that there exists a sequence $(u_n)_n$ in $W^{1,p}(\Omega)$ such that $||u_n||_{W^{1,p}(\Omega)} \to +\infty$, $\Phi(u_n)$ bounded and $\Phi'(u_n) \to 0$. One poses $v_n=\frac{u_n}{\|u_n\|_{W^{1,p}(\Omega)}}$ then $\|v_n\|_{W^{1,p}(\Omega)}=1,$ so $(v_n)_n$ admits a subsequence, noted also, $(v_n)_n$ such that

v_n		v	in	$W^{1,p}(\Omega)$
v_n	\rightarrow	v	in	$L^{p}\left(\Omega \right)$
v_n	\rightarrow	v	in	$L^{p}\left(\partial\Omega\right)$
$v_n(x)$	\rightarrow	$v\left(x ight)$	a.e.in	$\overline{\Omega}$

Applying the equality (3.2) at u_n and dividing by $||u_n||_{W^{1,p}(\Omega)}^{p-1}$, we obtain for all w in $W^{1,p}(\Omega)$

$$\frac{\left\langle \Phi_{p}'(u_{n}), w \right\rangle}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} = \int_{\Omega} |\nabla v_{n}|^{p-2} \nabla v_{n} \nabla w dx + \int_{\Omega} |v_{n}|^{p-2} v_{n} w \partial\sigma
- \int_{\partial\Omega} \frac{f(x, u_{n})}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} w \partial\sigma - \int_{\partial\Omega} \frac{h}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} w \partial\sigma.$$
(3.3)

Tending $n \to +\infty$ we remark that

$$\int_{\Omega} |\nabla v_n|^{p-2} \nabla v_n \nabla w + \int_{\Omega} |v_n|^{p-2} v_n w \to \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla w + \int_{\Omega} |v_n|^{p-2} v_n w \to \int_{\Omega} |\nabla v|^{p-2} \nabla v \nabla w + \int_{\Omega} |v|^{p-2} v w$$

and for $\int_{\partial\Omega} \frac{f(x,u_n)}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}} w \partial \sigma$, one has from (2.6) the sequence $\left(\frac{f(.,u_n(.))}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}}\right)_n$ is bounded in $L^{p'}(\partial\Omega)$, then for a subsequence $\left(\frac{f(.,u_n(.))}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}}\right)_n$ converges weakly in $L^{p'}(\partial\Omega)$ to a function $g \in L^{p'}(\partial\Omega)$.

Lemma 3.4.1 If (2.6) then g(x) = 0 a.e in $\partial \Omega \cap \{v = 0\}$.

Proof: Let $B = \partial \Omega \cap \{v = 0\}$, and consider the function test $T(x) = sign(g(x)) I_B$ where I_B is the characteristic function of B and $sign : \mathbb{R} \longrightarrow \{-1, 1\}$ such that sign(x) = 1 if $x \ge 0$ and sign(x) = -1 if x < 0. From (2.6) for $s = u_n(x)$, multiplying by T(x) and dividing by $||u_n||_{W^{1,p}(\Omega)}^{p-1}$, one has a.e in $\partial \Omega$:

$$\frac{f(x, u_n)}{\|u_n\|_{W^{1, p}(\Omega)}^{p-1}} T(x) \le a |v_n(x)|^{p-1} + \frac{b(x)}{\|u_n\|_{W^{1, p}(\Omega)}^{p-1}} \to 0 \text{ in } L^{p'}(\partial\Omega),$$

then

$$\int_{\partial\Omega} \frac{f\left(x,u_{n}\right)}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} T\left(x\right) \partial\sigma \to \int_{\partial\Omega} g\left(x\right) T\left(x\right) \partial\sigma = \int_{B} \left|g\left(x\right)\right| \partial\sigma = 0,$$

so g(x) = 0 a.e in B.

Let, now, consider the function m(x) defined as

$$m(x) = \begin{cases} \frac{g(x)}{|v|^{p-2}v} & \text{in } \partial\Omega \setminus B\\ \frac{1}{2}(\lambda_1 + \lambda_2) & \text{in } B. \end{cases}$$

Lemma 3.4.2 The operator $T: W^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ such that for all u and v in $W^{1,p}(\Omega): \langle T(u), v \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v dx$, is monotone of type (S_+) .

