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A unified theory for R0 , R1 and certain other separation properties
and their variant forms
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abstract: The purpose of the present paper is towards working out a unified
version of the study of certain separation axioms and their neighbouring forms, as
are already available in the literature. In terms of an operation, as initiated by Á.
Császár, we introduce unified definitions of R0, R1, T0 and T1 spaces and derive
results concerning them from which many of the existing results follow as special
cases.
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1. Introduction

It is observed from literature that there has been a considerable work on different
relatively weak forms of separation axioms, like R0 and R1 axioms in particular;
several other neighbouring forms of them have also been studied in many papers.
For instance, semi-R0, pre-R0, δ-pre-R0, α-R0, β-R0 are some of the variant forms
of R0-property, that have been investigated by different researchers as separate
entities. Similar observation applies to R1, T0 and T1 axioms. As can be observed,
all these variations have been effected by using different types of operators like
int, intcl, intclδ, clintδ, clint, intclint, clintcl, where int and cl respectively stand
for interior and closure operators, and clδ denotes the δ-closure operator. Now,
the concept of a generalized type of operator, called operation on the power set
P(X) of a topological space (X, τ), was introduced by [5]. It turns out from
the investigations here that by judicious use of the notion of ‘operation’, one can
give generalized definitions of R0, R1, T0, T1 axioms from which the definitions of
different varied forms of such properties and many known results thereon follow as
particular consequences. These known definitions and theorems, encompassed by
our unified study, are appended mainly at the end of the paper in two tables.

1 The first author acknowledges the financial support from UGC, New Delhi.
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2. R0 spaces

We now begin by recalling a few definitions and observe that many of the
existing relevant definitions considered in various papers turn out to be special
cases of the ones given below.

Definition 2.1. [5] Let (X, τ) be a topological space. A mapping ψ : P(X) →
P(X) is called an operation on P(X), where P(X) denotes as usual the power set
of X, if for each A ∈ P(X) \ {∅}, intA ⊆ ψ(A) and ψ(∅) = ∅.

The set of all operations on a space X will be denoted by O(X)

Observation 2.2. It is easy to check that some examples of operations on a space
X are the well known operators viz. int, intcl, intclδ, clint, intclint, clintcl.

Definition 2.3. [5] Let ψ denote an operation on a space (X, τ). Then a subset
A of X is called ψ-open if A ⊆ ψ(A). Complements of ψ-open sets will be called
ψ-closed sets. The family of all ψ-open (resp. ψ-closed) subsets of X is denoted
by ψO(X) (resp. ψC(X))

Observation 2.4. It is clear that if ψ stands for any of the operators int, intcl,
intclδ, clint, intclint, clintcl, then ψ-openness of a subset A of X coincides with
respectively the openness, preopenness, δ-preopenness, semi-openness, α-openness
and β-openness of A (see [10,20,27,28,11,1])

Definition 2.5. [5] Let (X, τ) be a topological space, ψ ∈ O(X) and A ⊆ X.
Then the intersection of all ψ-closed sets containing A is called the ψ-closure of A,
denoted by ψ-clA; alternately, ψ-clA is the smallest ψ-closed set containing A.

It is known [12] that x ∈ ψ-clA iff A ∩ U 6= ∅, for all U with x ∈ U ∈ ψO(X).

Observation 2.6. Obviously if one takes interior as the operation ψ, then ψ-
closure becomes equivalent to the usual closure. Similarly, ψ-closure becomes pcl,
pclδ, scl, α-cl, β-cl, if ψ is taken to stand for the operators intcl, intclδ, clint,
intclint and clintcl respectively (see [10,20,27,28,11,1] for details).

Definition 2.7. For any ψ ∈ O(X) and any subset A of a space (X, τ), the ψ-
kernel of A, denoted by ψ-ker(A), is defined by the relation : ψ-ker(A) = ∩{G ∈
ψO(X) : A ⊆ G}.

Observation 2.8. For ψ ∈ O(X), if we take ψ = int (resp. intcl, clint,
intclδ, intclint, clintcl), then ψ-ker(A) becomes ker(A) [6,25] (resp. pker(A)
[2], pkerδ(A) [3], kerα(A) [4], β-ker(A) [29]).

