Eigenvalues of an Operator Homogeneous at the Infinity

Aomar Anane, Omar Chakrone, Mohammed Filali And Belhadj Karim

ABSTRACT: In this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case $N=1$. Finally we study the solvability of the problem

$$
\left\{\begin{array}{rlr}
\mathcal{A}(u):=-\operatorname{div}(A(x, \nabla u)) & =f(x, u)+h & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

as well as the spectrum of

$$
\left\{\begin{aligned}
G_{0}^{\prime}(u) & =\lambda m|u|^{p-2} u & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Key Words:: Operator homogeneous at infinity; Eigenvalues; Boundary Value problem.

Contents

1 Introduction 51
2 Preliminaries 52
3 Eigenvalues Problem 54
4 Variational Formulation 56
5 Quasilinear problem 58
6 Fredholm Alternative 59
7 The eigenvalue in the case $\mathrm{N}=1 \quad 62$
7.1 Application . 63

1. Introduction

Consider the quasilinear problem

$$
\left\{\begin{array}{rlr}
\mathcal{A}(u):=-\operatorname{div}(A(x, \nabla u)) & =f(x, u)+h & \text { in } \Omega, \tag{1}\\
u & =0 & \text { on } \partial \Omega,
\end{array}\right.
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 1, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function, $h \in W^{-1, p^{\prime}}(\Omega)$ an arbitrary function, p^{\prime} is the Hölder conjugate exponent of $p,(1<p<\infty)$ and $A(x, \xi)=\left(A_{i}(x, \xi)\right)_{1 \leq i \leq N}$ such that $A_{i}(x, \xi): \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$

[^0]are functions satisfying the usual growth conditions. We require some conditions on the functional A_{i} such that the operator $\mathcal{A}(u)$ will be homogenous at the infinity and derive from a potential $G(u)$ (i.e., $\left.G^{\prime}=\mathcal{A}\right)$. For example, for $\varepsilon>0, \mathcal{A}(u)=$ $-\triangle_{p}^{\varepsilon} u=-\operatorname{div}\left(\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right)$ is an homogenous operator at the infinity and $G_{0}^{\prime}(u)=-\triangle_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is an associated homogenous operator. The Problem (1) has been studied by Anane in [2], he showed the existence of the weak solutions of the problem (1) with conditions of nonresonance under (the first eigenvalue of the operator \mathcal{A}). This paper is organized as follows. In section 2 , we recall some results about our operators. In section 3, we show (see Theorem 3.1) the existence of sequences of eigenvalues $\lambda_{n}(m, \Omega)$ for the following problem
\[

\left\{$$
\begin{align*}
G_{0}^{\prime}(u) & =\lambda m|u|^{p-2} u & & \text { in } \Omega \tag{2}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}
$$\right.
\]

where G_{0}^{\prime} (not necessarily equal to $-\triangle_{p}$) is an associated homogenous operator of \mathcal{A}, G_{0} is a potential associated to $G_{0}^{\prime}, p>1$ and $m \in M^{+}(\Omega)=\{m \in$ $\left.L^{\infty}(\Omega) ; \operatorname{meas}\{x \in \Omega ; m(x)>0\} \neq 0\right\}$ is the weight. In section 4 , we give (see Proposition 4.1) the variational formulation of $\lambda_{n}(m, \Omega)$ and some properties. In section 5 we show a Theorem of nonresonance (see Theorem (5.1)). In section 6 we study (see Theorem 6.3) the Fredholm Alternative for the operators \mathcal{A} and $G_{0}^{\prime}\left(\right.$ i.e., if λ does not belong to the spectrum of $\left.G_{0}^{\prime}\right)$, then the problem (1) (with $f(x, u)=\lambda m|u|^{p-2} u$), and the following problem

$$
\left\{\begin{align*}
G_{0}^{\prime}(u) & =\lambda m|u|^{p-2} u+h & & \text { in } \Omega \tag{3}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

admit a solution for all $h \in W^{-1, p^{\prime}}(\Omega)$. Finally in section 7 , in the case $N=1$, we establish the simplicity of all eigenvalues (the simplicity of the first eigenvalue remains open in the general case) and we study the problem (1), when $\frac{f(x, s)}{\mid s p^{p-2} s}$ and $\frac{p F(x, s)}{|s|^{p}}$ are situated between two consecutively eigenvalues, where $F(x, s)=$ $\int_{0}^{s} f(x, t) d t$ (see Theorem 7.3).