Proof: For u and v in $W^{1,p}(\Omega)$ one has

$$\langle T(u), v \rangle \le \|\nabla u\|_{L^{p}(\Omega)}^{p-1} \|\nabla v\|_{L^{p}(\Omega)}$$

and

with $\|u\|_p = \|u\|_{L^p(\Omega)}$, so T is monotone. Let $(u_n)_n$ be a sequence such that $u_n \to u$ weakly in $W^{1,p}(\Omega)$ and $\limsup_{n \to +\infty} \langle T(u_n), u_n - u \rangle \leq 0$, we will show that $u_n \to u$ strongly in $W^{1,p}(\Omega)$. Remarking that $u_n \to u$ strongly in $L^p(\Omega)$, one conclude that $\|u_n - u\|_{L^p(\Omega)} \to 0$. From (3.4) one has

$$\langle T(u_n), u_n - u \rangle \ge \left(\|\nabla u_n\|_p^{p-1} - \|\nabla u\|_p^{p-1} \right) \left(\|\nabla u_n\|_p - \|\nabla u\|_p \right) + \langle T(u), u_n - u \rangle,$$

since $u_n \rightharpoonup u$ then $\langle T(u), u_n - u \rangle \rightarrow 0$, and

$$0 \geq \lim_{n \to +\infty} \sup \langle T(u_n), u_n - u \rangle$$

$$\geq \lim_{n \to +\infty} \left(\|\nabla u_n\|_p^{p-1} - \|\nabla u\|_p^{p-1} \right) \left(\|\nabla u_n\|_p - \|\nabla u\|_p \right)$$

$$\geq 0.$$

Thus $\|\nabla u_n\|_{L^p(\Omega)} \to \|\nabla u\|_{L^p(\Omega)}$ and $\|u_n\|_{L^p(\Omega)} \to \|u\|_{L^p(\Omega)}$, then $\|u_n\|_{W^{1,p}(\Omega)} \to \|u\|_{W^{1,p}(\Omega)}$. According to the propriety that $W^{1,p}(\Omega)$ is uniformly convexe, one conclude that $\|u_n - u\|_{W^{1,p}(\Omega)} \to 0$. \Box

Lemma 3.4.3 The sequence $(v_n)_n$ is strongly convergent to v in $W^{1,p}(\Omega)$ witch's a solution of the problem P(m)

$$\Delta_p v = |v|^{p-2} v \quad in \quad \Omega$$
$$|\nabla v|^{p-2} \frac{\partial v}{\partial \nu} = m(x) |v|^{p-2} v \quad on \quad \partial\Omega.$$

66

A NON RESONANCE

Proof: From (3.2), one has for all u and v in $W^{1,p}(\Omega)$

$$\left\langle \Phi_{p}^{\prime}\left(u\right),v\right\rangle =\left\langle T\left(u\right),v\right\rangle +\int_{\Omega}\left|u\right|^{p-2}uv\partial\sigma-\int_{\partial\Omega}f\left(x,u\right)v\partial\sigma-\int_{\partial\Omega}hv\partial\sigma.$$
 (3.5)

Replacing u by u_n , v by $v_n - v$ in (3.5) and dividing by $||u_n||_{W^{1,p}(\Omega)}^{p-1}$, one conclude

$$\langle T(v_n), v_n - v \rangle = \frac{\left\langle \Phi'_p(u_n), v_n - v \right\rangle}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}} + \int_{\partial\Omega} \frac{f(x, u_n)(v_n - v)}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}} + \int_{\partial\Omega} \frac{h(v_n - v)}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}},$$
(3.6)

but $\Phi'_p(u_n) \to 0$ in $W^{-1,p'}(\Omega)$, $||u_n||_{W^{1,p}(\Omega)} \to 0$, $v_n \to v$ in $L^p(\Omega)$ and $\frac{f(x,u_n)}{||u_n||_{W^{1,p}(\Omega)}} \rightharpoonup m(x) |v|^{p-2} v$ weakly in $L^{p'}(\Omega)$ then we have (3.6)

$$\lim_{n \to +\infty} \langle T(v_n), v_n - v \rangle = 0$$

and since T is (S_+) one has $v_n \to v$ strongly in $W^{1,p}(\Omega)$, and

$$||v_n||_{W^{1,p}(\Omega)} = ||v||_{W^{1,p}(\Omega)} = 1.$$

Moreover, tending n to $+\infty$ in (3.3) one obtains for all $w \in W^{1,p}(\Omega)$

$$\int_{\Omega} \left| \nabla v \right|^{p-2} \nabla v \nabla w dx + \int_{\Omega} \left| v \right|^{p-2} v w dx = \int_{\partial \Omega} m\left(x \right) \left| v \right|^{p-2} v w \partial \sigma,$$

thus v is a solution to the problem P(m), and $||v||_{W^{1,p}(\Omega)} = 1 = \int_{\partial\Omega} m(x) |v|^p \partial\sigma$.