A new expression for ψ-ker(A) is given by the following

Lemma 2.9. Let X be a space, ψ ∈ O(X) and A ⊆ X. Then
ψ-ker(A) = {x ∈ X : ψ-cl({x}) ∩A 6= ∅}.

Proof. Let x ∈ ψ-ker(A) and ψ-ker({x})∩A = ∅. Then x 6∈ X \ψ-cl({x}), which
is a ψ-open set containing A. Thus x 6∈ ψ-ker(A), a contradiction.

Conversely, let x ∈ X be such that ψ-ker({x}) ∩ A 6= ∅. If possible, let
x 6∈ ψ-ker(A). Then ∃G ∈ ψO(X) such that x 6∈ G and A ⊆ G. Let y ∈ ψ({x})∩A.
Then y ∈ ψ-cl({x}) and y ∈ G, which gives x ∈ G, a contradiction.

Definition 2.10. [12] Corresponding to a ψ ∈ O(X), a topological space (X, τ)
is called ψ-R0 if (U ∈ ψO(X) and x ∈ U ⇒ ψ-cl({x}) ⊆ U).

Observation 2.11. R0 space, pre-R0 space, semi-R0 space, δ-pre-R0 space, α-
R0 space and β-R0 space have been defined and studied in [6,22], [2], [8], [3],
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[4] and [29] respectively. The above definition gives a unified version of all these
definitions if the role of ψ is taken respectively by the operators int, intcl, clint,
intclδ, intclint and clintcl.
Theorem 2.12. For any topological space X and any ψ ∈ O(X), the following
are equivalent :
(a) X is ψ-R0.
(b) F ∈ ψC(X) and x 6∈ F ⇒ F ⊆ U and x 6∈ U for some U ∈ ψO(X).
(c) F ∈ ψC(X) and x 6∈ F ⇒ F ∩ ψ-cl({x}) = ∅.
(d) For any two distinct points x, y ofX, either ψ-cl({x}) = ψ-cl({y}) or ψ-cl({x})∩
ψ-cl({y}) = ∅.
Proof. (a) ⇒ (b) : F ∈ ψC(X) and x 6∈ F ⇒ x ∈ X \ F ∈ ψO(X) ⇒
ψ-cl({x}) ⊆ X \ F (by (a)). Put U = X \ ψ-cl({x}). Then x 6∈ U ∈ ψO(X) and
F ⊆ U .
(b) ⇒ (c) : F ∈ ψC(X) and x 6∈ F ⇒ ∃ U ∈ ψO(X) such that x 6∈ U and F ⊆ U

(by (b)) ⇒ U ∩ ψ-cl({x}) = ∅ ⇒ F ∩ ψ-cl({x}) = ∅.
(c) ⇒ (d) : Suppose that for any two distinct points x, y of X, ψ-cl({x}) 6=
ψ-cl({y}). Then suppose without any loss of generality that there exists some
z ∈ ψ-cl({x}) such that z 6∈ ψ-cl({y}). Thus ∃ V ∈ ψO(X) such that z ∈ V and
y 6∈ V but x ∈ V . Thus x 6∈ ψ-cl({y}). Hence by (c), ψ-cl({x}) ∩ ψ-cl({y}) = ∅.
(d) ⇒ (a) : Let U ∈ ψO(X) and x ∈ U . Then for each y 6∈ U , x 6∈ ψ-cl({y}).
Thus ψ-cl({x}) 6= ψ-cl({y}). Hence by (d), ψ-cl({x}) ∩ ψ-cl({y}) = ∅, for each
y ∈ X \ U . So ψ-cl({x}) ∩ [∪{ψ-cl({y}) : y ∈ X \ U}] = ∅ ... (i).
Now, U ∈ ψO(X) and y ∈ X \U ⇒ {y} ⊆ ψ-cl({y}) ⊆ ψ-cl(X \U) = X \U . Thus
X \ U = ∪{ψ-cl({y}) : y ∈ X \ U}. Hence from (i), ψ-cl({x}) ∩ (X \ U) = ∅ ⇒
ψ-cl({x}) ⊆ U , showing that (X, τ) is ψ-R0.
Lemma 2.13. Let ψ be an operation on a topological space (X, τ). Then y ∈
ψ-ker({x}) iff x ∈ ψ-cl({y}).
Proof. y 6∈ ψ-ker({x}) ⇒ ∃ V ∈ ψO(X) containing x such that y 6∈ V ⇒
x 6∈ ψ-cl({y}). The converse part can be proved in a similar way.
Theorem 2.14. Let ψ be an operation on a topological space (X, τ). Then for
any two points x, y ∈ X, the following are equivalent :
(a) ψ-ker({x}) 6= ψ-ker({y}).
(b) ψ-cl({x}) 6= ψ-cl({y}).
Proof. (a) ⇒ (b) : ψ-ker({x}) 6= ψ-ker({y}) ⇒ ∃ z ∈ ψ-ker({x}) such that
z 6∈ ψ-ker({y}) (say). Now, z ∈ ψ-ker({x}) ⇔ x ∈ ψ-cl({z}); and z 6∈ ψ-ker({y})
⇔ y 6∈ ψ-cl({z}). As ψ-cl({x}) ⊆ ψ-cl({z}), we have y 6∈ ψ-cl({x}). Hence
ψ-cl({x}) 6= ψ-cl({y}).
(b) ⇒ (a) : ψ-cl({x}) 6= ψ-cl({y}) ⇒ ∃ z ∈ X such that z ∈ ψ-cl({x}) and
z 6∈ ψ-cl({y}) (say) ⇒ ∃ U ∈ ψO(X) such that z ∈ U , y 6∈ U and x ∈ U

