4FPh

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/spm

(3s.) **v. 28** 1 (2010): 51–65. ISSN-00378712 IN PRESS doi:10.5269/bspm.v28i1.10815

Eigenvalues of an Operator Homogeneous at the Infinity

Aomar Anane, Omar Chakrone, Mohammed Filali And Belhadj Karim

ABSTRACT: In this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case N = 1. Finally we study the solvability of the problem

$$\begin{cases} \mathcal{A}(u) := -div(A(x, \nabla u)) &= f(x, u) + h & \text{ in } \Omega, \\ u &= 0 & \text{ on } \partial\Omega, \end{cases}$$

as well as the spectrum of

$$\left\{ \begin{array}{rrl} G_0'(u)&=&\lambda m|u|^{p-2}u& \mbox{ in }\Omega,\\ u&=&0& \mbox{ on }\partial\Omega \end{array} \right.$$

Key Words:: Operator homogeneous at infinity; Eigenvalues; Boundary Value problem.

Contents

1	Introduction	51
2	Preliminaries	52
3	Eigenvalues Problem	54
4	Variational Formulation	56
5	Quasilinear problem	58
6	Fredholm Alternative	59
7	The eigenvalue in the case N=1 7.1 Application	62 63

1. Introduction

Consider the quasilinear problem

$$\begin{cases} \mathcal{A}(u) := -div(A(x, \nabla u)) = f(x, u) + h & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where Ω is a bounded domain in \mathbb{R}^N , $N \geq 1$, $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function, $h \in W^{-1,p'}(\Omega)$ an arbitrary function, p' is the Hölder conjugate exponent of p, $(1 and <math>A(x,\xi) = (A_i(x,\xi))_{1 \leq i \leq N}$ such that $A_i(x,\xi) : \Omega \times \mathbb{R}^N \to \mathbb{R}$

²⁰⁰⁰ Mathematics Subject Classification: 35P30, 34L30

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

are functions satisfying the usual growth conditions. We require some conditions on the functional A_i such that the operator $\mathcal{A}(u)$ will be homogenous at the infinity and derive from a potential G(u) (i.e., $G' = \mathcal{A}$). For example, for $\varepsilon > 0$, $\mathcal{A}(u) =$ $-\Delta_p^{\varepsilon} u = -div((\varepsilon + |\nabla u|^2)^{\frac{p-2}{2}} \nabla u)$ is an homogenous operator at the infinity and $G'_0(u) = -\Delta_p u = -div(|\nabla u|^{p-2} \nabla u)$ is an associated homogenous operator. The Problem (1) has been studied by Anane in [2], he showed the existence of the weak solutions of the problem (1) with conditions of nonresonance under (the first eigenvalue of the operator \mathcal{A}). This paper is organized as follows. In section 2, we recall some results about our operators. In section 3, we show (see Theorem 3.1) the existence of sequences of eigenvalues $\lambda_n(m, \Omega)$ for the following problem

$$\begin{cases} G'_0(u) = \lambda m |u|^{p-2} u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2)

where G'_0 (not necessarily equal to $-\Delta_p$) is an associated homogenous operator of \mathcal{A} , G_0 is a potential associated to G'_0 , p > 1 and $m \in M^+(\Omega) = \{m \in L^{\infty}(\Omega); \max\{x \in \Omega; m(x) > 0\} \neq 0\}$ is the weight. In section 4, we give (see Proposition 4.1) the variational formulation of $\lambda_n(m,\Omega)$ and some properties. In section 5 we show a Theorem of nonresonance (see Theorem (5.1)). In section 6 we study (see Theorem 6.3) the Fredholm Alternative for the operators \mathcal{A} and G'_0 (i.e., if λ does not belong to the spectrum of G'_0), then the problem (1) (with $f(x, u) = \lambda m |u|^{p-2} u$), and the following problem

$$\begin{cases} G'_0(u) = \lambda m |u|^{p-2} u + h & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(3)

admit a solution for all $h \in W^{-1,p'}(\Omega)$. Finally in section 7, in the case N = 1, we establish the simplicity of all eigenvalues (the simplicity of the first eigenvalue remains open in the general case) and we study the problem (1), when $\frac{f(x,s)}{|s|^{p-2}s}$ and $\frac{pF(x,s)}{|s|^p}$ are situated between two consecutively eigenvalues, where $F(x,s) = \int_0^s f(x,t)dt$ (see Theorem 7.3).

2. Preliminaries

Consider the problem (1) with $A(x,\xi) = ((A_i(x,\xi))_{1 \le i \le N})$, satisfies the hypotheses:

 $(H_1) A_i : \Omega \times \mathbb{R}^N \to \mathbb{R}$ is a Carathéodory function and there exist $c \ge 0, k \in L^{p'}(\Omega)$ such that

$$|A_i(x,\xi)| \le c|\xi|^{p-1} + k(x), \forall \xi \in \mathbb{R}^N, a.e.x \in \Omega.$$
(4)

 (H_2) There exists a function $a:\Omega\times\mathbb{R}^N\to\mathbb{R}$ satisfies:

i) $a(x,.) : \mathbb{R}^N \to \mathbb{R}$ is continuously differentiable a.e. $x \in \Omega$ and $\frac{\partial a(x,\xi)}{\partial \xi_i} = A_i(x,\xi)$.

ii) $a(x, .): \mathbb{R}^N \to \mathbb{R}$ is convex and there exists $\delta > 0$ such that

$$a(x,\xi) \ge \delta |\xi|^p, \quad \forall \xi \in \mathbb{R}^N, \ a.e. \ x \in \Omega.$$
 (5)

 (H_3) There exists a Carathéodory function $a_0: \Omega \times \mathbb{R}^N \to \mathbb{R}$, where $a_0(x, .)$ is even and strictly convex such that

$$|a(x,t\xi) - t^p a_0(x,\xi)| \le t^p C(t)(|\xi|^p + k_1(x)), \ \forall \xi \in \mathbb{R}^N, t > 0, \ a.e. \ x \in \Omega,$$

for a certain function C of t such that $\lim_{t \to +\infty} C(t) = 0$ and $k_1 \in L^1(\Omega)$.

 $(H_4) \ a_0(x,.): \mathbb{R}^N \to \mathbb{R}$ is continuously differentiable and

- 1. There exist $c' \ge 0$, $k' \in L^{p'}(\Omega)$ such that $\left|\frac{\partial a_0(x,\xi)}{\partial \xi_i}\right| \le c'|\xi|^{p-1} + k'(x), \forall \xi \in \mathbb{R}^N, a.e.x \in \Omega.$
- 2. $\sum_{i=1}^{i=N} \frac{\partial a_0(x,\xi)}{\partial \xi_i} \xi_i \ge C_0 |\xi|^p K_0(x)$, for all $x \in \Omega$, $\xi \in \mathbb{R}^N$ with $C_0 > 0$ some constant and $K_0 \in L^1(\Omega)$.
- **Remarks 2.1** 1. From (H_1) the operator $\mathcal{A} : W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega) : \mathcal{A}(u) = -div(A(x,\nabla u)), \text{ with } \langle \mathcal{A}(u), v \rangle = \int_{\Omega} A(x,\nabla u) \nabla v = \sum_{i=1}^{i=N} \int_{\Omega} A_i(x,\nabla u) \frac{\partial v}{\partial x_i},$ is well defined, continuous on $W_0^{1,p}(\Omega)$.
 - 2. Let the functional $G: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by $G(u) = \int_{\Omega} a(x, \nabla u) dx$. Under the hypotheses (H_1) , (H_2) and (H_3) , G is well defined, weakly lower semicontinuous, continuously differentiable and $G'(u) = \mathcal{A}(u)$.
 - 3. we consider the functional $G_0: W_0^{1,p}(\Omega) \to \mathbb{R}$: $G_0(u) = \int_{\Omega} a_0(x, \nabla u) dx$. By the hypotheses (H_1) , (H_2) and (H_3) , the operator G_0 is well defined continuous and weakly lower semicontinuous.

