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Existence for an elliptic system with nonlinear boundary conditions

Aomar ANANE, Omar CHAKRONE, Belhadj KARIM and Abdellah ZEROUALI

abstract: In this paper we prove the existence of a weak solution to the following
system







△pu = △qv = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= f(x, u)− (α+ 1)K(x)|u|α−1u|v|β+1 + f1 on ∂Ω,

|∇v|q−2 ∂v
∂ν

= g(x, v)− (β + 1)K(x)|v|β−1v|u|α+1 + g1 on ∂Ω,

where Ω is a bounded domain in R
N (N ≥ 2), f1, g1, f , g and K are functions

that satisfy some conditions.

Key Words: Steklov problems, weights, elliptic systems, nonlinear boundary
conditions.
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1. Introduction

Consider the system with nonlinear boundary conditions







△pu = △qv = 0 in Ω,
|∇u|p−2 ∂u

∂ν = f(x, u)− (α+ 1)K(x)|u|α−1u|v|β+1 + f1 on ∂Ω,
|∇v|q−2 ∂v

∂ν = g(x, v)− (β + 1)K(x)|v|β−1v|u|α+1 + g1 on ∂Ω,
(1.1)

Ω will be a bounded domain in R
N (N ≥ 2) with a Lipschitz continuous boundary,

1 < p <∞, 1 < q <∞ and suppose the following conditions:

α ≥ 0, β ≥ 0,
α+ 1

p
+
β + 1

q
= 1, K ∈ L∞(∂Ω), K ≥ 0.

f1 ∈ Lr(∂Ω), r =
pp

pp− p+ 1
,
N − 1

p− 1
< p <∞ if p < N and p ≥ 1 if p ≥ N.

g1 ∈ Lr(∂Ω), r =
qq

qq − q + 1
,
N − 1

q − 1
< q <∞ if q < N and q ≥ 1 if q ≥ N.

2000 Mathematics Subject Classification: 35J70, 35P30

49
Typeset by BSP

M
style.

c© Soc. Paran. de Mat.

www.spm.uem.br/spm
http://dx.doi.org/10.5269/bspm.v28i2.11313


50 A.ANANE, O. CHAKRONE, B.KARIM and A.ZEROUALI

f : ∂Ω× R → R and g : ∂Ω× R → R are Carathéodory functions that verify:
(fa,b): There exist a > 0 and a function b ∈ Lr(∂Ω) such that,

|f(x, s)| ≤ a|s|p−1 + b(x) a.e. x ∈ ∂Ω and for all s ∈ R.

lim sup
|s|→+∞

pF (x,s)
|s|p := m(x) ∈ Lp(∂Ω) with F (x, s) =

∫ s

0
f(x, t)dt.

(gc,d): There exist c > 0 and a function d ∈ Lr(∂Ω) such that,

|g(x, s)| ≤ c|s|q−1 + d(x) a.e. x ∈ ∂Ω and for all s ∈ R.

lim sup
|s|→+∞

qG(x,s)
|s|q := n(x) ∈ Lq(∂Ω) with G(x, s) =

∫ s

0
g(x, t)dt.

We say that (u, v) ∈W 1,p(Ω)×W 1,q(Ω) is a weak solution of (1.1) if

∫

Ω

|∇u|p−2∇u∇ϕdx =

∫

∂Ω

f(x, u)ϕdσ−(α+1)

∫

∂Ω

K(x)|u|α−1u|v|β+1ϕdσ+

∫

∂Ω

f1ϕdσ,

∫

Ω

|∇v|q−2∇v∇ψdx =

∫

∂Ω

g(x, v)ψdσ−(β+1)

∫

∂Ω

K(x)|u|α+1|v|β−1vψdσ+

∫

∂Ω

g1ψdσ.

for all (ϕ,ψ) ∈ W 1,p(Ω)×W 1,q(Ω), where dσ is the N − 1 dimensional Hausdorff
measure.