⇒ y 6∈ ψ-ker({x}). Thus ψ-ker({x}) 6= ψ-ker({y}).
Theorem 2.15. Let ψ be an operation on a topological space (X, τ). Then
(X, τ) is ψ-R0 iff for any two points x, y ∈ X, ψ-ker({x}) 6= ψ-ker({y}) implies
ψ-ker({x}) ∩ ψ-ker({y}) = ∅.
Proof. Let x, y be any two points in a ψ-R0 space X such that ψ-ker({x}) 6=
ψ-ker({y}). Hence by Theorem 2.14, ψ-cl({x}) 6= ψ-cl({y}). We show that



18 B. Roy and M. N. Mukherjee

ψ-ker({x}) ∩ ψ-ker({y}) = ∅. In fact, z ∈ ψ-ker({x}) ∩ ψ-ker({y}) ⇒ x, y ∈
ψ-cl({z}) (by Lemma 2.13) ⇒ ψ-cl({x}) = ψ-cl({z}) = ψ-cl({y}) (using Theorem
2.12).

Conversely, let for any points x, y ∈ X, ψ-cl({x}) 6= ψ-cl({y}). Then by The-
orem 2.14, ψ-ker({x}) 6= ψ-ker({y}). Thus ψ-ker({x}) ∩ ψ-ker({y}) = ∅. Hence
ψ-cl({x})∩ψ-cl({y}) = ∅. In fact, z ∈ ψ-cl({x})∩ψ-cl({y}) ⇒ x, y ∈ ψ-ker({z}).
Thus ψ-cl({x}) ∩ ψ-cl({z}) 6= ∅. Hence by hypothesis, ψ-ker({x}) = ψ-ker({z}).
By similar way it follows that ψ-ker({y}) = ψ-ker({z}). Thus ψ-ker({x}) =
ψ-ker({y}) which is a contradiction. Hence ψ-cl({x})∩ψ-cl({y}) = ∅ and then by
Theorem 2.12, the space X becomes ψ-R0.

Theorem 2.16. For any ψ ∈ O(X) on a space X the following statements are
equivalent :
(a) X is a ψ-R0 space.
(b) For any non-empty set A and any G ∈ ψO(X) such that A ∩ G 6= ∅, there
exists F ∈ ψC(X) such that A ∩ F 6= ∅ and F ⊆ G.
(c) For any G ∈ ψO(X), G = ∪{F ∈ ψC(X) : F ⊆ G}.
(d) For any F ∈ ψC(X), F = ∩{G ∈ ψO(X) : F ⊆ G}.
(e) For any x ∈ X, ψ-cl({x}) ⊆ ψ-ker({x}).

Proof. (a) ⇒ (b) : Let A be a non-empty subset of X and G ∈ ψO(X) such
that A ∩ G 6= ∅. Let x ∈ A ∩ G. Then as x ∈ G ∈ ψO(X), we have by (a),
ψ-cl({x}) ⊆ G. Put F = ψ-cl({x}). Then F ∈ ψC(X), F ⊆ G and A ∩ F 6= ∅.