2. Preliminaries

Consider the problem (1) with $A(x, \xi)=\left(\left(A_{i}(x, \xi)\right)_{1 \leq i \leq N}\right.$, satisfies the hypotheses:
$\left(H_{1}\right) A_{i}: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function and there exist $c \geq 0, k \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
\left|A_{i}(x, \xi)\right| \leq c|\xi|^{p-1}+k(x), \forall \xi \in \mathbb{R}^{N} \text {, a.e. } x \in \Omega \tag{4}
\end{equation*}
$$

$\left(H_{2}\right)$ There exists a function $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies:
i) $a(x,):. \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuously differentiable a.e. $x \in \Omega$ and $\frac{\partial a(x, \xi)}{\partial \xi_{i}}=$ $A_{i}(x, \xi)$.
ii) $a(x,):. \mathbb{R}^{N} \rightarrow \mathbb{R}$ is convex and there exists $\delta>0$ such that

$$
\begin{equation*}
a(x, \xi) \geq \delta|\xi|^{p}, \quad \forall \xi \in \mathbb{R}^{N}, \text { a.e. } x \in \Omega \tag{5}
\end{equation*}
$$

$\left(H_{3}\right)$ There exists a Carathéodory function $a_{0}: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, where $a_{0}(x,$.$) is even$ and strictly convex such that

$$
\left|a(x, t \xi)-t^{p} a_{0}(x, \xi)\right| \leq t^{p} C(t)\left(|\xi|^{p}+k_{1}(x)\right), \forall \xi \in \mathbb{R}^{N}, t>0, \quad \text { a.e. } x \in \Omega
$$

for a certain function C of t such that $\lim _{t \rightarrow+\infty} C(t)=0$ and $k_{1} \in L^{1}(\Omega)$. $\left(H_{4}\right) a_{0}(x,):. \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuously differentiable and

1. There exist $c^{\prime} \geq 0, k^{\prime} \in L^{p^{\prime}}(\Omega)$ such that $\left|\frac{\partial a_{0}(x, \xi)}{\partial \xi_{i}}\right| \leq c^{\prime}|\xi|^{p-1}+k^{\prime}(x), \forall \xi \in$ \mathbb{R}^{N}, a.e. $x \in \Omega$.
2. $\sum_{i=1}^{i=N} \frac{\partial a_{0}(x, \xi)}{\partial \xi_{i}} \xi_{i} \geq C_{0}|\xi|^{p}-K_{0}(x)$, for all $x \in \Omega, \xi \in \mathbb{R}^{N}$ with $C_{0}>0$ some constant and $K_{0} \in L^{1}(\Omega)$.
Remarks 2.1 1. From $\left(H_{1}\right)$ the operator $\mathcal{A}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega): \mathcal{A}(u)=$ $-\operatorname{div}(A(x, \nabla u))$, with $\langle\mathcal{A}(u), v\rangle=\int_{\Omega} A(x, \nabla u) \nabla v=\sum_{i=1}^{i=N} \int_{\Omega} A_{i}(x, \nabla u) \frac{\partial v}{\partial x_{i}}$, is well defined, continuous on $W_{0}^{1, p}(\Omega)$.
3. Let the functional $G: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by $G(u)=\int_{\Omega} a(x, \nabla u) d x$. Under the hypotheses $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right), G$ is well defined, weakly lower semicontinuous, continuously differentiable and $G^{\prime}(u)=\mathcal{A}(u)$.
4. we consider the functional $G_{0}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}: G_{0}(u)=\int_{\Omega} a_{0}(x, \nabla u) d x$. By the hypotheses $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$, the operator G_{0} is well defined continuous and weakly lower semicontinuous.

Proposition 2.1 Assume that $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ hold. Then a_{0} is unique and verifies the following conditions

1. $a_{0}(x, r \xi)=|r|^{p} a_{0}(x, \xi)$, for all $\xi \in \mathbb{R}^{N}$ and $r \in \mathbb{R}$.
2. We have $\lim _{\|u\|_{1, p} \rightarrow+\infty} \frac{G(u)-G_{0}(u)}{\|u\|_{1, p}^{1}}=0$ and $G_{0}(r u)=|r|^{p} G_{0}(u)$, for all $r \in \mathbb{R}$.
3. $G_{0}(u) \geq \delta\|u\|_{1, p}^{p}$, for all $u \in W_{0}^{1, p}(\Omega)$, where $\|u\|_{1, p}=\left(\int_{\Omega}|\nabla u(x)|^{p} d x\right)^{\frac{1}{p}}$ the norm of $W_{0}^{1, p}(\Omega)$ and δ is defined in (5).
4. If $\left(H_{4}\right)$ holds, then G_{0} is continuously differentiable and G_{0}^{\prime} satisfies the $\left(S^{+}\right)$ property, i.e., if $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$ and $\limsup _{n \rightarrow+\infty}\left\langle G_{0}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u$ strongly in $\left.W_{0}^{1, p}(\Omega)\right)$.
Denoted

$$
\begin{equation*}
\frac{\partial a_{0}(x, \xi)}{\partial \xi_{i}}=A_{i}^{0}(x, \xi), A_{0}(x, \xi)=\left(A_{i}^{0}(x, \xi)\right)_{1 \leq i \leq N} \tag{6}
\end{equation*}
$$

such that $G_{0}^{\prime}: W_{0}^{1, p} \rightarrow W_{0}^{-1, p^{\prime}}(\Omega): G_{0}^{\prime}(u)=-\operatorname{div}\left(A_{0}(x, \nabla u)\right.$, is the unique homogenous operator associated to the operator $\mathcal{A}=G^{\prime}$.