Lemma 3.4.4 With (h2) one has $\lambda_1 \leq m(x) \leq \lambda_2$ a.e in $\partial \Omega$.

Proof: It's easy to see that $\lambda_1 \leq m(x) \leq \lambda_2$ a.e in *B*, it remains to show that $\lambda_1 \leq m(x) \leq \lambda_2$ a.e in $\partial \Omega \setminus B$. For this, we consider the following subsets

$$D_{1} = \left\{ x \in \partial \Omega \backslash B : m(x) < \lambda_{1} \right\}, \quad D_{2} = \left\{ x \in \partial \Omega \backslash B : \lambda_{2} < m(x) \right\}$$

and we prove that $meas_{\sigma}(D_1) = meas_{\sigma}(D_2) = 0$. Indeed, from (h2) one has

$$u_n(x) f(x, u_n(x)) \ge (\lambda_1 - \varepsilon) |u_n(x)|^p - b_{\varepsilon}(x),$$

one divides by $||u_n||_{W^{1,p}(\Omega)}^p$, and one integer on D_1 , it comes

$$\int_{D_{1}} v_{n}\left(x\right) \frac{f\left(x, u_{n}\left(x\right)\right)}{\|u_{n}\|_{W^{1, p}(\Omega)}^{p-1}} \partial \sigma \geq \left(\lambda_{1} - \varepsilon\right) \int_{D_{1}} \left|v_{n}\left(x\right)\right|^{p} \partial \sigma - \int_{D_{1}} \frac{b_{\varepsilon}\left(x\right)}{\|u_{n}\|_{W^{1, p}(\Omega)}^{p}} \partial \sigma,$$

and when n tends to $+\infty$ one gets

$$\int_{D_{1}} v(x) g(x) \, \partial \sigma \geq (\lambda_{1} - \varepsilon) \int_{D_{1}} |v(x)|^{p} \, \partial \sigma.$$

Since ε is arbitrary, one concludes that

$$0 \leq \int_{D_1} \left(v\left(x\right) g\left(x\right) - \lambda_1 \left| v\left(x\right) \right|^p \right) \partial \sigma = \int_{D_1} \left(m\left(x\right) - \lambda_1 \right) \left| v\left(x\right) \right|^p \partial \sigma,$$

according to the definition of D_1 , this inequality implies that $meas_{\sigma}(D_1) = 0$. By the same way one proves that $meas_{\sigma}(D_2) = 0$.

Lemma 3.4.5 From (h3) one has $\lambda_1 \leq m(x) < \lambda_2$ a.e in $\partial \Omega$.

Proof: Let us show that $\lambda_1 \leqq m(x)$ a.e in $\partial\Omega$. By contradiction we suppose that $m(x) = \lambda_1$ a.e $x \in \partial\Omega$, then v is an eigenfunction associated to λ_1 , and one has by (h3), for all $\varepsilon > 0$, $\exists d_{\varepsilon} \in L^1(\partial\Omega)$ such that a.e in $\partial\Omega$

$$F(x, u_n(x)) \geq (L(x) - \varepsilon) \frac{|u_n(x)|^p}{p} - d_{\varepsilon}(x).$$

Then, one divides by $||u_n||_{W^{1,p}(\Omega)}^p$ and one integer, it comes

$$\int_{\partial\Omega} \frac{F\left(x, u_{n}\left(x\right)\right)}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p}} \partial\sigma \geq \int_{\partial\Omega} \left(L\left(x\right) - \varepsilon\right) \frac{\left|v_{n}\left(x\right)\right|^{p}}{p} \partial\sigma - \int_{\partial\Omega} \frac{d_{\varepsilon}\left(x\right)}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p}} \partial\sigma,$$

also

$$\frac{\Phi_{p}(u_{n})}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p}} = \frac{1}{p} - \int_{\partial\Omega} \frac{F(x, u_{n}(x))}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p}} \partial\sigma - \int_{\partial\Omega} h \frac{v_{n}(x)}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} \partial\sigma,$$

$$\frac{1}{p} = \int_{\partial\Omega} \frac{F(x, u_{n}(x))}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p}} \partial\sigma + \int_{\partial\Omega} h \frac{v_{n}(x)}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} \partial\sigma + \frac{\Phi_{p}(u_{n})}{\|u_{n}\|_{W^{1,p}(\Omega)}^{p-1}} \partial\sigma,$$