Proposition 2.1 Assume that (H_1) , (H_2) and (H_3) hold. Then a_0 is unique and verifies the following conditions

- 1. $a_0(x, r\xi) = |r|^p a_0(x, \xi)$, for all $\xi \in \mathbb{R}^N$ and $r \in \mathbb{R}$.
- 2. We have $\lim_{||u||_{1,p} \to +\infty} \frac{G(u) G_0(u)}{||u||_{1,p}^p} = 0$ and $G_0(ru) = |r|^p G_0(u)$, for all $r \in \mathbb{R}$.
- 3. $G_0(u) \ge \delta ||u||_{1,p}^p$, for all $u \in W_0^{1,p}(\Omega)$, where $||u||_{1,p} = (\int_{\Omega} |\nabla u(x)|^p dx)^{\frac{1}{p}}$ the norm of $W_0^{1,p}(\Omega)$ and δ is defined in (5).
- 4. If (H_4) holds, then G_0 is continuously differentiable and G'_0 satisfies the (S^+) property, i.e., if $u_n \rightharpoonup u$ weakly in $W_0^{1,p}(\Omega)$ and $\limsup_{n \rightarrow +\infty} \langle G'_0(u_n), u_n u \rangle \leq 0$,

then $u_n \to u$ strongly in $W_0^{1,p}(\Omega)$).

Denoted

$$\frac{\partial a_0(x,\xi)}{\partial \xi_i} = A_i^0(x,\xi), \ A_0(x,\xi) = (A_i^0(x,\xi))_{1 \le i \le N}.$$
(6)

such that $G'_0: W^{1,p}_0 \to W^{-1,p'}_0(\Omega): G'_0(u) = -div(A_0(x, \nabla u))$, is the unique homogenous operator associated to the operator $\mathcal{A} = G'$.

Proof:

- 1. By (H_3) , it is clear that $a_0(x,\xi) = \lim_{t \to +\infty} \frac{a(x,t\xi)}{t^p}$ e.a. $x \in \Omega$ and for all $\xi \in \mathbb{R}^N$, this proves that a_0 is unique. For r > 0, $a_0(x,r\xi) = r^p \lim_{t \to +\infty} \frac{a(x,rt\xi)}{(rt)^p}$, so $a_0(x,r\xi) = r^p a_0(x,\xi)$. For r < 0, we have $a_0(x,-r\xi) = (-r)^p a_0(x,\xi)$, since $a_0(x,.)$ is even, thus $a_0(x,r\xi) = |r|^p a_0(x,\xi)$.
- 2. Results by 1.
- 3. From (H_3) , we obtain $a(x, t\nabla u) t^p C(t)(|\nabla u|^p + k_1(x)) \leq t^p a_0(x, \nabla u)$ and by (5), we conclude that $(\delta - C(t))|\nabla u|^p \leq a_0(x, \nabla u)$, thus $\delta|\nabla u|^p \leq a_0(x, \nabla u)$, consequently $G_0(u) \geq \delta||u||_{1,p}^p$ for all $u \in W_0^{1,p}(\Omega)$.
- 4. From 1) of (H_4) , G_0 is continuously differentiable and we have $\langle G'_0(u), v \rangle = \sum_{i=1}^{i=N} \int_{\Omega} A^0_i(x, \nabla u) \frac{\partial v}{\partial x_i}$. Since G_0 is convex strictly in ξ , then $\langle G'_0(u) G'_0(v), u v \rangle > 0$ for all $u, v \in W^{1,p}_0(\Omega)$ with $u \neq v$. The conditions 1), 2) of (H_4) and the fact that $\langle G'_0(u) - G'_0(v), u - v \rangle > 0$ for all $u, v \in W^{1,p}_0(\Omega)$, $(u \neq v)$ imply that G'_0 satisfies the (S^+) property (see [7] pp,25).

In the continuation we consider that the hypotheses (H_1) , (H_2) , (H_3) and (H_4) are verified.

3. Eigenvalues Problem

Consider the eigenvalues problem, find $(u, \lambda) \in W_0^{1,p}(\Omega) \setminus \{0\} \times \mathbb{R}_+$ such that

$$\int_{\Omega} A_0(x, \nabla u) \nabla v dx = \lambda \int_{\Omega} m |u|^{p-2} u v dx \tag{7}$$

for all $v \in W_0^{1,p}(\Omega)$, where $A_0(x, \nabla u) = (A_i^0(x, \nabla u))_{1 \le i \le N}$, is defined in (6). Consider $B: W_0^{1,p}(\Omega) \to \mathbb{R}$: $B(u) = \frac{1}{p} \int_{\Omega} m |u|^p dx$.

Lemma 3.1 If (u, λ) is a solution of (7), then $v = \left[\frac{1}{2\lambda G_0(u)}\right]^{\frac{1}{p}}u$ is a critical point of Φ : $W_0^{1,p}(\Omega) \to \mathbb{R}$, with $\Phi(v) = G_0^2(v) - B(v)$, corresponding to the critical value $c = -\frac{1}{4\lambda^2}$. Reciprocally if $(u \neq 0)$ is a critical point of Φ corresponding to the critical value c, then (u, λ) is a solution of (7), where $\lambda = \frac{1}{2\sqrt{-c}}$.

Proof: Let (u, λ) be a solution of (7), from Proposition (2.1) we conclude that for all $\beta \in \mathbb{R}^*$, βu is also eigenvalue corresponding to λ . For $\beta = \left[\frac{1}{2\lambda G_0(u)}\right]^{\frac{1}{p}}$, $v = \beta u$ verifies $G_0(v) = \frac{1}{2\lambda}$, thus $\lambda = \frac{1}{2G_0(v)}$ and $B(v) = \frac{1}{2\lambda^2}$. Consequently $\Phi'(v) = 0$ and $\Phi(v) = -\frac{1}{4\lambda^2}$. On the other hand if $u \neq 0$ is eigenvalue of Φ corresponding to the critical value c, then $\Phi(u) = -G_0^2(u) = c$, thus $G_0(u) = \sqrt{-c}$ and $\langle G'_0(u), v \rangle = \frac{1}{2G_0(u)} \langle B'(u), v \rangle$, for all $v \in W_0^{1,p}(\Omega)$. \Box **Theorem 3.1** The problem (7) admits an increasing positive sequences of the eigenvalue $(\lambda_n)_{n \in \mathbb{N}^*}$, with $\lim_{n \to +\infty} \lambda_n = +\infty$.