Proof:

1. By $\left(H_{3}\right)$, it is clear that $a_{0}(x, \xi)=\lim _{t \rightarrow+\infty} \frac{a(x, t \xi)}{t^{p}}$ e.a.$x \in \Omega$ and for all $\xi \in \mathbb{R}^{N}$, this proves that a_{0} is unique. For $r>0, a_{0}(x, r \xi)=r^{p} \lim _{t \rightarrow+\infty} \frac{a(x, r t \xi)}{(r t)^{p}}$, so $a_{0}(x, r \xi)=r^{p} a_{0}(x, \xi)$. For $r<0$, we have $a_{0}(x,-r \xi)=(-r)^{p} a_{0}(x, \xi)$, since $a_{0}(x,$.$) is even, thus a_{0}(x, r \xi)=|r|^{p} a_{0}(x, \xi)$.
2. Results by 1 .
3. From $\left(H_{3}\right)$, we obtain $a(x, t \nabla u)-t^{p} C(t)\left(|\nabla u|^{p}+k_{1}(x)\right) \leq t^{p} a_{0}(x, \nabla u)$ and by (5), we conclude that $(\delta-C(t))|\nabla u|^{p} \leq a_{0}(x, \nabla u)$, thus $\delta|\nabla u|^{p} \leq a_{0}(x, \nabla u)$, consequently $G_{0}(u) \geq \delta\|u\|_{1, p}^{p}$ for all $u \in W_{0}^{1, p}(\Omega)$.
4. From 1) of $\left(H_{4}\right), G_{0}$ is continuously differentiable and we have $\left\langle G_{0}^{\prime}(u), v\right\rangle=$ $\sum_{i=1}^{i=N} \int_{\Omega} A_{i}^{0}(x, \nabla u) \frac{\partial v}{\partial x_{i}}$. Since G_{0} is convex strictly in ξ, then $\left\langle G_{0}^{\prime}(u)-\right.$ $\left.G_{0}^{\prime}(v), u-v\right\rangle>0$ for all $u, v \in W_{0}^{1, p}(\Omega)$ with $u \neq v$. The conditions 1$)$, 2) of $\left(H_{4}\right)$ and the fact that $\left\langle G_{0}^{\prime}(u)-G_{0}^{\prime}(v), u-v\right\rangle>0$ for all $u, v \in W_{0}^{1, p}(\Omega)$, $(u \neq v)$ imply that G_{0}^{\prime} satisfies the $\left(S^{+}\right)$property (see [7] pp,25).

In the continuation we consider that the hypotheses $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$ are verified.

3. Eigenvalues Problem

Consider the eigenvalues problem, find $(u, \lambda) \in W_{0}^{1, p}(\Omega) \backslash\{0\} \times \mathbb{R}_{+}$such that

$$
\begin{equation*}
\int_{\Omega} A_{0}(x, \nabla u) \nabla v d x=\lambda \int_{\Omega} m|u|^{p-2} u v d x \tag{7}
\end{equation*}
$$

for all $v \in W_{0}^{1, p}(\Omega)$, where $A_{0}(x, \nabla u)=\left(A_{i}^{0}(x, \nabla u)\right)_{1 \leq i \leq N}$, is defined in (6).
Consider $B: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}: B(u)=\frac{1}{p} \int_{\Omega} m|u|^{p} d x$.
Lemma 3.1 If (u, λ) is a solution of (7), then $v=\left[\frac{1}{2 \lambda G_{0}(u)}\right]^{\frac{1}{p}} u$ is a critical point of $\Phi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$, with $\Phi(v)=G_{0}^{2}(v)-B(v)$, corresponding to the critical value $c=-\frac{1}{4 \lambda^{2}}$. Reciprocally if $(u \neq 0)$ is a critical point of Φ corresponding to the critical value c, then (u, λ) is a solution of (7), where $\lambda=\frac{1}{2 \sqrt{-c}}$.

Proof: Let (u, λ) be a solution of (7), from Proposition (2.1) we conclude that for all $\beta \in \mathbb{R}^{*}, \beta u$ is also eigenvalue corresponding to λ. For $\beta=\left[\frac{1}{2 \lambda G_{0}(u)}\right]^{\frac{1}{p}}$, $v=\beta u$ verifies $G_{0}(v)=\frac{1}{2 \lambda}$, thus $\lambda=\frac{1}{2 G_{0}(v)}$ and $B(v)=\frac{1}{2 \lambda^{2}}$. Consequently $\Phi^{\prime}(v)=0$ and $\Phi(v)=-\frac{1}{4 \lambda^{2}}$. On the other hand if $u \neq 0$ is eigenvalue of Φ corresponding to the critical value c, then $\Phi(u)=-G_{0}^{2}(u)=c$, thus $G_{0}(u)=\sqrt{-c}$ and $\left\langle G_{0}^{\prime}(u), v\right\rangle=\frac{1}{2 G_{0}(u)}\left\langle B^{\prime}(u), v\right\rangle$, for all $v \in W_{0}^{1, p}(\Omega)$.

Theorem 3.1 The problem (7) admits an increasing positive sequences of the eigenvalue $\left(\lambda_{n}\right)_{n \in \mathbb{N}^{*}}$, with $\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty$.