Existence results for nonlinear elliptic systems when the nonlinear term appears
as a source in the equation complemented with Dirichlet boundary conditions have
been studied by various authors; we cite the works [1,3,4]. For the nonlinear
boundary condition, the authors in [2] proved the existence of nontrivial solutions
to the system

{

△pu = |u|p−2u,△qv = |v|p−2v in Ω,
|∇u|p−2 ∂u

∂ν = Fu(x, u, v), |∇v|
q−2 ∂v

∂ν = Fv(x, u, v) on ∂Ω,
(1.2)

where (Fu;Fv) is the gradient of some positive potential F : ∂Ω × R × R → R.
The proofs are done under suitable assumptions on the potential F , and based on
variational arguments.

Our purpose in the present paper is to show that the problem (1.1) admits
at least a solution (u, v) ∈ W 1,p(Ω) ×W 1,q(Ω), we also give a special case of the
problem (1.1) (see Corollary 3.3A). Our proofs are based on variational arguments.

2. Preliminaries

In this section, we collect some results relative to the eigenvalue problem

{

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν = λm(x)|u|p−2u on ∂Ω,
(2.1)

where the weightm is assumed to lie inMp̄ := {m ∈ Lp̄(∂Ω);m+ 6≡ 0 and
∫

∂Ω
mdσ <

0}.
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O. Torné in [5] showed, by using infinite dimensional Ljusternik–Schnirelman the-
ory, that the problem (2.1) admits a sequence of eigenvalues

λk(m, p) := inf
C∈Γk

sup
u∈C

1

p

∫

Ω

|∇u|pdx,

where

Γk := {C ⊂ S;C is symmetric, compact and γ(C) ≥ k}

with

S :=

{

u ∈W 1,p(Ω);
1

p

∫

∂Ω

m|u|pdσ = 1

}

,

γ(C) is the Krasnoselski genus of C, and let

λ1(m, p) = inf

{

1

p

∫

Ω

|∇u|p;u ∈W 1,p(Ω) and
1

p

∫

∂Ω

m|u|pdσ = 1

}

.

Theorem 2.1 ( [5] ) Assume m ∈Mp̄. Then λk(m, p) is a nondecreasing and un-
bounded sequence of positive eigenvalues of the problem (2.1). Moreover λ1(m, p) >
0 is the first positive eigenvalue of (2.1). Moreover λ1(m, p) is simple, isolated and
it is the only nonzero eigenvalue associated to an eigenfunction of definite sign.

Remark 2.2 This theorem is proved in [5] by applying infinite dimensional Ljusternik–
Schnirelman theory for existence of the sequence λk(m, p) and Picone’s identity for
simplicity of the first eigenvalue.

3. Existence of solution for a system Steklov problem

In the whole continuation, we note by λ1(m, p) (resp. λ1(n, q)) the first eigen-
value of the problem (2.1) for the integer p and the weight m (resp. the integer q
and the weight n). We also note

Mp̄ := {m ∈ Lp̄(∂Ω);m+ 6≡ 0 and

∫

∂Ω

mdσ < 0},

Mq̄ := {m ∈ Lq̄(∂Ω);m+ 6≡ 0 and

∫

∂Ω

mdσ < 0}.

Theorem 3.1 If m ∈ Mp̄ and n ∈ Mq̄, then the problem (1.1) admits at least a
solution for λ1(m, p) > 1 and λ1(n, q) > 1.

Remark 3.2 We can have λ1(m, p) > 1 , since λ1(m, p) is homogeneous respect
to the weight in the sense where

λ1(αm, p) =
λ1(m, p)

α
∀α > 0.
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Consider the space W =W 1,p(Ω)×W 1,q(Ω) equipped with the norm

||w|| = ||u||1,p + ||v||1,q, for w = (u, v) ∈W,

where

||u||1,p =

(
∫

Ω

|∇u|pdx+

∫

Ω

|u|pdx

)
1

p

and ||v||1,q =

(
∫

Ω

|∇v|qdx+

∫

Ω

|v|qdx

)
1

q

.

Let the energy functional Φ :W → R such that

Φ(u, v) =
1

p

∫

Ω

|∇u|pdx−

∫

∂Ω

F (x, u)dσ +
1

q

∫

Ω

|∇v|qdx−

∫

∂Ω

G(x, v)dσ

+

∫

∂Ω

K(x)|u|α+1|v|β+1dσ −

∫

∂Ω

f1udσ −

∫

∂Ω

g1vdσ.