Proof: Throughout this paper we put

$$C_n = \inf_{K \in A_n(\gamma)} \sup_{v \in K} \Phi(v), \tag{8}$$

where

$$A_n(\gamma) = \{ K \subset W_0^{1,p}(\Omega) \setminus \{0\}; K \text{ compact, symmetric, and } \gamma(K) \ge n \}, \qquad (9)$$

with $\gamma(K)$ indicates the genus of K (see [9]). As Φ is even and of C^1 , to prove the existence of the sequences $(\lambda_n)_{n\geq 1}$, it is sufficient to applied the fundamental multiplicity theorem (see [8]), i.e., (to show that: (i) Φ is bounded below, (ii) Φ satisfies the Palais–Smale condition, (iii) for all $n \in \mathbb{N}^*$, there exists $K \in A_n(\gamma)$ such that $\sup_{v \in K} \Phi(v) < 0$. In fact (i), for all $v \in W_0^{1,p}(\Omega)$, we have $\Phi(v) \geq$ $\delta^2 ||v||_{1,p}^{2p} - \frac{1}{p}||m||_{\infty}||v||_p^p$, thus $\Phi(v) \geq ||v||_{1,p}^p (\delta^2 ||v||_{1,p}^p - C^p \frac{1}{p}||m||_{\infty})$, where C is the Sobolev constant. Hence Φ is bounded from below and coercive. (ii) Φ satisfies the Palais–Smale condition; indeed, let (u_n) be a sequences of $W_0^{1,p}(\Omega)$ such that $(\Phi(u_n))$ is bounded and $\Phi'(u_n) \to 0$ in $W_0^{1,p}(\Omega)$. Since Φ is coercive, (u_n) is bounded. It follows that there exists a subsequences, still denoted by (u_n) , such that $u_n \to u$ in $W_0^{1,p}(\Omega)$, and $u_n \to u$ in $L^p(\Omega)$, on the other hand $||u_n||_{1,p}$ is bounded in \mathbb{R} , hence $||u_n||_{1,p} \to a \in \mathbb{R}$, with $a \geq 0$. If a = 0, we conclude that $u_n \to 0$ in $W_0^{1,p}(\Omega)$. If a > 0, there exists $n_0 \in \mathbb{N}$ such that $||u_n||_{1,p} > \frac{a}{2}$ for all $n \geq n_0$, thus $G_0(u_n) > \delta(\frac{a}{2})^p$, for all $n \geq n_0$. Now, for all $n \geq n_0$

$$\frac{\Phi'(u_n)}{2G_0(u_n)} = G'_0(u_n) - \frac{B'(u_n)}{2G_0(u_n)}.$$
(10)

Since $u_n \rightharpoonup u$ weakly in $W_0^{1,p}(\Omega)$, by (10), we have

$$\frac{1}{2G_0(u_n)}\langle \Phi'(u_n), u_n - u \rangle = \langle G'_0(u_n), u_n - u \rangle - \frac{1}{2G_0(u_n)}\langle B'(u_n), u_n - u \rangle$$

for all $n \geq n_0$. on account of the fact that $B'(u_n)$ is bounded in $L^{p'}(\Omega)$, then we obtain $\lim_{n \to +\infty} \langle G'_0(u_n), u_n - u \rangle = 0$, hence $\limsup_{n \to +\infty} \langle G'_0(u_n), u_n - u \rangle \leq 0$, and since G'_0 posses the (S^+) property, then $u_n \to u$. (iii) Since $meas(\Omega)^+ = meas\{x \in \Omega; m(x) > 0\} > 0$, then for all $n \in \mathbb{N}^*$, there exist $u_1, u_2, \ldots u_n \in W_0^{1,p}(\Omega)$, such that $suppu_i \cap suppu_j = \emptyset$ if $i \neq j$, and $B(u_i) = 1$. Let $F_n = span\{u_1, u_2, \ldots u_n\}$ be the subspace of $W_0^{1,p}(\Omega)$, spanned by $\{u_1, u_2, \ldots u_n\}$. For all $v = \sum_{i=1}^{i=n} \alpha_i u_i \in F_n$, we have $B(v) = \sum_{i=1}^{i=n} |\alpha_i|^p B(u_i) = \sum_{i=1}^{i=n} |\alpha_i|^p$, hence the function: $v \to B(v)^{\frac{1}{p}}$ is a norm on F_n , therefore there exist $\alpha_1, \beta_1 > 0$ such that $\alpha_1 A_1(v) \leq B(v) \leq \beta_1 A_1(v)$, where $A_1(v) = \frac{1}{p} ||v||_{1,p}^p$.

Let $\mathbf{A} = \{ v \in W_0^{1,p}(\Omega); G_0(v) \leq \frac{R}{p} ||v||_{1,p}^p, R \gg \delta \}$. For all $v \in \mathbf{A} \cap F_n$ we have

 $\frac{\alpha_1}{R}G_0(v) \leq B(v) \leq \frac{\beta_1}{p\delta}G_0(v). \text{ Now let } K = \{v \in F_n \cap \mathbf{A}; \frac{\alpha_1^2}{4R^2} \leq B(v) \leq \frac{\alpha_1^2}{3R^2}\}. \text{ For all } v \in K, \text{ we have}$

$$\left\{ \begin{array}{l} \Phi(v) = G_0^2(v) - B(v), \\ \leq \frac{R^2}{\alpha_1^2} B^2(v) - B(v), \\ \leq \frac{\alpha_1^2}{9R^2} - \frac{\alpha_1^2}{4R^2}. \end{array} \right.$$

Hence for all $v \in K$, $\Phi(v) < 0$ and $\gamma(K) \ge n$, consequently C_n is a critical value and $\lambda_n = \frac{1}{2\sqrt{-C_n}}$ is an eigenvalue. Now we prove that $\lim_{n \to +\infty} C_n = 0$ (see also [1]).

It suffices to show that, for all $\varepsilon > 0$, there exists $n_{\varepsilon} \ge 1$ such that $\sup_{v \in K} \Phi(v) \ge 1$

 $\begin{aligned} &-\varepsilon, \text{ for all } K \in A_{n_{\varepsilon}}(\gamma), \text{ with } K \subset E \text{ where } E = \{v \in W_{0}^{1,p}(\Omega); \Phi(v) \leq 0\}. \text{ Since } \\ \Phi \text{ is coercive then } E \text{ is bounded in } W_{0}^{1,p}(\Omega). \text{ It results from it, by using the fact } \\ \text{that } I : W_{0}^{1,p}(\Omega) \to L^{p}(\Omega) \text{ is compact that for all } n > 0, \text{ there exist a subspace } \\ F_{n} \subset L^{p}(\Omega) \text{ and } I_{n} : E \to F_{n} \text{ continuous such that } \sup_{v \in E} ||v - I_{n}(v)||_{p} \leq n. \text{ Putting: } \\ \\ J_{n}(v) = \frac{1}{2}(I_{n}(v) - I_{n}(-v)), \text{ for all } v \in E. \text{ It is clear that } J_{n} \text{ is well defined, odd, } \\ \text{ continuous and satisfies: } \sup_{v \in E} ||v - J_{n}(v)||_{p} \leq n. \text{ Lets } \varepsilon > 0, \text{ since } \overline{E} \text{ is compact in } \\ \\ L^{p}(\Omega) \text{ then there exists } n_{\varepsilon} > 0 \text{ such that } |B(v) - B(J_{n_{\varepsilon}}(v))| \leq \frac{\varepsilon}{2} \text{ for all } v \in E. \text{ Let } \\ \delta_{\varepsilon} > 0 \text{ such that } B(v) \leq \frac{\varepsilon}{2} \text{ for } ||v||_{p} \leq \delta_{\varepsilon}. \text{ Thus for all } v \in E, \text{ with } ||J_{n_{\varepsilon}}(v)||_{p} \leq \delta_{\varepsilon}, \\ \text{ we have } B(v) \leq |B(v) - B(J_{n_{\varepsilon}}(v))| + |B(J_{n_{\varepsilon}}(v))| \leq \varepsilon. \text{ This last inequality implies } \\ \text{ that for each compact } K \text{ symmetric, with } K \subset E \cap \{v \in W_{0}^{1,p}(\Omega); B(v) \geq \varepsilon\}, \text{ we } \\ \text{ have } J_{n_{\varepsilon}}(K) \subset \{v \in F_{n_{\varepsilon}}; ||v||_{p} \geq \delta_{\varepsilon}\}. \text{ Since } J_{n_{\varepsilon}}(K) \text{ is symmetric and compact in } \\ L^{p}(\Omega), \text{ then } \overline{\gamma}(J_{n_{\varepsilon}}(K)) \leq \dim(F_{n_{\varepsilon}}), \text{ where } \overline{\gamma}(K') \text{ indicates the genus in } L^{p}(\Omega) \text{ of } \\ K'. \text{ Finally since } J_{n_{\varepsilon}} \text{ is continuous and odd then } \gamma(K) \leq \overline{\gamma}(J_{n_{\varepsilon}}(K)) \leq \dim(F_{n_{\varepsilon}}). \\ \\ \text{ Consequently for all compact symmetric } K \subset E \text{ such that } \gamma(K) \geq \dim(F_{n_{\varepsilon}}) + 1, \end{aligned}$