Proof: Throughout this paper we put

$$
\begin{equation*}
C_{n}=\inf _{K \in A_{n}(\gamma)} \sup _{v \in K} \Phi(v) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(\gamma)=\left\{K \subset W_{0}^{1, p}(\Omega) \backslash\{0\} ; K \text { compact, symmetric, and } \gamma(K) \geq n\right\} \tag{9}
\end{equation*}
$$

with $\gamma(K)$ indicates the genus of K (see [9]). As Φ is even and of C^{1}, to prove the existence of the sequences $\left(\lambda_{n}\right)_{n \geq 1}$, it is sufficient to applied the fundamental multiplicity theorem (see [8]), i.e,.(to show that: (i) Φ is bounded below, (ii) Φ satisfies the Palais-Smale condition, (iii) for all $n \in \mathbb{N}^{*}$, there exists $K \in A_{n}(\gamma)$ such that $\sup _{v \in K} \Phi(v)<0$. In fact (i), for all $v \in W_{0}^{1, p}(\Omega)$, we have $\Phi(v) \geq$ $\delta^{2}\|v\|_{1, p}^{2 p}-\frac{1}{p}\|m\|_{\infty}\|v\|_{p}^{p}$, thus $\Phi(v) \geq\|v\|_{1, p}^{p}\left(\delta^{2}\|v\|_{1, p}^{p}-C^{p} \frac{1}{p}\|m\|_{\infty}\right)$, where C is the Sobolev constant. Hence Φ is bounded from below and coercive. (ii) Φ satisfies the Palais-Smale condition; indeed, let $\left(u_{n}\right)$ be a sequences of $W_{0}^{1, p}(\Omega)$ such that $\left(\Phi\left(u_{n}\right)\right)$ is bounded and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W_{0}^{1, p}(\Omega)$. Since Φ is coercive, $\left(u_{n}\right)$ is bounded. It follows that there exists a subsequences, still denoted by $\left(u_{n}\right)$, such that $u_{n} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega)$, and $u_{n} \rightarrow u$ in $L^{p}(\Omega)$, on the other hand $\left\|u_{n}\right\|_{1, p}$ is bounded in \mathbb{R}, hence $\left\|u_{n}\right\|_{1, p} \rightarrow a \in \mathbb{R}$, with $a \geq 0$. If $a=0$, we conclude that $u_{n} \rightarrow 0$ in $W_{0}^{1, p}(\Omega)$. If $a>0$, there exists $n_{0} \in \mathbb{N}$ such that $\left\|u_{n}\right\|_{1, p}>\frac{a}{2}$ for all $n \geq n_{0}$, thus $G_{0}\left(u_{n}\right)>\delta\left(\frac{a}{2}\right)^{p}$, for all $n \geq n_{0}$. Now, for all $n \geq n_{0}$

$$
\begin{equation*}
\frac{\Phi^{\prime}\left(u_{n}\right)}{2 G_{0}\left(u_{n}\right)}=G_{0}^{\prime}\left(u_{n}\right)-\frac{B^{\prime}\left(u_{n}\right.}{2 G_{0}\left(u_{n}\right)} . \tag{10}
\end{equation*}
$$

Since $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$, by (10), we have

$$
\frac{1}{2 G_{0}\left(u_{n}\right)}\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=\left\langle G_{0}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle-\frac{1}{2 G_{0}\left(u_{n}\right)}\left\langle B^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle
$$

for all $n \geq n_{0}$. on account of the fact that $B^{\prime}\left(u_{n}\right)$ is bounded in $L^{p^{\prime}}(\Omega)$, then we obtain $\lim _{n \rightarrow+\infty}\left\langle G_{0}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle=0$, hence $\limsup _{n \rightarrow+\infty}\left\langle G_{0}^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, and since G_{0}^{\prime} posses the $\left(S^{+}\right)$property, then $u_{n} \rightarrow u$. (iii) Since meas $(\Omega)^{+}=\operatorname{meas}\{x \in$ $\Omega ; m(x)>0\}>0$, then for all $n \in \mathbb{N}^{*}$, there exist $u_{1}, u_{2}, \ldots u_{n} \in W_{0}^{1, p}(\Omega)$, such that supp $_{i} \cap$ supp $_{j}=\varnothing$ if $i \neq j$, and $B\left(u_{i}\right)=1$. Let $F_{n}=\operatorname{span}\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ be the subspace of $W_{0}^{1, p}(\Omega)$, spanned by $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$. For all $v=\sum_{i=1}^{i=n} \alpha_{i} u_{i} \in F_{n}$, we have $B(v)=\sum_{i=1}^{i=n}\left|\alpha_{i}\right|^{p} B\left(u_{i}\right)=\sum_{i=1}^{i=n}\left|\alpha_{i}\right|^{p}$, hence the function: $v \rightarrow B(v)^{\frac{1}{p}}$ is a norm on F_{n}, therefore there exist $\alpha_{1}, \beta_{1}>0$ such that $\alpha_{1} A_{1}(v) \leq B(v) \leq \beta_{1} A_{1}(v)$, where $A_{1}(v)=\frac{1}{p}\|v\|_{1, p}^{p}$.
Let $\mathbf{A}=\left\{v \in W_{0}^{1, p}(\Omega) ; G_{0}(v) \leq \frac{R}{p}\|v\|_{1, p}^{p}, R \gg \delta\right\}$. For all $v \in \mathbf{A} \cap F_{n}$ we have
$\frac{\alpha_{1}}{R} G_{0}(v) \leq B(v) \leq \frac{\beta_{1}}{p \delta} G_{0}(v)$. Now let $K=\left\{v \in F_{n} \cap \mathbf{A} ; \frac{\alpha_{1}^{2}}{4 R^{2}} \leq B(v) \leq \frac{\alpha_{1}^{2}}{3 R^{2}}\right\}$. For all $v \in K$, we have