Remark 3.3 The conditions lim sup
|s|→+∞

pF (x,s)
|s|p := m(x) imply that for all ε > 0, there

exists dε ∈ Lr(∂Ω) such that a.e. x ∈ ∂Ω and for all s ∈ R, we have

F (x, s) ≤ (m(x) + ε)
|s|p

p
+ dε(x).

lim sup
|s|→+∞

qG(x,s)
|s|q := n(x) imply that for all ε > 0, there exists d′ε ∈ Lr(∂Ω) such that

a.e. x ∈ ∂Ω and for all s ∈ R, we have

G(x, s) ≤ (n(x) + ε)
|s|p

p
+ d′ε(x).

Proposition 3.1 m→ λ1(m, p) is continuous from Mp̄ into R.

Proof: Let mk, m ∈Mp̄ such that mk → m in Lp̄(∂Ω). By definition of λ1(m, p),
for ε > 0 there exists uε ∈W 1,p(Ω) verifying 1

p

∫

∂Ω
m|uε|

pdσ = 1 and 1
p

∫

Ω
|∇uε|

pdx ≤

λ1(m, p) + ε.
Since (m,u) → 1

p

∫

∂Ω
m|u|pdσ is continuous in its two arguments (m,u), we deduce

for k sufficiently large,

1

p

∫

Ω

∣

∣

∣

∣

∣

∇
uε

( 1p
∫

∂Ω
mk|uε|pdσ)1/p

∣

∣

∣

∣

∣

p

≤ λ1(m, p) + ε.

Consequently
λ1(mk, p) ≤ λ1(m, p) + ε.

Thus,
lim sup
k→+∞

λ1(mk, p) ≤ λ1(m, p) + ε.
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As ε is arbitrary,
lim sup
k→+∞

λ1(mk, p) ≤ λ1(m, p).

Now we must show that λ1(m, p) ≤ lim inf
k→+∞

λ1(mk, p). Suppose by contradiction

that
λ1(m, p) > lim inf

k→+∞
λ1(mk, p) = λ.

Let uk ∈W 1,p(Ω) such that 1
p

∫

Ω
mk|uk|

pdσ = 1 be a solution of the problem
{

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν = λ1(mk(x), p)mk(x)|u|
p−2u on ∂Ω.

(3.1)

We distinguish two cases.
First case: ||uk||1,p → +∞, put vk = uk

||uk||1,p
, for a subsequence still denoted by

(vk) there exists v ∈ W 1,p(Ω) such that vk ⇀ v weakly in W 1,p(Ω) and vk → v

strongly in Lp(∂Ω). Since uk is a solution of (3.1) and 1
p

∫

∂Ω
mk|uk|

pdσ = 1, then
1
p

∫

Ω
|∇uk|

pdx = λ1(mk, p). Dividing by ||uk||
p
1,p and passing to the limit, we have

1
p

∫

Ω
|∇vk|

pdx → 0. Thus vk → v strongly in W 1,p(Ω) and v = cst 6= 0. But
1
p

∫

∂Ω
mk|vk|

pdσ = 1
||uk||

p

1,p

, passing to limit, we obtain 1
p |cst|

p
∫

∂Ω
mdσ = 0, this

contradicts
∫

∂Ω
mdσ < 0 and cst 6= 0.

Seconde case: (uk) is bounded, for a subsequence still denoted (uk), there exists
u ∈ W 1,p(Ω) such that uk ⇀ u weakly in W 1,p(Ω), uk → u strongly in Lp(Ω) and

uk → u strongly in L
pq

q−1 (∂Ω). Since uk is a solution of (3.1), then
∫

Ω

|∇uk|
p−2∇uk∇ϕdx = λ1(mk, p)

∫

∂Ω

mk|uk|
p−2ukϕdσ ∀ϕ ∈W 1,p(Ω).

Now taking ϕ = uk − u, we have
∫

Ω

|∇uk|
p−2∇uk∇(uk − u)dx = λ1(mk, p)

∫

∂Ω

mk|uk|
p−2uk(uk − u)dσ.

Passing to the limit, we obtain
∫

Ω

|∇uk|
p−2∇uk∇(uk − u)dx→ 0 as k → +∞.