(b) ⇒ (c) : Let G ∈ ψO(X). Then G ⊇ ∪{F ∈ ψC(X) : F ⊆ G}. Let x ∈ G.
Then ∃ F ∈ ψC(X) such that x ∈ F and F ⊆ G. Thus x ∈ F ⊆ ∪{R ∈ ψC(X) :
R ⊆ G}. Hence (c) follows.

(c) ⇒ (d) : It is trivial.

(d) ⇒ (e) : Let x ∈ X. Now, y 6∈ ψ-ker({x} ⇒ ∃ V ∈ ψO(X) such that x ∈ V

and y 6∈ V ⇒ ψ-cl({y})∩V = ∅ ⇒ [∩{G ∈ ψO(X) : ψ-cl({y}) ⊆ G}]∩V = ∅ (by
(d)) ⇒ ∃ G ∈ ψO(X) such that x 6∈ G and ψ-cl({y}) ⊆ G ⇒ y 6∈ ψ-cl({x}).

(e) ⇒ (a) : Let G ∈ ψO(X) and x ∈ G. Let y ∈ ψ-ker({x}). Then x ∈ ψ-cl({y})
and hence y ∈ G. This implies that ψ-ker({x}) ⊆ G. Thus x ∈ ψ-cl({x}) ⊆
ψ-ker({x}) ⊆ G ⇒ X is ψ-R0.

Corollary 2.17. Let ψ be an operation on a space X. Then X is ψ-R0 iff
ψ-cl({x}) = ψ-ker({x}), ∀ x ∈ X.

Proof. Suppose X is ψ-R0. By Theorem 2.16, ψ-cl({x}) ⊆ ψ-ker({x}) for
each x ∈ X. Let y ∈ ψ-ker({x}). Then x ∈ ψ-cl({y}) (by Lemma 2.13), and
hence by Theorem 2.12, ψ-cl({x}) = ψ-cl({y}). Thus y ∈ ψ-cl({x}) and hence
ψ-ker({x}) ⊆ ψ-cl({x}). Thus ψ-cl({x}) = ψ-ker({x}).

The converse is obvious in view of Theorem 2.16.

Theorem 2.18. A topological space X is ψ-R0, for a given ψ ∈ O(X), iff for any
x, y ∈ X (x ∈ ψ-cl({y}) iff y ∈ ψ-cl({x})).

Proof. First suppose that the space X is ψ-R0. Let x ∈ ψ-cl({y}) and U ∈ ψO(X)
with y ∈ U . Then ψ-cl({x}) ⊆ U so that x ∈ U . Thus y ∈ ψ-cl({x}).

Conversely, let U ∈ ψO(X) and x ∈ U . If y 6∈ U , then x 6∈ ψ-cl({y}) and hence
by hypothesis, y 6∈ ψ-cl({x}). Thus ψ-cl({x}) ⊆ U . Consequently, X is ψ-R0.
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Theorem 2.19. Let X be a topological space and ψ ∈ O(X). Then the following
are equivalent :
(a) X is ψ-R0.
(b) If F ∈ ψC(X), then F = ψ-ker(F ).
(c) If F ∈ ψC(X) and x ∈ F , then ψ-ker({x}) ⊆ F .
(d) If x ∈ X, then ψ-ker({x}) ⊆ ψ-cl({x}).
Proof. ‘(a) ⇒ (b)’ is obvious by virtue of Theorem 2.16, whereas ‘(b) ⇒ (c)’
follows from the fact that {x} ⊆ F ⇒ ψ-ker({x}) ⊆ ψ-ker(F ) = F . Again, since
x ∈ ψ-cl({x}) ∈ ψC(X) we have by (c), ψ-ker({x}) ⊆ ψ-cl({x}) and (d) follows.
(d) ⇒ (a) : Let x ∈ ψ-cl({y}). Then by Lemma 2.13, y ∈ ψ-ker({x}). Hence
by (d) we have y ∈ ψ-cl({x}). Thus x ∈ ψ-cl({y}) ⇒ y ∈ ψ-cl({x}). The reverse
implication follows similarly. Hence by Theorem 2.18, X is ψ-R0.
Definition 2.20. Let ψ be an operation on a topological space (X, τ). Then the
space X is said to be a
(i) ψ-T0 space [12] if for any two distinct points x and y in X, there exists a ψ-open
set containing one of x, y and not the other;
(ii) ψ-T1 space [12] if for any two distinct points x and y of X, there exist ψ-open
set U, V such that x ∈ U , y 6∈ U , x 6∈ V , y ∈ V ;
(iii) ψ-T2 space if for any two distinct points x and y of X, there exist two disjoint
ψ-open sets containing x and y respectively.
Observation 2.21. In a topological space X if we take ψ = int (resp. intcl, clint,
intclδ, intclint, clintcl) then the concept of ψ-Ti property coincides with that of Ti
(resp. pre-Ti [24], semi-Ti [18], (δ, p)-Ti [3], α-Ti [19,16] and β-Ti [15]) property,
for i = 0, 1, 2.
Theorem 2.22. For any ψ ∈ O(X) on a space X, the following are equivalent:
(a) X is ψ-T1.
(ii) ψ-cl({x}) = {x}, for all x ∈ X.
(iii) X is ψ-R0 and ψ-T0.
Proof. (a) ⇒ (b) : y 6∈ {x} ⇒ ∃ U ∈ ψO(X) such that y ∈ U , x 6∈ U ⇒
U ∩ {x} = ∅ ⇒ y 6∈ ψ-cl({x}).
(b) ⇒ (c) : Let x, y ∈ X with x 6= y. Then {x} and {y} are ψ-closed and hence
X \ {x} is a ψ-open set containing y but not x showing X to be ψ-T0.