$$
\left\{\begin{aligned}
\Phi(v) & =G_{0}^{2}(v)-B(v) \\
& \leq \frac{R^{2}}{\alpha_{1}^{2}} B^{2}(v)-B(v) \\
& \leq \frac{\alpha_{1}^{2}}{9 R^{2}}-\frac{\alpha_{1}^{2}}{4 R^{2}}
\end{aligned}\right.
$$

Hence for all $v \in K, \Phi(v)<0$ and $\gamma(K) \geq n$, consequently C_{n} is a critical value and $\lambda_{n}=\frac{1}{2 \sqrt{-C_{n}}}$ is an eigenvalue. Now we prove that $\lim _{n \rightarrow+\infty} C_{n}=0$ (see also [1]).

It suffices to show that, for all $\varepsilon>0$, there exists $n_{\varepsilon} \geq 1$ such that $\sup _{v \in K} \Phi(v) \geq$ $-\varepsilon$, for all $K \in A_{n_{\varepsilon}}(\gamma)$, with $K \subset E$ where $E=\left\{v \in W_{0}^{1, p}(\Omega) ; \Phi(v) \leq 0\right\}$. Since Φ is coercive then E is bounded in $W_{0}^{1, p}(\Omega)$. It results from it, by using the fact that $I: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$ is compact that for all $n>0$, there exist a subspace $F_{n} \subset L^{p}(\Omega)$ and $I_{n}: E \rightarrow F_{n}$ continuous such that $\sup _{v \in E}\left\|v-I_{n}(v)\right\|_{p} \leq n$. Putting: $J_{n}(v)=\frac{1}{2}\left(I_{n}(v)-I_{n}(-v)\right)$, for all $v \in E$. It is clear that J_{n} is well defined, odd, continuous and satisfies: $\sup _{v \in E}\left\|v-J_{n}(v)\right\|_{p} \leq n$. Lets $\varepsilon>0$, since \bar{E} is compact in $L^{p}(\Omega)$ then there exists $n_{\varepsilon}>0$ such that $\left|B(v)-B\left(J_{n_{\varepsilon}}(v)\right)\right| \leq \frac{\varepsilon}{2}$ for all $v \in E$. Let $\delta_{\varepsilon}>0$ such that $B(v) \leq \frac{\varepsilon}{2}$ for $\|v\|_{p} \leq \delta_{\varepsilon}$. Thus for all $v \in E$, with $\left\|J_{n_{\varepsilon}}(v)\right\|_{p} \leq \delta_{\varepsilon}$, we have $B(v) \leq\left|B(v)-B\left(J_{n_{\varepsilon}}(v)\right)\right|+\left|B\left(J_{n_{\varepsilon}}(v)\right)\right| \leq \varepsilon$. This last inequality implies that for each compact K symmetric, with $K \subset E \cap\left\{v \in W_{0}^{1, p}(\Omega) ; B(v) \geq \varepsilon\right\}$, we have $J_{n_{\varepsilon}}(K) \subset\left\{v \in F_{n_{\varepsilon}} ;\|v\|_{p} \geq \delta_{\varepsilon}\right\}$. Since $J_{n_{\varepsilon}}(K)$ is symmetric and compact in $L^{p}(\Omega)$, then $\bar{\gamma}\left(J_{n_{\varepsilon}}(K)\right) \leq \operatorname{dim}\left(F_{n_{\varepsilon}}\right)$, where $\bar{\gamma}\left(K^{\prime}\right)$ indicates the genus in $L^{p}(\Omega)$ of K^{\prime}. Finally since $J_{n_{\varepsilon}}$ is continuous and odd then $\gamma(K) \leq \bar{\gamma}\left(J_{n_{\varepsilon}}(K)\right) \leq \operatorname{dim}\left(F_{n_{\varepsilon}}\right)$. Consequently for all compact symmetric $K \subset E$ such that $\gamma(K) \geq \operatorname{dim}\left(F_{n_{\varepsilon}}\right)+1$, there exists $v_{0} \in K$ such that $\inf _{v \in K} B(v) \leq B\left(v_{0}\right)<\varepsilon$ and since $\Phi(v) \geq-B(v)$, then we have $\sup _{v \in K} \Phi(v) \geq-\inf _{v \in K} B(v) \geq-\varepsilon$, the proof is complete.