 \mathbf{so}

$$\begin{split} \frac{1}{p} &= \int_{\partial\Omega} \frac{F(x,u_n(x))}{\|u_n\|_{W^{1,p}(\Omega)}^p} \partial\sigma + \int_{\partial\Omega} h \frac{v_n(x)}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}} \partial\sigma + \frac{\Phi_p(u_n)}{\|u_n\|_{W^{1,p}(\Omega)}^p} \\ &\geq \int_{\partial\Omega} \left(L\left(x\right) - \varepsilon \right) \frac{|v_n(x)|^p}{p} \partial\sigma - \int_{\partial\Omega} \frac{d_{\varepsilon}(x)}{\|u_n\|_{W^{1,p}(\Omega)}^p} \partial\sigma \\ &+ \int_{\partial\Omega} h \frac{v_n(x)}{\|u_n\|_{W^{1,p}(\Omega)}^{p-1}} \partial\sigma + \frac{\Phi_p(u_n)}{\|u_n\|_{W^{1,p}(\Omega)}^p}, \end{split}$$

passing to the limit one finds

$$\frac{1}{p} \ge \int_{\partial\Omega} \left(L\left(x\right) - \varepsilon \right) \frac{\left| v\left(x\right) \right|^{p}}{p} \partial\sigma,$$

this's true for all $\varepsilon > 0$, one deducts that $1 \ge \int_{\partial \Omega} L(x) |v(x)|^p \partial \sigma$. In addition, one has

$$1 = \|v\|_{W^{1,p}(\Omega)}^{p} = \int_{\partial\Omega} m(x) |v|^{p} \, \partial\sigma = \lambda_{1} \int_{\partial\Omega} |v|^{p} \, \partial\sigma$$

then $\int_{\partial\Omega} (L(x) - \lambda_1) |v|^p \, \partial\sigma \leq 0$, witch contradicts the hypothesis $\lambda_1 \leq L(x)$ a.e in $\partial\Omega$. We must here show that $m(x) < \lambda_2$ a.e in $\partial\Omega$. In the opposite case, by the theorem 2.3, one has v an eigenfunction associated to λ_2 , i.e $1 = ||v||_{W^{1,p}(\Omega)}^p = \lambda_2 \int_{\partial\Omega} |v|^p \, \partial\sigma, \, |\partial\Omega^{\pm}(v)| \geq \left(\frac{S_{P^*}}{\lambda_2}\right)^\eta$ and by (2.5), one has

$$\int_{\partial\Omega} K(x) |v(x)|^p \, \partial\sigma \ge 1 = \lambda_2 \int_{\partial\Omega} |v|^p \, \partial\sigma,$$

so $K(x) = \lambda_2$ a.e in $\{x \in \partial \Omega : v(x) \neq 0\}$, then

$$\begin{aligned} |\{x \in \partial\Omega : K(x) = \lambda_2\}| &\geq |\{x \in \partial\Omega : v(x) \neq 0\}| \\ &\geq |\partial\Omega^+(v) \cup \partial\Omega^-(v)| \\ &\geq 2\left(\frac{S_{P^*}}{\lambda_2}\right)^{\eta}, \end{aligned}$$

this contradicts (2.3), consequently $\lambda_1 \leq m(x) < \lambda_2$ a.e in $\partial \Omega$.

Let us return to the demonstration of the theorem 2.4. The result of theorem 2.2 assures that

$$1 = \lambda_2(\lambda_2) < \lambda_2(m),$$

then 1 is an eigenvalue of the problem P(m) strictly between $\lambda_1(m)$ and $\lambda_2(m)$, absurd. Finally Φ is (PS).

ii) For applying the theorem 2.6, one constructs two sets E and Q_0 satisfying (P1) and (P2).