there exists $v_0 \in K$ such that $\inf_{v \in K} B(v) \leq B(v_0) < \varepsilon$ and since $\Phi(v) \geq -B(v)$, then we have $\sup_{v \in K} \Phi(v) \geq -\inf_{v \in K} B(v) \geq -\varepsilon$, the proof is complete.

4. Variational Formulation

Lemma 4.1 Let $S_p = \{v \in W_0^{1,p}(\Omega); pG_0(v) = 1\}$, and $S = \{v \in W_0^{1,p}(\Omega); ||v||_{1,p}^p = 1\}$, then S_p and S are homeomorphic by an odd homomorphism, more precisely $\Psi: S_p \to S : \Psi(v) = \frac{v}{\|v\|_{1,p}}$.

Proof: Consider $\Psi: S_p \to S, v \mapsto \frac{v}{||v||_{1,p}}$. Ψ is an odd and continuous function. Suppose that $\Psi(v) = \Psi(v')$ i.e., $\frac{v}{||v||_{1,p}} = \frac{v'}{||v'||_{1,p}}$, thus $\frac{pG_0(v)}{||v||_{1,p}^p} = \frac{pG_0(v')}{||v'||_{1,p}^p}$, therefore $\frac{1}{||v'||_{1,p}^p} = \frac{1}{||v'||_{1,p}^p}$ hence v = v', then Ψ is an injection. Let $u \in S$ and putting $v = \frac{u}{(pG_0(u))^{\frac{1}{p}}} \in S_p, \ \Psi^{-1}: S \to S_p: u \to \frac{u}{(pG_0(u))^{\frac{1}{p}}}$, this proves that Ψ is a surjection and Ψ^{-1} is continuous. \Box **Lemma 4.2** There exist α , $\beta > 0$ such that for all $v \in S_p$, we have $\alpha \leq ||v||_{1,p}^p \leq \beta$.

Proof: For all $v \in W_0^{1,p}(\Omega)$, we have $G_0(v) \ge \delta ||v||_{1,p}^p$ in particular $||v||_{1,p}^p \le \frac{1}{\delta p}$, for all $v \in S_p$. There exists $\alpha > 0$, such that $\alpha \le ||v||_{1,p}^p$, for all $v \in S_p$, otherwise, for all n > 0, there exists $v_n \in S_p$, such that $\frac{1}{n} > ||v_n||_{1,p}^p$ thus $\lim_{n \to +\infty} v_n = 0$, but $pG_0(v_n) = 1$, this contradicts the continuity of G_0 , finally there exist $\alpha, \beta > 0$, such that for all $v \in S_p, \alpha \le ||v||_{1,p}^p \le \beta$.

Putting

 $\Gamma_n(\gamma) = \{ K \subset W_0^{1,p}(\Omega) \setminus \{0\}; K \text{ compact, symmetric, of } S_p \text{ and } \gamma(K) \ge n \}.$ (11)

Proposition 4.1 For all $n \ge 1$

$$\frac{1}{\lambda_n(\gamma)} = \sup_{K \in \Gamma_n(\gamma)} \inf_{u \in K} \int_{\Omega} m |u|^p dx,$$
(12)

where $\Gamma_n(\gamma)$ is defined in (11).

Proof: Putting $d_n = \sup_{\widetilde{K} \in \Gamma_n(\gamma)} \inf_{v \in \widetilde{K}} \int_{\Omega} m |v|^p dx$, Previously we show that d_n is well defined and strictly positive. Let F_n the subspace (defined in (iii) proof of theorem (3.1)), $K = \{u \in F_n, ||u||_{1,p} = 1\}$ and $v \in \widetilde{K} = \Psi^{-1}(K), \Psi(v) = u$, (Lemma (4.1)) so $\frac{v}{||v||_{1,p}} = u$, $\int_{\Omega} m |u|^p dx = \frac{1}{||v||_{1,p}^p} \int_{\Omega} m |v|^p dx$, where $v \in \widetilde{K}$ and $u \in K =$ $\Psi(\widetilde{K})$. Since $u \in K \subset F_n$, (B and A_1 are equivalent), then there exists c > 0such that $c_p^1 ||u||_{1,p} \leq \frac{1}{p} \int_{\Omega} m |u|^p dx \leq \frac{1}{cp} ||u||_{1,p}$ and $v \in \widetilde{K} \subset S_p$, hence $\alpha \leq ||v||_{1,p}^p$ (Lemma (4.2)). Consequently $0 < \alpha c \leq ||v||_{1,p}^p \int_{\Omega} m |u|^p dx = \int_{\Omega} m |v|^p dx$, this result shows that $\inf_{V \in \widetilde{K}} \int_{\Omega} m |v|^p dx \ge \alpha c$, finally $d_n > 0$. On one hand, let $\widetilde{K} \in \Gamma_n(\gamma)$, and $i : \widetilde{K} \to K_1 = \{tv/v \in \widetilde{K}, t > 0\} : i(v) = tv$, i is an odd continuous homomorphism. By definition of C_n , the number defined in (8), for all t > 0, we have $\frac{1}{\lambda_n^2} \ge 4 \inf_{u \in \widetilde{K}} (\frac{t^p}{p} \int_{\Omega} m |u|^p dx - \frac{t^{2p}}{p^2})$. For $t = (\frac{pd_n}{2})^{\frac{1}{p}}$, we obtain $(\frac{1}{\lambda_n^2} + d_n^2) \frac{1}{2d_n} \ge \inf_{u \in \widetilde{K}} \int_{\Omega} m |u|^p dx$, hence $\lambda_n \le d_n^{-1}$. On the other hand $\frac{1}{4\lambda_n^2} =$ sup $\min_{v \in V} (B(v) - G_0^2(v))$, where $A_n(\gamma)$ is defined in (9). For $0 < \varepsilon < \frac{1}{\lambda_n^2}$, there $K \in A_n(\gamma)$ $v \in K$ exists a compact $K_{\varepsilon} \in A_n(\gamma)$, such that B(v) > 0, for all $v \in K_{\varepsilon}$. Thus from (5), we have $G_0(v) > 0$, for all $v \in K_{\varepsilon}$. Consequently $2\left(\frac{1}{4\lambda_n^2} - \varepsilon\right)^{\frac{1}{2}} \leq \inf_{v \in K_{\varepsilon}} \left(\frac{B(v)}{G_0(v)}\right)$. Now let $h: W_0^{1,p}(\Omega) \setminus \{0\} \to S_p: h(v) = \frac{v}{\left[pG_0(v)\right]^{\frac{1}{p}}}, h \text{ is an odd continuous function}$ and $h(K_{\varepsilon}) \in \Gamma_n(\gamma)$, hence $2\left(\frac{1}{4\lambda_n^2} - \varepsilon\right)^{\frac{1}{2}} \leq \inf_{u \in h(K_{\varepsilon})} \int_{\Omega} m |u|^p dx \leq d_n$, therefore $\lambda_n \geq d_n^{-1}$, finally $\lambda_n^{-1} = d_n$.