4. Variational Formulation

Lemma 4.1 Let $S_{p}=\left\{v \in W_{0}^{1, p}(\Omega) ; p G_{0}(v)=1\right\}$, and $S=\left\{v \in W_{0}^{1, p}(\Omega) ;\|v\|_{1, p}^{p}=\right.$ $1\}$, then S_{p} and S are homeomorphic by an odd homomorphism, more precisely $\Psi: S_{p} \rightarrow S: \Psi(v)=\frac{v}{\|v\|_{1, p}}$.

Proof: Consider $\Psi: S_{p} \rightarrow S, v \mapsto \frac{v}{\|v\|_{1, p}} . \Psi$ is an odd and continuous function. Suppose that $\Psi(v)=\Psi\left(v^{\prime}\right)$ i.e., $\frac{v}{\|v\|_{1, p}}=\frac{v^{\prime}}{\left\|v^{\prime}\right\|_{1, p}}$, thus $\frac{p G_{0}(v)}{\|v\|_{1, p}^{p}}=\frac{p G_{0}\left(v^{\prime}\right)}{\left\|v^{\prime}\right\|_{1, p}^{p}}$, therefore $\frac{1}{\|v\|_{1, p}^{p}}=\frac{1}{\left\|v^{\prime}\right\|_{1, p}^{p}}$ hence $v=v^{\prime}$, then Ψ is an injection. Let $u \in S$ and putting $v=\frac{u}{\left(p G_{0}(u)\right)^{\frac{1}{p}}} \in S_{p}, \Psi^{-1}: S \rightarrow S_{p}: u \rightarrow \frac{u}{\left(p G_{0}(u)\right)^{\frac{1}{p}}}$, this proves that Ψ is a surjection and Ψ^{-1} is continuous.

Lemma 4.2 There exist $\alpha, \beta>0$ such that for all $v \in S_{p}$, we have $\alpha \leq\|v\|_{1, p}^{p} \leq$ β.

Proof: For all $v \in W_{0}^{1, p}(\Omega)$, we have $G_{0}(v) \geq \delta\|v\|_{1, p}^{p}$ in particular $\|v\|_{1, p}^{p} \leq \frac{1}{\delta p}$, for all $v \in S_{p}$. There exists $\alpha>0$, such that $\alpha \leq\|v\|_{1, p}^{p}$, for all $v \in S_{p}$, otherwise, for all $n>0$, there exists $v_{n} \in S_{p}$, such that $\frac{1}{n}>\left\|v_{n}\right\|_{1, p}^{p}$ thus $\lim _{n \rightarrow+\infty} v_{n}=0$, but $p G_{0}\left(v_{n}\right)=1$, this contradicts the continuity of G_{0}, finally there exist $\alpha, \beta>0$, such that for all $v \in S_{p}, \alpha \leq\|v\|_{1, p}^{p} \leq \beta$.

Putting

$$
\begin{equation*}
\Gamma_{n}(\gamma)=\left\{K \subset W_{0}^{1, p}(\Omega) \backslash\{0\} ; K \text { compact, symmetric, of } S_{p} \text { and } \gamma(K) \geq n\right\} \tag{11}
\end{equation*}
$$

Proposition 4.1 For all $n \geq 1$

$$
\begin{equation*}
\frac{1}{\lambda_{n}(\gamma)}=\sup _{K \in \Gamma_{n}(\gamma)} \inf _{u \in K} \int_{\Omega} m|u|^{p} d x \tag{12}
\end{equation*}
$$