Again, x, y ∈ X with x 6= y ⇒ ψ-cl({x}) 6= ψ-cl({y}). Also, ψ-cl({x}) ∩
ψ-cl({y}) = ∅. Thus by Theorem 2.12, X is ψ-R0.
(c) ⇒ (a) : x, y ∈ X with x 6= y ⇒ ∃ U ∈ ψO(X) such that x ∈ U and y 6∈ U (say)
⇒ ψ-cl({x}) ⊆ U (as X is ψ-R0) and so y 6∈ ψ-cl({x}). Hence x ∈ U ∈ ψO(X),
y 6∈ U and y ∈ X \ ψ-cl({x}) ∈ ψO(X), x 6∈ X \ ψ-cl({x}). So X is a ψ-T1 space.
Note 2.23. We observe that for any point x in any topological space X, {x}
is either preopen or preclosed [17] (resp. δ-preclosed or δ-preopen [3], β-open or
β-closed [23]) so that every topological space is pre-T0. Thus in view of Theorem
2.22, we arrive at the result, that a topological space is pre-R0 iff it is pre-T1 [4]
(resp. (δ, p)-R0 iff (δ, p)-T1 [3], β-R0 iff β-T1 [29]).
Definition 2.24. [13] Let ψ be an operation on a topological space X. Then a
net {xα}α∈D in X is said to ψ-converge to a point x of X if the net is eventually
in every ψ-open set containing x.
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Observation 2.25. In the above definition if we take ψ = int ((resp. intcl, clint,
intclδ, intclint, clintcl) then ψ-convergence reduces to the usual convergence (resp.
preconvergence [21], semi-convergence [28], δ-pre-convergence [26], α-convergence
[11] and β-convergence [29]) of nets.
Lemma 2.26. Let x, y be two points in a space X and ψ ∈ O(X). If every net in
X which ψ-converges to y, also ψ-converges to x, then x ∈ ψ-cl({y}).
Proof. Let us consider the net xn = y for each n ∈ N (N denoting the set of
natural numbers). Clearly the net ψ-converges to y, and hence ψ-converges to x.
Thus if U ∈ ψO(X) with x ∈ U , then {xn}n∈N is eventually in U , which implies
y ∈ U . Thus x ∈ ψ-cl({y}).
Theorem 2.27. Let ψ be an operation on a topological space X. Then X is
ψ-R0 iff for any x, y ∈ X, [ y ∈ ψ-cl({x}) ⇔ every net in X ψ-converging to y also
ψ-converges to x ].
Proof. Let X be ψ-R0. Suppose y ∈ ψ-cl({x}) for some x, y ∈ X and let {xα}α∈D

be a net inX ψ-converging to y. Since y ∈ ψ-cl({x}), by Theorem 2.12, ψ-cl({x}) =
ψ-cl({y}). Let U ∈ ψO(X) such that x ∈ U . Then y ∈ U (as x ∈ ψ-cl({y})) and
hence ∃ α0 ∈ D such that if α ≥ α0 then xα ∈ U . Thus {xα}α∈D ψ-converges
to x. On the other hand, suppose that every net in X ψ-converging to y, ψ-
converges to x. Then by Lemma 2.26, x ∈ ψ-cl({y}). Thus by Theorem 2.12,
ψ-cl({x}) = ψ-cl({y}) and hence y ∈ ψ-cl({x}).