Let $E = \left\{ u \in W^{1,p}(\Omega) : \lambda_2(K) \int_{\partial\Omega} K(x) |u|^p \partial\sigma \le ||u||_{W^{1,p}(\Omega)}^p \right\}$, by (2.5) and the propriety $\int_{\partial\Omega} |u|^p \partial\sigma \le \frac{1}{\lambda_1(1)} ||u||_{W^{1,p}(\Omega)}^p = \frac{1}{\lambda_1(1)}$, one has for $u \in E$

$$\begin{split} \Phi\left(u\right) &= \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} F\left(x,u\right) \partial\sigma - \int_{\partial\Omega} hu\partial\sigma \\ &\geq \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} \left(K\left(x\right) + \varepsilon\right) \frac{\left|u\right|^{p}}{p} \partial\sigma - \int_{\partial\Omega} \left(d_{\varepsilon}\left(x\right) + hu\right) \partial\sigma \\ &\geq \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \frac{1}{p\lambda_{2}(K)} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} \frac{\varepsilon}{p} \left|u\right|^{p} - \int_{\partial\Omega} \left(d_{\varepsilon}\left(x\right) + hu\right) \partial\sigma \\ &\geq \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} \left(1 - \frac{1}{\lambda_{2}(K)} - \frac{\varepsilon}{\lambda_{1}(1)}\right) - \int_{\partial\Omega} \left(d_{\varepsilon}\left(x\right) + hu\right) \partial\sigma. \end{split}$$

Indeed one knows that $K(x) \leq \lambda_2$ a.e in $\partial\Omega$ implies that $\lambda_2(K) \geq 1$, moreover if $\lambda_2(K) = 1$ then 1 is an eigenvalue for the problem P(K) with $\lambda_1 \leq K(x) \leq \lambda_2$ a.e in $\partial\Omega$, and from theorem 2.3,

$$meas_{\sigma}\left\{x\in\partial\Omega:K\left(x\right)=\lambda_{2}\right\}\geq2\left(\frac{S_{P^{*}}}{\|K\|_{L^{\infty}\left(\partial\Omega\right)}}\right)^{\eta}\geq2\left(\frac{S_{P^{*}}}{\lambda_{2}}\right)^{\eta},$$

this is in contradiction with the hypothesis (2.3), so $1 - \frac{1}{\lambda_2(K)} > 0$. Then for ε small enough $1 - \frac{1}{\lambda_2(K)} - \frac{\varepsilon}{\lambda_1(1)} > 0$, consequently Φ is coercive in E. Let ξ be an eigenfunction associated to $\lambda_1(L)$ with $\|\xi\|_{W^{1,p}(\Omega)} = 1$, one shows that $\lim_{|t|\to+\infty} \Phi(t\xi) = -\infty$. From (2.5) one finds

$$\begin{split} \Phi \left(t\xi \right) &= \frac{\frac{1}{p} \left| t \right|^p - \int_{\partial \Omega} F \left(x, t\xi \right) \partial \sigma - t \int_{\partial \Omega} h\xi \partial \sigma}{\leq} \\ &\leq \frac{1}{p} \left| t \right|^p - \frac{1}{\beta_{\lambda_1}(L)} \left\| u \right\|_{W^{1,p}(\Omega)}^p + \int_{\partial \Omega} \frac{\varepsilon}{p} \left| t\xi \right|^p \partial \sigma + \int_{\partial \Omega} \left(d_{\varepsilon} \left(x \right) - ht\xi \right) \partial \sigma}{\leq} \\ &\leq \frac{1}{p} \left| t \right|^p - \frac{1}{p\lambda_1(L)} \left\| u \right\|_{W^{1,p}(\Omega)}^p + \int_{\partial \Omega} \frac{\varepsilon}{p} \left| t\xi \right|^p \partial \sigma + \int_{\partial \Omega} \left(d_{\varepsilon} \left(x \right) - ht\xi \right) \partial \sigma}{\int_{\Omega} \left| t \right|^p \left(1 - \frac{1}{\lambda_1(L)} + \frac{\varepsilon}{\lambda_1(1)} \right) + \int_{\partial \Omega} \left(d_{\varepsilon} \left(x \right) - ht\xi \right) \partial \sigma}, \end{split}$$

and since $\lambda_1 \leq L(x)$ a.e in $\partial\Omega$, one obtains $1 > \lambda_1(L)$, then for ε small enough $1 - \frac{1}{\lambda_1(L)} + \frac{\varepsilon}{\lambda_1(1)} < 0$, thus the result is proven. We pose $\beta := \inf_E \Phi$, it's finite, and $\lim_{|t| \to +\infty} \Phi(t\xi) = -\infty$ implies that there exists t' sufficiently big such that

$$\alpha := \max\left(\Phi\left(t'\xi\right), \Phi\left(-t'\xi\right)\right) < \beta.$$