On the other hand
∫

Ω

|uk|
p−2uk(uk − u)dx→ 0 as k → +∞.

It then follows the (S+) property that uk → u strongly in W 1,p(Ω). In addition
u 6= 0 (since 1

p

∫

∂Ω
m|u|pdσ = 1). Thus λ is an eigenvalue of the problem (1.1).

Since
∫

∂Ω
mdσ < 0, we deduce 0 < λ. Consequently, we have 0 < λ < λ1(m, p),

this contradicts the Theorem 2.1. Finally, we have

lim sup
k→+∞

λ1(mk, p) ≤ λ1(m, p) ≤ lim inf
k→+∞

λ1(mk, p), so λ1(mk, p) → λ1(m, p).

2
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Lemma 3.1 If m ∈ Mp̄ and n ∈ Mq̄, then the functional Φ is coercive for
λ1(m, p) > 1 and λ1(n, q) > 1.

Proof: Suppose by contradiction that there exist a sequence wn ∈ W and c ≥ 0
with wn = (un, vn) such that ||wn|| → +∞ and |Φ(wn)| ≤ c. Put kn = ||wn||,
ũn = un

kn
and ṽn = vn

kn
. c ≥ |Φ(wn)| implies that

c ≥
1

p

∫

Ω

|∇un|
pdx−

∫

∂Ω

F (x, un)dσ +
1

q

∫

Ω

|∇vn|
qdx−

∫

∂Ω

G(x, un)dσ

+

∫

∂Ω

K(x)|un|
α+1|vn|

β+1dσ −

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ.

(3.2)

Since
∫

∂Ω
K(x)|un|

α+1|vn|
β+1dσ ≥ 0, by the Remark (3.3) we have

c ≥
1

p

∫

Ω

|∇un|
pdx+

1

q

∫

Ω

|∇vn|
qdx−

1

p

∫

∂Ω

(m(x) + ε)|un|
pdσ −

1

q

∫

∂Ω

(n(x) + ε)|vn|
qdσ

−

∫

∂Ω

dε(x)dσ −

∫

∂Ω

d′ε(x)dσ −

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ.

(3.3)
Let ε > 0 such that λ1(m + ε, p) > 1 and λ1(n + ε, q) > 1 (the continuity of
m→ λ1(m, p) is used here, see Proposition 3.1). Thus

c ≥
1

p

∫

Ω

|∇un|
pdx−

1

p

∫

∂Ω

(m(x) + ε)|un|
pdσ −

∫

∂Ω

dε(x)dσ −

∫

∂Ω

d′ε(x)dσ

−

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ,

(3.4)
and

c ≥
1

q

∫

Ω

|∇vn|
qdx−

1

q

∫

∂Ω

(n(x) + ε)|vn|
qdσ −

∫

∂Ω

dε(x)dσ −

∫

∂Ω

d′ε(x)dσ

−

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ.

(3.5)

Therefore

c ≥

(

1−
1

λ1(m+ ε, p)

)

1

p

∫

Ω

|∇un|
pdx−

∫

∂Ω

dε(x)dσ −

∫

∂Ω

d′ε(x)dσ

−

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ,

(3.6)

and

c ≥

(

1−
1

λ1(n+ ε, q)

)

1

q

∫

Ω

|∇vn|
qdx−

∫

∂Ω

dε(x)dσ −

∫

∂Ω

d′ε(x)dσ

−

∫

∂Ω

f1undσ −

∫

∂Ω

g1vndσ.

(3.7)
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Dividing (3.6) and (3.7) respectively by kpn and kqn, we obtain

c

k
p
n
≥

(

1−
1

λ1(m+ ε, p)

)

1

p

∫

Ω

|∇ũn|
pdx

−
1

k
p
n

[
∫

∂Ω

dε(x)dσ +

∫

∂Ω

d′ε(x)dσ

∫

∂Ω

f1undσ +

∫

∂Ω

g1vndσ

]

,

(3.8)

and

c

k
q
n
≥

(

1−
1

λ1(n+ ε, q)

)

1

q

∫

Ω

|∇ṽn|
qdx

−
1

k
q
n

[
∫

∂Ω

dε(x)dσ +

∫

∂Ω

d′ε(x)dσ

∫

∂Ω

f1undσ +

∫

∂Ω

g1vndσ

]

.