From this proposition we can easily obtain the following result

Corollary 4.0A 1. $\lambda_n(\Omega, \alpha m) = \frac{\lambda_n(\Omega, m)}{\alpha}$, for all $\alpha > 0$. 2. $\lambda_n(\Omega, \lambda_n(\Omega, 1)) = 1$, for all $n \ge 1$. 3. $\lambda_1(\Omega, m) = \inf_{v \in W_0^{1,p}(\Omega)} \left(\frac{pG_0(v)}{\int_\Omega m |v|^p dx}\right)$, with $\int_\Omega m |v|^p dx > 0$.

- 4. $\frac{1}{\lambda_1(\Omega,m)} = \sup_{v \in S_p} \int_{\Omega} m |v|^p dx.$
- 5. If $m_1, m_2 \in M^+(\Omega)$, and $m_1 < m_2$ a.e., then $\lambda_1(m_1, \Omega) > \lambda_1(m_2, \Omega)$.
- 6. $m \in L^{\infty}(\Omega) \to \lambda_n(m)$ is continuous (see [6]).

5. Quasilinear problem

Consider the problem (1), where $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function and $h \in W^{-1,p'}(\Omega)$. Lets the energy functional $\Phi: W_0^{1,p}(\Omega) \to \mathbb{R}$ associated with this problem, $\Phi(u) = G(u) - \int_{\Omega} F(x, u) dx - \langle h, u \rangle$, where $F(x, s) = \int_0^s f(x, t) dt$. Now suppose the following conditions on f and F.

(f): There exist $a \ge 0, b \in L^{p'}(\Omega)$ such that $|f(x,s)| \le a|s|^{p-1} + b(x)$ a.e. $x \in \Omega$, $\forall s \in \mathbb{R}$.

 $(F): \beta(x) \equiv \limsup_{|s| \to +\infty} \frac{pF(x,s)}{|s|^p} < \lambda_1(\Omega, 1) \quad \text{a.e uniformly in } x, \text{ i.e., there exist } \gamma \in \mathbb{C}$

 $L^1(\Omega)$ such that $F(x,s) \leq \frac{\beta(x)}{p} |s|^p + \gamma(x), \ \beta \in L^{\infty}(\Omega)$ and $\beta(x) < \lambda_1(\Omega, 1)$ a.e. $x \in \Omega$.

Theorem 5.1 Assume that the hypotheses (H_1) , (H_2) , (H_3) and (H_4) hold. If the conditions (f) and (F) are verified, then for all $h \in W^{-1,p'}(\Omega)$ the problems (1) admits a solution that minimizes $\Phi(u) = G(u) - \int_{\Omega} F(x, u) dx - \langle h, u \rangle$.

Proof: In our conditions Φ is continuously differentiable, weakly lower semicontinuous and to finish the proof, it suffices to show that Φ is coercive. Let $\Phi(u) = G(u) - \int_{\Omega} F(x, u) dx - \langle h, u \rangle$. Suppose by contradiction that there exist a sequences (u_n) and a real $c \otimes (h, u)$. Suppose by contradiction that there exist a sequences (u_n) and a real $c \otimes (h, u) = 0$, thus from Proposition (2.1), for all $\varepsilon > 0$, there exist $n_0 \in \mathbb{N}$, $(1 - \varepsilon)G_0(u_n) \leq G(u_n) \leq (1 + \varepsilon)G_0(u_n)$, for all $n \geq n_0$. Therefore we have $(1 - \varepsilon)G_0(u_n) \leq \frac{1}{p}\int_{\Omega}\beta(x)|u_n|^p dx + \int_{\Omega}\gamma(x)dx + \langle h, u_n \rangle + c$. Putting $v_n = \frac{u_n}{||u_n||_{1,p}}$, since v_n is bounded in $W_0^{1,p}(\Omega)$ then there exists a subsequences still denoted by (v_n) such that $v_n \to v$ weakly in $W_0^{1,p}(\Omega)$ and $v_n \to v$ strongly in $L^p(\Omega)$. Consequently from Proposition (2.1), we have $\delta(1 - \varepsilon) \leq (1 - \varepsilon)G_0(v_n) \leq \frac{1}{p}\int_{\Omega}\beta(x)|v_n|^p dx + \frac{1}{||u_n||_{1,p}^p}\int_{\Omega}\gamma(x)dx + \frac{c}{||u_n||_{1,p}^p}} \langle h, u_n \rangle$, we passe to limit and by Remarks (2.1), we obtain $\delta(1 - \varepsilon) \leq (1 - \varepsilon)G_0(v) \leq \frac{1}{p}\int_{\Omega}\beta(x)|v|^p dx$, for all $\varepsilon > 0$, so $v \neq 0$. On the other hand $p(1 - \varepsilon)G_0(v) \leq \int_{\Omega}\beta(x)|v|^p dx \leq \lambda_1(\Omega, 1)\int_{\Omega} |v|^p dx$,

for all $\varepsilon > 0$, this proves that $pG_0(v) \leq \int_{\Omega} \beta(x) |v|^p dx \leq \lambda_1(\Omega, 1) \int_{\Omega} |v|^p dx$, therefore v is a solution of equation $G'_0(u) = \beta(x) |u|^{p-2}u$ and 1 is an eigenvalue. But $\beta(x) < \lambda_1(\Omega, 1)$ and by Corollary (4.0A), we conclude that $\lambda_1(\beta(x)) > \lambda_1(\lambda_1) = 1$, this contradicts that $\lambda_1(\beta(x))$ is the first positive eigenvalue. Finally Φ is coercive.

It is easily to show that the problem

$$\begin{cases} G'_0(u) = f(x, u) + h & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(13)

admits a solution that minimizes $\Phi_0(u) = G_0(u) - \int_{\Omega} F(x, u) dx - \langle h, u \rangle$, in the conditions of Theorem (5.1).

Remark 5.2 The condition (f), can be replaced by the condition $\max_{|s| \leq R} |f(x,s)| \in L^1_{loc}(\Omega)$, for all R > 0, in this case Φ is not of class C^1 on $W^{1,p}_0(\Omega)$. In [4], the authors showed that the problem (1), with $G' = -\Delta_p$ admits a solution.