Conversely, to prove X to be ψ-R0, let U be a ψ-open set and x ∈ U . Let
y ∈ X \ U . For each n ∈ N, let xn = y. Then the net {xn}n∈N ψ-converges to
y, but {xn} is not ψ-convergent to x. Thus y 6∈ ψ-cl({x}) (by hypothesis). Hence
ψ-cl({x}) ⊆ U , proving X to be ψ-R0.

3. R1 spaces

Definition 3.1. Let ψ be an operation on a topological space X. The space X
is said to be ψ-R1 if for x, y ∈ X with ψ-cl({x}) 6= ψ-cl({y}), there exist disjoint
ψ-open sets U and V such that ψ-cl({x}) ⊆ U and ψ-cl({y}) ⊆ V .
Observation 3.2. It is easy to check that the above definition of a ψ-R1 space
unifies the existing definitions of R1, pre-R1, semi-R1, δ-pre-R1, α-R1, and β-R1

spaces if the operators int, intcl, clint, intclδ, intclint, clintcl respectively take
the role of ψ in the above definition (refer to the papers [22], [2], [7], [3], [4], [29]
respectively).
Theorem 3.3. If a space X is ψ-R1, for some ψ ∈ O(X), then X is ψ-R0.
Proof. Let U ∈ ψO(X) and x ∈ U . If y 6∈ U then ψ-cl({x}) 6= ψ-cl({y}) (as
x 6∈ ψ-cl({y})). Hence ∃ V ∈ ψO(X) such that ψ-cl({y}) ⊆ V and x 6∈ V . This
gives y 6∈ ψ-cl({x}), proving that ψ-cl({x}) ⊆ U . So X is a ψ-R0 space.
Theorem 3.4. Let ψ be an operation on a topological space X. Then the following
are equivalent :
(a) X is ψ-T2.
(b) X is ψ-R1 and ψ-T1.
(c) X is ψ-R1 and ψ-T0.
Proof. (a) ⇒ (b) : Let X be ψ-T2. Then X is clearly ψ-T1. Now if x, y ∈ X

with ψ-cl({x}) 6= ψ-cl({y}), then x 6= y and so ∃ U, V ∈ ψO(X) such that x ∈ U ,
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y ∈ V and U ∩ V = ∅. Hence by Theorem 2.22, ψ-cl({x}) = {x} ⊆ U and
ψ-cl({y}) = {y} ⊆ V and U ∩ V = ∅. Thus X is ψ-R1.

(b) ⇒ (c) : It is obvious.

(c) ⇒ (a) : Let X be ψ-R1 and ψ-T0. Then by Theorem 3.3, X is ψ-R0 and
ψ-T0. Thus X is ψ-T1 (by Theorem 2.22). Let x, y ∈ X with x 6= y. Then
ψ-cl({x}) = {x} 6= {y} = ψ-cl({y}). As X is ψ-R1, there exist U, V ∈ ψO(X) such
that ψ-cl({x)}) = {x} ⊆ U , ψ-cl({y}) = {y} ⊆ V and U ∩V = ∅. Thus X is ψ-T2.

Theorem 3.5. Let ψ be an operation on a topological space X. Then the following
are equivalent :
(a) X is ψ-R1

(b) For any x, y ∈ X, one of the following holds :
(i) for U ∈ ψO(X), x ∈ U iff y ∈ U ;
(ii) ∃ disjoint ψ-open sets U and V such that x ∈ U , y ∈ V .
(c) If x, y ∈ X such that ψ-cl({x}) 6= ψ-cl({y}), then ∃ ψ-closed sets F1 and F2

such that x ∈ F1, y 6∈ F1, y ∈ F2, x 6∈ F2 and X = F1 ∪ F2.