Take the compact $Q_0 = \{-t'\xi, t'\xi\}$, it's clear that $\theta(Q_0) = 1$, and (P2) is satisfied. Let Q be a symmetric compact in $W^{1,p}(\Omega)$ such that $\gamma(Q) \ge 2$, by the definition of $\lambda_2(K)$ one has

$$\min_{w \in Q} \quad \frac{\int_{\partial \Omega} K(x) |w|^p \partial \sigma}{\|w\|_{W^{1,p}(\Omega)}^p} \quad \leq \quad \frac{1}{\lambda_2(K)},$$

thus there exists $w_0 \in Q$ such that $\frac{\int_{\partial\Omega} K(x) |w_0|^p \partial \sigma}{\|w_0\|_{W^{1,p}(\Omega)}^p} \leq \frac{1}{\lambda_2(K)}$ i.e $w_0 \in E$, and (P1) is satisfied. One deducts that the value

$$c := \inf_{h \in \Gamma} \max_{u \in h(\overline{D})} \Phi \ge \beta$$

is a critical value for the functional Φ , with $\Gamma = \{h \in C(\overline{D}, X \setminus \{0\}) : h = id \text{ in } Q_0\}$ and $D = co(Q_0)$. The proof is completed.

3.5. PROOF OF THEOREM 2.5. The same functional Φ is taken, it's C^1 and weakly lower semi-continuous. According to the theorem 2.7, it remains to prove that it's coercive in $W^{1,p}(\Omega)$. Indeed, for $u \in W^{1,p}(\Omega)$ one has

$$\begin{split} \Phi\left(u\right) &= \frac{\frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} F\left(x,u\right) \partial\sigma - \int_{\partial\Omega} hu \partial\sigma \\ &\geq \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} - \int_{\partial\Omega} \left(K\left(x\right) + \varepsilon\right) \frac{\left|u\right|^{p}}{p} \partial\sigma - \int_{\partial\Omega} \left(d_{\varepsilon}\left(x\right) + hu\right) \partial\sigma, \end{split}$$

and

$$\int_{\partial\Omega} K(x) |u|^p \, \partial\sigma \quad \leq \quad \frac{1}{\lambda_1(K)} \, \|u\|_{W^{1,p}(\Omega)}^p \, d\sigma$$

then

$$\Phi\left(u\right) \geq \frac{1}{p} \left\|u\right\|_{W^{1,p}(\Omega)}^{p} \left(1 - \frac{1}{\lambda_{1}\left(K\right)} - \frac{\varepsilon}{\lambda_{1}\left(1\right)}\right) - \int_{\partial\Omega} \left(d_{\varepsilon}\left(x\right) + hu\right) \partial\sigma.$$

From $K(x) \leq \lambda_1$ a.e in $\partial\Omega$, and the theorem 2.1, one has $1 - \frac{1}{\lambda_1(K)} > 0$, then for ε small enough $\left(1 - \frac{1}{\lambda_1(K)} - \frac{\varepsilon}{\lambda_1(1)}\right) > 0$, thus Φ is coercive in $W^{1,p}(\Omega)$. Finally, Φ admits a critical point witch's a solution of the problem (2.1).

References

- A.Anane, O.Chakrone; Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propres du p-Laplacien, Annales de la faculté des sciences de Toulouse, 6ème série, tome 9, n⁰1 (2000), p. 5-30.
- 2. A.Anane, O.Chakrone and N.Moradi; Regularity for the solutions to a nonlinear boundary problem with indefinite weight, (to appear)

A NON RESONANCE

3. J.F.Bonder and J.D.Rossi; A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Suported by ANPCyT PICT N. 03-05009.

Aomar Anane Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda-Maroc E-mail address: ananeomar@yahoo.fr

and

Omar Chakrone Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda-Maroc E-mail address: chakrone@yahoo.fr

and

Najat Moradi Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda-Maroc E-mail address: najat_moradi@yahoo.fr