6. Fredholm Alternative

In the following section we show the Fredholm Alternative, this is the reason we will announce a definition, lemmas and a corollary, whose be frequently used later. Let X be a Banach space and Sym(X) the class of all closed and symmetric parties (in comparison with origin) of $X \setminus \{0\}$. Let $S^{K-1} = \{x \in \mathbb{R}^k; ||x||_{\mathbb{R}^k} = 1\}$.

Definition 6.1 (cf [3]) The function θ : Sym $(X) \to \mathbb{N} \cup +\infty$ is defined by

- 1. $\theta(\emptyset) = 0$
- 2. If $F \neq \emptyset$, then $\theta(F) = \sup\{k \in \mathbb{N}; \text{ there exist an odd } f \in C(S^{K-1}, F)\}.$

Let us recall that the numbers $C_n(\gamma) = \inf_{K \in A_n(\gamma)} \sup_{v \in K} \Phi(v)$ defined in (8), where $A_n(\gamma) = \{K \in W_0^{1,p}(\Omega) \setminus \{0\}/K \text{ compact, symmetric and } \gamma(K) \geq n\}$ are critical points, corresponding to the eigenvalues $\lambda_n(\gamma)$ defined in (12), we define $C_n(\theta)$ and $\lambda_n(\theta)$ in substitute in (8) γ by θ , we obtain

Lemma 6.1 (cf |3|)

- 1. For all $n \ge 1$, $C_n(\theta)$ is a critical point of Φ .
- 2. $-\infty < \inf_{W_0^{1,p}(\Omega)} \Phi = C_1(\theta) \le C_2(\theta) \le \ldots \le C_n(\theta) < 0 = \Phi(0).$
- 3. $\lim_{n \to +\infty} C_n(\theta) = 0.$

Lemma 6.2 (cf [3]) For all $n \ge 1$, we have $C_n(\theta) = -\frac{1}{4(\lambda_n(\theta))^2}$, where $C_n(\theta)$ and $\lambda_n(\theta)$ are defined respectively by (8) and (12) in substitute γ by θ .

Corollary 6.1A (cf [3]) Let $\Phi \in C^1(X, \mathbb{R})$ be a functional satisfied the Palais-Smale condition (PS) on X, $K_0 \in Sym(X)$ a compact and $A_1 \subset X$ a no empty symmetrical set. If the following conditions are verified (P₁) If $K \in Sym(X)$ compact with $\gamma(K) \geq \theta(K_0) + 1$, then $K \cap A_1 \neq \emptyset$. (P₂) $\alpha := \max_{K_0} \Phi < \inf_{A_1} \Phi := \beta$. Then the value

$$C = \inf_{h \in \Gamma} \max_{u \in h(\bar{D})} \Phi(u)$$

where $D = co(K_0) := \{tx + (1 - t)x'; x, x' \in K_0, 0 \le t \le 1\}$ and $\Gamma = \{h \in C(\overline{D}, X \setminus \{0\})/h = id \text{ on } K_0\}$ is a critical point of the functional Φ . Moreover $C \ge \beta$.

Now we consider the hypothesis

 (H_5) There exists a Carathéodory function $a_0: \Omega \times \mathbb{R}^N \to \mathbb{R}$ such that $a_0(x, .)$ is even, strictly convex and continuously differentiable such that

$$|A_i(x,t\xi) - t^{p-1}A_i^0(x,\xi)| \le t^{p-1}C(t)(|\xi|^{p-1} + K_2(x)), \ a.e.x \in \Omega, \ \forall \xi \in \mathbb{R}^N, \ t > 0,$$

where $K_2 \in L^{p'}(\Omega)$, $A_i(x,\xi) = \frac{\partial a(x,\xi)}{\partial \xi_i}$, $A_i^0(x,\xi_i) = \frac{\partial a_0(x,\xi)}{\partial \xi_i}$ and C(t) a certain function of t such that $\lim_{t \to +\infty} C(t) = 0$ and $a_0(x,0) = 0$, $\forall x \in \Omega$.

Remark 6.2 The hypotheses (H_1) , (H_2) and (H_5) imply that $\lim_{||v||_{1,p}\to+\infty} \frac{G(v)-G_0(v)}{||v||_{1,p}^p} = 0$. For all $v \in W_0^{1,p}(\Omega)$, $r \in \mathbb{R}$, we have $G_0(rv) = |r|^p G_0(v)$ and $G_0(v) \ge \delta ||v||_{1,p}^p$, where δ is defined in (5).

Consider the problem

$$\begin{cases} -div(A(x,\nabla u)) &= \lambda m |u|^{p-2}u + h & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega, \end{cases}$$
(14)

where Ω is a bounded domain in \mathbb{R}^N , $m \in M^+(\Omega)$ and $h \in W^{-1,p'}(\Omega)$.

Theorem 6.3 Assume that the hypotheses (H_1) , (H_2) and (H_5) hold. Then for all λ positive that does not belong to the spectrum of G'_0 , the problem (14) admits a solution.

Example 6.4 $\mathcal{A}(u) = -div((\varepsilon + |\nabla u|^2)^{\frac{p-2}{2}}\nabla u)$, with $\varepsilon > 0$, $G(u) = \frac{1}{p}\int_{\Omega}(\varepsilon + |\nabla u|^2)^{\frac{p}{2}}dx$ and $G_0(u) = \frac{1}{n}\int_{\Omega}|\nabla u|^p dx$.

Proof: [Proof of Theorem (6.3).] Consider the energy functional $\Phi: W_0^{1,p}(\Omega) \to \overline{\mathbb{R}}$ associated to the problem (14)

$$\Phi(u) = G(u) - \frac{\lambda}{p} \int_{\Omega} m|u|^p dx - \langle h, u \rangle, \text{ and } \Phi'(u) = G'(u) - \lambda m|u|^{p-2}u - h,$$
(15)

where $G'(u) = -div(A(x, \nabla u))$. If $0 \leq \lambda < \lambda_1(\Omega, m)$, then Φ is coercive, and from our hypotheses the problem admits a solution. If $\lambda_1(\Omega, m) < \lambda$, applying the Corollary 6.1A. Previously we show that the functional Φ satisfies the Palais– Smale condition, otherwise suppose that there exists a sequences (u_n) in $W_0^{1,p}(\Omega)$ such that $(\Phi(u_n))$ is bounded and $\Phi'(u_n) \to 0$ in $W_0^{1,p}(\Omega)$, and $||u_n||_{1,p} \to +\infty$. Put $v_n = \frac{u_n}{||u_n||_{1,p}}$ and $t_n = ||u_n||_{1,p}$, (v_n) is bounded in $W_0^{1,p}(\Omega)$, so there exists a subsequences still denoted by (v_n) such that $v_n \to v$ weakly in $W_0^{1,p}(\Omega)$, and $v_n \to v$ strongly in $L^P(\Omega)$. Let

$$\Phi_{0}(u) = G_{0}(u) - \frac{\lambda}{p} \int_{\Omega} m|u|^{p} dx - \langle h, u \rangle, \Phi_{0}'(u) = G_{0}'(u) - \lambda m|u|^{p-2}u - h.$$
(16)

From (15) and (16), we obtain

$$\frac{\Phi'(u_n)}{||u_n||_{1,p}^{p-1}} - \frac{\Phi'_0(u_n)}{||u_n||_{1,p}^{p-1}} = \frac{G'(u_n)}{||u_n||_{1,p}^{p-1}} - \frac{G'_0(u_n)}{||u_n||_{1,p}^{p-1}}.$$
(17)