(3.9)

Since ũn is a bounded, for a further subsequence still denoted by ũn ⇀ ũ weakly
in W 1,p(Ω) and ũn → ũ strongly in Lp(Ω), on the other hand we have

∫

Ω

|∇ũ|pdx+

∫

Ω

|ũ|pdx ≤ lim inf
n→+∞

(
∫

Ω

|∇ũn|
pdx+

∫

Ω

|ũn|
pdx

)

.

In (3.8), passing to the limit we obtain 0 =
∫

Ω
|∇ũ|pdx, thus ũ = c1 = cst and

||ũn||1,p → ||ũ||1,p. Since W 1,p(Ω) is uniformly convex and reflexive, ũn → cst = c1
strongly in W 1,p(Ω). (By a similar argument we show that ṽn → cst = c2 strongly
in W 1,p(Ω)). Dividing (3.4), (3.5) respectively by kpn and kqn and passing to the
limit, we have

0 ≥ −
|c1|

p

p

∫

∂Ω

(m(x) + ε)dσ and 0 ≥ −
|c2|

q

q

∫

∂Ω

(n(x) + ε)dσ.

Since ε is arbitrary, we obtain

|c1|
p

p

∫

∂Ω

m(x)dσ ≥ 0 and
|c2|

q

q

∫

∂Ω

n(x)dσ ≥ 0.

Since
∫

∂Ω
m(x)dσ < 0 and

∫

∂Ω
n(x)dσ < 0, then c1 = c2 = 0, consequently ‖w̃n‖ →

0, where w̃n := (ũn, ṽn). This contradicts ‖w̃n‖ = 1. Finally Φ is a coercive. 2

Lemma 3.2 If m ∈ Mp̄ and n ∈ Mq̄, then the energy functional Φ is a weakly
lower semicontinuous.

Proof: It suffices to see that the trace mapping W → L
pp

p−1 (∂Ω) × L
qq

q−1 (∂Ω) is
compact. 2

Proof: [Proof of Theorem 2.1.] By Lemma 3.2, Φ is weakly lower semicontinuous
and by Lemma 3.1, Φ is coercive. Φ is continuously differentiable. The proof is
complete. 2

Now we can give a special case of Theorem 2.1.

Corollary 3.3A Suppose that m ∈ Mp̄ and n ∈ Mq̄. If λ1(m, p) > 1, λ1(n, q) >
1 then the problem (1.1) admits at least a solution for f(x, u) = m|u|p−2u and
g(x, v) = n|v|q−2v.



56 A.ANANE, O. CHAKRONE, B.KARIM and A.ZEROUALI

References

1. L. Boccardo and D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic equa-
tions. NoDEA Nonlinear Differential Equations and Appl., 9(3) (2002), 309–323.

2. J. F. Bonder, S. Martínez and J. D. Rossi,Existence results for Gradient elliptic systems with
nonlinear boundary conditions. NoDEA Nonlinear Differential Equations and Appl., Vol. 14,
Num. 1–2 (2007), 153–179.

3. E.A. EL–Zahrani and H. M Serag, Existence of weak solutions for Nonlinear Elliptic systems
on R

N. Electronic Journal of Differential equations, Vol. 2006(2006); No. 69, 1–10.

4. P. Felmer, R.F. Manásevich and F. de Thélin, Existence and uniqueness of positive solutions
for certain quasilinear elliptic systems. Comm. Part. Diff. Equa., 17 (1992), 2013–2029.

5. O. Torné, Steklov problem with an indefinite weight for the p–Laplacien, Electronic Journal
of Differential Equations, Vol. 2005(2005), No. 87, pp. 1–8.

Aomar ANANE

Omar CHAKRONE

Belhadj KARIM

Abdellah ZEROUALI

Université Mohamed I, Faculté des Sciences,

Département de Mathématiques et Informatique,

Oujda, Maroc

E-mail address: ananeomar@yahoo.fr

E-mail address: chakrone@yahoo.fr

E-mail address: karembelf@hotmail.com

E-mail address: abdellahzerouali@yahoo.fr


	Introduction
	Preliminaries
	Existence of solution for a system Steklov problem 