Proof. (a) ⇒ (b) : Let x, y ∈ X. Then ψ-cl({x}) = ψ-cl({y}) or ψ-cl({x}) 6=
ψ-cl({y}). If ψ-cl({x}) = ψ-cl({y}) and U ∈ ψO(X), then x ∈ U ⇒ y ∈
ψ-cl({y}) = ψ-cl({x}) ⊆ U (as X is ψ-R0). If ψ-cl({x}) 6= ψ-cl({y}), then ∃
U, V ∈ ψO(X) such that x ∈ ψ-cl({x}) ⊆ U , y ∈ ψ-cl({y}) ⊆ V and U ∩ V = ∅.

(b) ⇒ (c) : Let x, y ∈ X such that ψ-cl({x}) 6= ψ-cl({y}). Then x 6∈ ψ-cl({y}),
so that ∃ G ∈ ψO(X) such that x ∈ G and y 6∈ G. Thus by (b), ∃ disjoint ψ-open
sets U and V such that x ∈ U , y ∈ V . Put F1 = X \ V and F2 = X \ U . Then
F1, F2 ∈ ψC(X), x ∈ F1, y 6∈ F1, y ∈ F2, x 6∈ F2 and X = F1 ∪ F2.

(c) ⇒ (a) : Let U ∈ ψO(X) and x ∈ U . Then ψ-cl({x}) ⊆ U . In fact, otherwise
∃ y ∈ ψ-cl({x})∩(X \U). Then ψ-cl({x}) 6= ψ-cl({y}) (as x 6∈ ψ-cl({y})) and so by
(c), ∃ F1, F2 ∈ ψC(X) such that x ∈ F1, y 6∈ F1, y ∈ F2, x 6∈ F2 and X = F1 ∪ F2.
Then y ∈ F2 \ F1 = X \ F1 and x 6∈ X \ F1, where X \ F1 ∈ ψO(X), which is
a contradiction to the fact that y ∈ ψ-cl({x}). Hence ψ-cl({x}) ⊆ U . Thus X is
ψ-R0. To show X to be ψ-R1 assume that a, b ∈ X with ψ-cl({a}) 6= ψ-cl({b}).
Then as above, ∃ P1, P2 ∈ ψC(X) such that a ∈ P1, b 6∈ P1, b ∈ P2, a 6∈ P2

and X = P1 ∪ P2. Thus a ∈ P1 \ P2 ∈ ψO(X), b ∈ P2 \ P1 ∈ ψO(X). So
ψ-cl({a}) ⊆ P1 \ P2, ψ-cl({b}) ⊆ P2 \ P1. Thus X is ψ-R1.

In view of Theorem 3.4 and 3.5, it now follows that

Theorem 3.6. Let ψ be an operation on a space X. Then X is ψ-T2 iff for
x, y ∈ X with x 6= y, there exist ψ-closed sets F1 and F2 such that x ∈ F1, y 6∈ F1,
y ∈ F2, x 6∈ F2 and X = F1 ∪ F2.
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Theorem 3.7. Let ψ be an operation on a topological space (X, τ). Then X is
ψ-R1 iff for x, y ∈ X, with ψ-ker({x}) 6= ψ-ker({y}), there exist disjoint ψ-open
sets U and V such that ψ-cl({x}) ⊆ U and ψ-cl({y}) ⊆ V .

Proof. Follows from Theorem 2.14 and Definition 3.1.

Conclusion : As the concluding observations we append below two tables;
the first one shows the existing definitions that have been unified by our introduced
ones while the second table demonstrates the different results obtained in different
existing papers and which follow as special cases of their unified versions obtained
in this paper.

ψ τ PO(X) SO(X) δ-PO(X) β(X) α(X)
[7,9] [2] [8] [3] [29] [4]

Def. 2.7 Def. 1.2 Def. 2 Def. 10 Def. 4.1 Def. 10

Def. 2.10 Def. 1.1 Def. 3 Def. 1.6 Def. 12 Def. 4.4 Def. 12

Def. 2.20 Well-known Page 19 Def. 1.4 and 1.5 Def. 6 Preliminaries Preliminaries

Def. 2.24 Def. 1.2 Def. 4 Def. 1.8 Page 60 Page 11

Def. 3.1 Def. 1.3 Def. 5 Def. 1.6 Def. 13 Def. 4.17 Def. 13

Table - 1

ψ τ PO(X) SO(X) δ-PO(X) β(X) α(X)
[7,9] [2] [8] [3] [29] [4]