For all $\varphi \in W_0^{1,p}(\Omega) \setminus \{0\}$, we have

$$\left|\left\langle \frac{G'(u_n)}{||u_n||_{1,p}^{p-1}} - \frac{G'_0(u_n)}{||u_n||_{1,p}^{p-1}}, \varphi \right\rangle\right| \le C(t_n)(||v_n||_{1,p}^{p-1} + ||K_2||_{L^{P'}(\Omega)}) \sum_{i=1}^{i=N} \left(\int_{\Omega} |\frac{\partial \varphi}{\partial x_i}|^p dx\right)^{\frac{1}{p}}.$$
(18)

Consequently from the hypotheses (H_5) , we conclude that

$$\lim_{n \to +\infty} \frac{G'(u_n)}{||u_n||_{1,p}^{p-1}} - \frac{G'_0(u_n)}{||u_n||_{1,p}^{p-1}} = 0.$$
 (19)

(17), (19) and $\Phi'(u_n) \to 0$ in $W_0^{1,p}(\Omega)$, show that

$$\lim_{n \to +\infty} \frac{\Phi'_0(u_n)}{||u_n||_{1,p}^{p-1}} = 0.$$
 (20)

From (16), we have

$$\frac{\Phi_0'(u_n)}{||u_n||_{1,p}^{p-1}} = G_0'(v_n) - \lambda m |v_n|^{p-2} v_n - \frac{h}{||u_n||_{1,p}^{p-1}},$$
(21)

therefore $\langle \frac{\Phi'_0(u_n)}{||u_n||_{1,p}^{p-1}}, v_n - v \rangle = \langle G'_0(v_n) - \lambda m |v_n|^{p-2}v_n - \frac{h}{||u_n||_{1,p}^{p-1}}, v_n - v \rangle$. By (20) and (21), we have $\lim_{n \to +\infty} \langle G'_0(v_n), v_n - v \rangle = 0$, since G'_0 posses the (S^+) property, we conclude that $v_n \to v$. From (21), we have $G'_0(v) = \lambda m |v|^{p-2}v$, this contradicts our assumption, finally Φ satisfies the Palais–Smale condition. According to the hypothesis of our Theorem there exists $n \in \mathbb{N}^*$ such that $\lambda_n(\theta, m) < \lambda < \lambda_{n+1}(\theta, m)$. Now we must verify the conditions (P_1) and (P_2) of Corollary (6.1A). Consider the set

$$A_{1} = \{ v \in W_{0}^{1,p}(\Omega) \setminus \{0\}; \lambda_{n+1}(\theta, m) \int_{\Omega} m |v|^{p} dx \le pG_{0}(v) \},$$
(22)

we have $\Phi(u) = G(u) - \frac{\lambda}{p} \int_{\Omega} m |u|^p dx - \langle h, u \rangle$, from the Remark (6.2) we conclude that for $\varepsilon > 0$, there exists R > 0 such that $G(u) \ge (1-\varepsilon)G_0(u)$ for all $||u||_{1,p} > R$, therefore $\Phi(u) \ge G_0(u)(1-\varepsilon - \frac{\lambda}{\lambda_{n+1}(\theta,m)}) - \langle h, u \rangle$, for $||u||_{1,p} > R$ and $u \in A_1$. Hence for ε rather small and p > 1, Φ is coercive on A_1 and the value $\beta := \inf_{u \in A_1} \Phi(u)$ is well defined. On the other hand let $\varepsilon > 0$, from (12), there exists $K' \in \Gamma_n(\theta)$

is well defined. On the other hand let $\varepsilon > 0$, from (12), there exists $K \in \Gamma_n(t)$ such that for all $u \in K'$

$$\frac{1}{\lambda_n(\theta,m)} - \varepsilon \leq \min_{u \in K'} \int_{\Omega} m |u|^p dx \leq \int_{\Omega} m |u|^p dx,$$

hence for all $v \in \mathbb{R}K'$, $pG_0(v)\left(\frac{1}{\lambda_n(\theta,m)} - \varepsilon\right) \leq \int_{\Omega} m|v|^p dx$, we have $\Phi(v) \leq G(v) - \frac{\lambda}{\lambda_n(\theta,m)}G_0(v) + \varepsilon \lambda G_0(v) - \langle h, v \rangle$ and from the Remark (5.2) there exists R > 0 such that for all $v \in \mathbb{R}K'$ and $||v||_{1,p} > R$.

$$\Phi(v) \le G_0(v)(1 + \varepsilon - \frac{\lambda}{\lambda_n(\theta, m)} + \varepsilon \lambda) - \langle h, v \rangle.$$

Consequently for ε rather small $\Phi(v) \to -\infty$ when $||v||_{1,p} \to +\infty$. Since K' is a compact there exists t_0 rather big such that $\alpha := \max_{v \in t_0 K'} \Phi(v) < \beta$. Next putting $K_0 = t_0 K'$, we have $K_0 \in Sym(W_0^{1,P}(\Omega))$, K_0 is a compact and $\theta(K_0) \ge n$, therefore (P_2) is verified. There remains to verify (P_1) , let K a compact, symmetric and $\gamma(K) \ge n + 1$, we put $\tilde{K} = \{\frac{u}{(pG_0(u))^{\frac{1}{p}}}; u \in K\}$, we have $\tilde{K} \in \Gamma_{n+1}(\theta)$ and $\min_{u \in \tilde{K}} \int_{\Omega} m |u|^p dx \le \frac{1}{\lambda_{n+1}(\theta,m)}$, finally there exists $u_0 \in K$ such that $\lambda_{n+1}(\theta,m) \int_{\Omega} m |u_0|^p dx \le pG_0(u_0)$ i.e., $K \cap A_1 \ne .$

7. The eigenvalue in the case N=1

In this section we consider that N = 1.

Proposition 7.1 Assume that the hypotheses (H_1) , (H_2) and (H_5) hold. Then there exists $\delta' > 0$ such that $A^0(x, 1) > \delta'$, a.e. $x \in \Omega$, and $\langle G'_0(u), u \rangle = \int_{\Omega} A^0(x, 1) |u'|^p dx = pG_0(u)$, for all $u \in W_0^{1,p}(\Omega)$, where $A^0(x, \xi) = \frac{\partial a_0(x, \xi)}{\partial \xi}$, is defined in (6).

Proof: From (6) and Proposition (2.1), we have $A^0(x,r) = r^{p-1}A^0(x,1)$, for all r > 0, hence there exits c > 0 such that $a_0(x,1) = c^{p-1}A^0(x,1)$, consequently from (5) there exists $\delta' > 0$ such that $A^0(x,1) > \delta'$, a.e. $x \in \Omega$. On the other hand consider the function $f(t) = G_0(tu), t \in \mathbb{R}$, from Proposition (2.1), we have $\langle G'_0(u), u \rangle = \int_{\Omega} A^0(x,1) |u'|^p dx = pG_0(u)$.