where $\Gamma_{n}(\gamma)$ is defined in (11).
Proof: Putting $d_{n}=\sup _{\widetilde{K} \in \Gamma_{n}(\gamma)} \inf _{v \in \widetilde{K}} \int_{\Omega} m|v|^{p} d x$, Previously we show that d_{n} is well defined and strictly positive. Let F_{n} the subspace (defined in (iii) proof of theorem (3.1)), $K=\left\{u \in F_{n},\|u\|_{1, p}=1\right\}$ and $v \in \widetilde{K}=\Psi^{-1}(K), \Psi(v)=u$, (Lemma (4.1)) so $\frac{v}{\|v\|_{1, p}}=u, \int_{\Omega} m|u|^{p} d x=\frac{1}{\|v\|_{1, p}^{p}} \int_{\Omega} m|v|^{p} d x$, where $v \in \widetilde{K}$ and $u \in K=$ $\Psi(\widetilde{K})$. Since $u \in K \subset F_{n},\left(B\right.$ and A_{1} are equivalent $)$, then there exists $c>0$ such that $c \frac{1}{p}\|u\|_{1, p} \leq \frac{1}{p} \int_{\Omega} m|u|^{p} d x \leq \frac{1}{c p}\|u\|_{1, p}$ and $v \in \widetilde{K} \subset S_{p}$, hence $\alpha \leq$ $\|v\|_{1, p}^{p}$ (Lemma (4.2)). Consequently $0<\alpha c \leq\|v\|_{1, p}^{p} \int_{\Omega} m|u|^{p} d x=\int_{\Omega} m|v|^{p} d x$, this result shows that $\inf _{V \in \widetilde{K}} \int_{\Omega} m|v|^{p} d x \geq \alpha c$, finally $d_{n}>0$. On one hand, let $\widetilde{K} \in \Gamma_{n}(\gamma)$, and $i: \widetilde{K} \rightarrow K_{1}=\{t v / v \in \widetilde{K}, t>0\}: i(v)=t v, i$ is an odd continuous homomorphism. By definition of C_{n}, the number defined in (8), for all $t>0$, we have $\frac{1}{\lambda_{n}^{2}} \geq 4 \inf _{u \in \widetilde{K}}\left(\frac{t^{p}}{p} \int_{\Omega} m|u|^{p} d x-\frac{t^{2 p}}{p^{2}}\right)$. For $t=\left(\frac{p d_{n}}{2}\right)^{\frac{1}{p}}$, we obtain $\left(\frac{1}{\lambda_{n}^{2}}+d_{n}^{2}\right) \frac{1}{2 d_{n}} \geq \inf _{u \in \widetilde{K}} \int_{\Omega} m|u|^{p} d x$, hence $\lambda_{n} \leq d_{n}^{-1}$. On the other hand $\frac{1}{4 \lambda_{n}^{2}}=$ $\sup _{K \in A_{n}(\gamma)} \min _{v \in K}\left(B(v)-G_{0}^{2}(v)\right)$, where $A_{n}(\gamma)$ is defined in (9). For $0<\varepsilon<\frac{1}{\lambda_{n}^{2}}$, there exists a compact $K_{\varepsilon} \in A_{n}(\gamma)$, such that $B(v)>0$, for all $v \in K_{\varepsilon}$. Thus from (5), we have $G_{0}(v)>0$, for all $v \in K_{\varepsilon}$. Consequently $2\left(\frac{1}{4 \lambda_{n}^{2}}-\varepsilon\right)^{\frac{1}{2}} \leq \inf _{v \in K_{\varepsilon}}\left(\frac{B(v)}{G_{0}(v)}\right)$. Now let $h: W_{0}^{1, p}(\Omega) \backslash\{0\} \rightarrow S_{p}: h(v)=\frac{v}{\left[p G_{0}(v)\right]^{\frac{1}{p}}}, h$ is an odd continuous function and $h\left(K_{\varepsilon}\right) \in \Gamma_{n}(\gamma)$, hence $2\left(\frac{1}{4 \lambda_{n}^{2}}-\varepsilon\right)^{\frac{1}{2}} \leq \inf _{u \in h\left(K_{\varepsilon}\right)} \int_{\Omega} m|u|^{p} d x \leq d_{n}$, therefore $\lambda_{n} \geq d_{n}^{-1}$, finally $\lambda_{n}^{-1}=d_{n}$.

From this proposition we can easily obtain the following result
Corollary 4.0A \quad 1. $\lambda_{n}(\Omega, \alpha m)=\frac{\lambda_{n}(\Omega, m)}{\alpha}$, for all $\alpha>0$.
2. $\lambda_{n}\left(\Omega, \lambda_{n}(\Omega, 1)\right)=1$, for all $n \geq 1$.
3. $\lambda_{1}(\Omega, m)=\inf _{v \in W_{0}^{1, p}(\Omega)}\left(\frac{p G_{0}(v)}{\int_{\Omega} m|v|^{p} d x}\right)$, with $\int_{\Omega} m|v|^{p} d x>0$.
4. $\frac{1}{\lambda_{1}(\Omega, m)}=\sup _{v \in S_{p}} \int_{\Omega} m|v|^{p} d x$.
5. If $m_{1}, m_{2} \in M^{+}(\Omega)$, and $m_{1}<m_{2}$ a.e, then $\lambda_{1}\left(m_{1}, \Omega\right)>\lambda_{1}\left(m_{2}, \Omega\right)$.
6. $m \in L^{\infty}(\Omega) \rightarrow \lambda_{n}(m)$ is continuous (see [6]).

5. Quasilinear problem

Consider the problem (1), where $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function and $h \in W^{-1, p^{\prime}}(\Omega)$. Lets the energy functional $\Phi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ associated with this problem, $\Phi(u)=G(u)-\int_{\Omega} F(x, u) d x-\langle h, u\rangle$, where $F(x, s)=\int_{0}^{s} f(x, t) d t$. Now suppose the following conditions on f and F.
(f) : There exist $a \geq 0, b \in L^{p^{\prime}}(\Omega)$ such that $|f(x, s)| \leq a|s|^{p-1}+b(x)$ a.e. $x \in \Omega$, $\forall s \in \mathbb{R}$.
$(F): \beta(x) \equiv \limsup _{|s| \rightarrow+\infty} \frac{p F(x, s)}{|s|^{p}}<\lambda_{1}(\Omega, 1)$ a.e uniformly in x, i.e., there exist $\gamma \in$ $L^{1}(\Omega)$ such that $F(x, s) \leq \frac{\beta(x)}{p}|s|^{p}+\gamma(x), \beta \in L^{\infty}(\Omega)$ and $\beta(x)<\lambda_{1}(\Omega, 1)$ a.e. $x \in \Omega$.