Lem. 2.9 Lem. 3.2 Lem. 4.1 Lem. 4.3 Lem. 4.1

Th. 2.12 Prop. 3.4 Th. 4.9

Lem. 2.13 Lem. 3.1 Lem. 4.7 Lem. 4.6

Th. 2.14 Lem. 2.1 Lem. 3.6 Lem. 4.8 Lem. 4.7

Th. 2.15 Th. 2.1 Th. 3.7 Th. 4.10 Th. 4.9

Th. 2.16 Th. 2.2 Th. 3.8 Th. 5.5 Th. 4.11 Th. 4.10

Cor. 2.17 Cor. 3.9 Cor. 4.12 Cor. 4.11

Th. 2.18 Th. 3.12 Th. 4.13 Th. 4.12

Th. 2.19 Th. 3.13 Th. 5.6 Th. 4.13

Th. 2.22 Cor.(of Th. 3.11 Th. 2.2 Cor. 5.3
page 889) [6]

Lem. 2.26 Lem. 2.1 Lem. 3.14 Lem. 3.1 Lem. 4.14 Lem. 4.14

Th. 2.27 Th. 2.7 Th. 3.15 Th. 3.1 Th. 4.15 Th. 4.15

Th. 3.3 Prop. 4.1 Th. 2.1 Cor. 6.3 Th. 4.16 Page 12

Th. 3.4 Th. 4.2 Th. 2.2 Th. 6.2

Th. 3.5 Th. 3.1 Th. 4.3 Th. 2.3 Th. 6.4

Th. 3.6 Th. 2.4

Th. 3.7 Th. 4.4 Th. 4.19 Th. 4.17

Table - 2
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13. M. Kücük and İ. Zorlutuna, A unification on compactness and closedness, Soochow J. Math.
29(3)(2003), 221-233.

14. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly
70(1963), 36-41.

15. R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc.
Pakistan Acad. Sci. 27(3)(1990), 285-296.

16. H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka
Univ. Ed. Part III 42(1993), 13-21.

17. H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi

Univ. Ser. Math. 17(1996), 33-42.

18. S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles Sér.
I 89(1975), 395-402.

19. S. N. Maheshwari and S. S. Thakur, On α-irresolute mappings, Tamkang J. Math. 11(1980),
209-214.

20. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak
precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.

21. A. S. Mashhour, A. A. Alam, I. A. Hasanein and K. M. Abd El-Hakeim, On strongly com-
pactness, Bull. Cal. Math. Soc. 79(1987), 243-248.

22. S. A. Naimpally, On R0-topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math.
10(1967), 53-54.

23. T. Noiri and E. Hatir, Λsp-sets and some weak separation axioms, Acta. Math. Hungar.
103(3) (2004), 225-232.

24. T.M.J. Nour, Contributions to the theory of Biotopological spaces, Ph. D. Thesis, Univ. of
Delhi, 1989.

25. A. G. Murdeshwar and S. A. Naimpally, R1 topological spaces, Canad. Math. Bull. 9(1965),
521-523.

26. S. Raychoudhuri and M. N. Mukherjee, δp-closedness for topological spaces, J. Indian Acad.
Math. 19(1)(1996), 89-99.

27. S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst.
Math. Acad. Sinica 21(1993), 357-366.

28. I. L. Reilly and M. K. Vamanamurthy, On semi compact spaces, Bull. Malays. Math. Soc.
7(2)(1984), 61-67.

29. S. Tahiliani, Study of some weak separation axioms using β-open sets and β-closure operator,
Jour. Tri. Math. Soc. 10(2008), 53-62.



24 B. Roy and M. N. Mukherjee

Bishwambhar Roy

Department of Mathematics

Women’s Christian College

6,Greek Church Row

Kolkata-700026

INDIA

bishwambhar roy@yahoo.co.in

and

M. N. Mukherjee

Department of Pure Mathematics

University of Calcutta

35, Ballygunge Circular Road

Kolkata–700019.

INDIA

mukherjeemn@yahoo.co.in


	Introduction
	R0 spaces 
	R1 spaces