Remark 7.1 From (12) and Proposition (7.1), we conclude that for all $n \ge 1$,

$$\frac{1}{\lambda_n(\gamma)} = \sup_{K \in \Gamma_n(\gamma)} \inf_{u \in K} \int_{\Omega} m |u|^p dx,$$
(23)

where $\Gamma_n(\gamma)$ is defined in (11) and

$$S_p = \{ u \in W_0^{1,p}(\Omega); \int_{\Omega} A^0(x,1) |u'|^p dx = 1 \}.$$
 (24)

Let $\rho(x) = a_0(x, 1)$ and $\Omega = I = (a, b)$ such that a < b, if $\rho \in C^1(I) \cap C^0(\overline{I})$, then we have

Theorem 7.2 ([5]) For all p > 1, $m \in M^+(\Omega)$ the problem (2), has a non trivial solution if and only if λ belongs to an increasing sequence $(\lambda_n)_{n>1}$. Moreover

- 1. Each λ_n is simple and any corresponding eigenfunction takes the forme $\alpha v_n(x)$ with $\alpha \in \mathbb{R}$, namely the multiplicity of each eigenfunction is 1. Moreover $v_n(x)$ has exactly n-1 simple zeros.
- 2. Each λ_n verifies the strict monotonicity with respect to the weight and the domain Ω .
- 3. $\sigma^+(G_0) = \{\lambda_n, n = 1, 2...\}$. The eigenvalues are ordered as $0 < \lambda_1(m) < \lambda_2(m) < \lambda_3(m) < ... \lambda_n(m) \to +\infty$ as $n \to +\infty$.
- 7.1. APPLICATION. Consider the Dirichlet problem

$$\begin{cases} -(A(x,u'))' = f(x,u) + h & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(25)

where $A: \Omega \times \mathbb{R} \to \mathbb{R}$, $f: \Omega \times \mathbb{R} \to \mathbb{R}$, satisfies the Carathéodory conditions and $h \in W^{-1,p'}(\Omega)$. Now supposing that f satisfies the hypotheses $(H_{\alpha,\beta})$: for $\alpha, \beta \in \mathbb{R}$, with $\alpha < \beta$, we have

1. for all R > 0, there exists $\phi_R \in L^{p'}(\Omega)$ such that

$$\max_{|s| \le R} |f(x,s)| \le \phi_R(x) \text{ a.e. } x \in \Omega.$$
(26)

2. $(f_{\alpha,\beta})$ for all $\varepsilon > 0$ there exists $b_{\varepsilon} \in L^{p'}(\Omega)$ such that a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, we have

$$-b_{\varepsilon}(x) + (\alpha - \varepsilon)|s|^{p} \le sf(x, s) \le (\beta + \varepsilon)|s|^{p} + b_{\varepsilon}(x).$$
(27)

3. $(F_{\alpha,\beta}) \ \alpha \leq \neq l(x) := \liminf_{|s| \to +\infty} \frac{pF(x,s)}{|s|^p}, \limsup_{|s| \to +\infty} \frac{pF(x,s)}{|s|^p} := k(x) \leq \neq \beta \quad a.e.x \in \Omega$

and for all $\varepsilon > 0$, there exists $d_{\varepsilon} \in L^1(\Omega)$, such that $a.e.x \in \Omega$, for all $s \in \mathbb{R}$, we have

$$-d_{\varepsilon}(x) + (l(x) - \varepsilon)\frac{|s|^p}{p} \le F(x, s) \le (k(x) + \varepsilon)\frac{|s|^p}{p} + d_{\varepsilon}(x), \quad (28)$$

where $F(x,s) = \int_0^s f(x,t)dt$, $m_1(x) \leq \neq m_2(x)$, "i.e.," $m_1(x) \leq m_2(x)$ a.e. $x \in \Omega$ and $m_1(x) < m_2(x)$, in some subset of Ω of nonzero measure, for all $m_1, m_2 \in M^+(\Omega)$. Let the energy functional Φ corresponding to the problem (25), we have $\Phi(u) = G(u) - \int_{\Omega} F(x, u)dx - \langle h, u \rangle$, where G is defined in Remarks (2.1).

Proposition 7.2 Assume that the hypotheses (H_1) , (H_2) , (H_5) hold and f satisfies the hypotheses $(H_{\alpha,\beta})$. If Φ does not satisfied the Palais–Smale condition (PS), then there exist $m(x) \in L^{\infty}(\Omega)$, $v \in W_0^{1,p}(\Omega) \setminus \{0\}$, and $(u_n) \subset W_0^{1,p}(\Omega)$ such that v is nontrivial solution of the problem

$$(P_m) \begin{cases} G'_0(u) = m|u|^{p-2}u & in \ \Omega, \\ u = 0 & on \ \partial\Omega \end{cases}$$

and

$$\begin{cases} \alpha \leq \neq m(x) \leq \neq \beta, \\ ||u_n||_{1,p} \to +\infty, \frac{u_n}{||u_n||_{1,p}} \to v \text{ in } W_0^{1,p}(\Omega), \\ (\Phi(u_n)) \text{ is a bounded sequences.} \end{cases}$$

Proof: The proof is an adaptation of the Theorem ((4.1) see [3]) and the Theorem (6.3).

Theorem 7.3 Assume that the hypotheses (H_1) , (H_2) and (H_5) hold. If f satisfies $(H_{\lambda_n(1),\lambda_{n+1}(1)})$, for $n \ge 1$, then Φ will satisfy the Palais–Smale condition (PS) and the problem (25) admits a solution.

Proof: If Φ does not satisfied (PS), then from Proposition (7.2), there exists $m(x) \in L^{\infty}(\Omega)$ such that $\lambda_n(1) \leq \neq m(x) \leq \neq \lambda_{n+1}(1)$, this contradicts with Theorem (7.2), the rest of the proof is an adaptation of the Theorem (6.3).

References

- 1. Anane A.: Simplicité et isolation de la première valeur propre du *p*-Laplacien avec poids. C.R.Acad.Sci.Paris t.305, pp. 725-728, 1987.
- 2. Anane A.: Etude des valeurs propres et de la résonance pour l'opérateur *p*-laplacien, These de Doctorat, Université Libre de Bruxelles, 1987.
- 3. Anane A., Chakrone O.: Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propre du *p*-laplacien. Annales de la faculté des sciences de Toulouse Sèr. 6,9 no. 1(2000), p. 5-30.
- Anane A., Chakrone O.: Strongly nonlinear elliptic problem without growth condition, 2002– Fez Conference on Partial Differential Equations, Electronic Journal of Differential Equations. Conference 09, 2002, pp. 41-47.
- Anane A., Chakrone O. and Moussa M.: Spectrum of one dimensional p-laplacian operator with indefinite weight. E.J. Qualitative Theory of Diff.Equ.,no. 17.(2002), pp. 1-11.
- Anane A., Tsouli N.: On a resonance condition between the first and the second eigenvalues for the p-laplacien.IJMMS 26:10(2001)625-634.
- Berkovits J and Vesa Mustonen.: V(1988) Nonlinear Mappings of Monotone Type, Classification and Degree Theory. Number 2/88 in Mathematics. Faculty of Science, University of Oulu.
- Costa D G.: Tôpicos en anàlise nào-lineare e aplicações às equações diferenciais, Proc. E.L.A.M., Rio de Janeiro(1986), Sprenger Lect. Notes.
- 9. Zeidler E.: Nonlinear functional analysis and its applications, Tome III, variational Methods and Optimization, Springer Verlag(1984).

Aomar Anane – ananeomar@yahoo.fr Omar Chakrone – chakrone@yahoo.fr Mohammed Filali- filali@sciences.univ-oujda.ac.ma Belhadj Karim – karembelf@hotmail.com Université Mohamed I, Faculté des Sciences, Département de mathématiques et Informatique, Oujda, Maroc.