Theorem 5.1 Assume that the hypotheses $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$ hold. If the conditions (f) and (F) are verified, then for all $h \in W^{-1, p^{\prime}}(\Omega)$ the problems (1) admits a solution that minimizes $\Phi(u)=G(u)-\int_{\Omega} F(x, u) d x-\langle h, u\rangle$.

Proof: In our conditions Φ is continuously differentiable, weakly lower semicontinuous and to finish the proof, it suffices to show that Φ is coercive. Let $\Phi(u)=$ $G(u)-\int_{\Omega} F(x, u) d x-\langle h, u\rangle$. Suppose by contradiction that there exist a sequences $\left(u_{n}\right)$ and a real c such that $\left\|u_{n}\right\|_{1, p} \rightarrow+\infty$ and $\Phi\left(u_{n}\right) \leq c$. we know that, $\lim _{\left\|u_{n}\right\|_{1, p} \rightarrow+\infty} \frac{G\left(u_{n}\right)-G_{0}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}}=0$, thus from Proposition (2.1), for all $\varepsilon>0$, there exist $n_{0} \in \mathbb{N},(1-\varepsilon) G_{0}\left(u_{n}\right) \leq G\left(u_{n}\right) \leq(1+\varepsilon) G_{0}\left(u_{n}\right)$, for all $n \geq n_{0}$. Therefore we have $(1-\varepsilon) G_{0}\left(u_{n}\right) \leq \frac{1}{p} \int_{\Omega} \beta(x)\left|u_{n}\right|^{p} d x+\int_{\Omega} \gamma(x) d x+\left\langle h, u_{n}\right\rangle+c$. Putting $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{1, p}}$, since v_{n} is bounded in $W_{0}^{1, p}(\Omega)$ then there exists a subsequences still denoted by $\left(v_{n}\right)$ such that $v_{n} \rightharpoonup v$ weakly in $W_{0}^{1, p}(\Omega)$ and $v_{n} \rightarrow v$ strongly in $L^{p}(\Omega)$. Consequently from Proposition (2.1), we have $\delta(1-\varepsilon) \leq(1-\varepsilon) G_{0}\left(v_{n}\right) \leq$ $\frac{1}{p} \int_{\Omega} \beta(x)\left|v_{n}\right|^{p} d x+\frac{1}{\left\|u_{n}\right\|_{1, p}^{p}} \int_{\Omega} \gamma(x) d x+\frac{c}{\left\|u_{n}\right\|_{1, p}^{p}}+\frac{1}{\left\|u_{n}\right\|_{1, p}^{p}}\left\langle h, u_{n}\right\rangle$, we passe to limit and by Remarks (2.1), we obtain $\delta(1-\varepsilon) \leq(1-\varepsilon) G_{0}(v) \leq \frac{1}{p} \int_{\Omega} \beta(x)|v|^{p} d x$, for all $\varepsilon>0$, so $v \neq 0$. On the other hand $p(1-\varepsilon) G_{0}(v) \leq \int_{\Omega} \beta(x)|v|^{p} d x \leq \lambda_{1}(\Omega, 1) \int_{\Omega}|v|^{p} d x$,
for all $\varepsilon>0$, this proves that $p G_{0}(v) \leq \int_{\Omega} \beta(x)|v|^{p} d x \leq \lambda_{1}(\Omega, 1) \int_{\Omega}|v|^{p} d x$, therefore v is a solution of equation $G_{0}^{\prime}(u)=\beta(x)|u|^{p-2} u$ and 1 is an eigenvalue. But $\beta(x)<\lambda_{1}(\Omega, 1)$ and by Corollary (4.0A), we conclude that $\lambda_{1}(\beta(x))>\lambda_{1}\left(\lambda_{1}\right)=1$, this contradicts that $\lambda_{1}(\beta(x))$ is the first positive eigenvalue. Finally Φ is coercive.

It is easily to show that the problem

$$
\left\{\begin{align*}
G_{0}^{\prime}(u) & =f(x, u)+h & & \text { in } \Omega \tag{13}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

admits a solution that minimizes $\Phi_{0}(u)=G_{0}(u)-\int_{\Omega} F(x, u) d x-\langle h, u\rangle$, in the conditions of Theorem (5.1).

Remark 5.2 The condition (f), can be replaced by the condition $\max _{|s| \leq R}|f(x, s)| \in$ $L_{l o c}^{1}(\Omega)$, for all $R>0$, in this case Φ is not of class C^{1} on $W_{0}^{1, p}(\Omega)$. In [4], the authors showed that the problem (1), with $G^{\prime}=-\triangle_{p}$ admits a solution.

6. Fredholm Alternative

In the following section we show the Fredholm Alternative, this is the reason we will announce a definition, lemmas and a corollary, whose be frequently used later. Let X be a Banach space and $\operatorname{Sym}(\mathrm{X})$ the class of all closed and symmetric parties (in comparison with origin) of $X \backslash\{0\}$. Let $S^{K-1}=\left\{x \in \mathbb{R}^{k} ;\|x\|_{\mathbb{R}^{k}}=1\right\}$.

Definition 6.1 (cf [3]) The function $\theta: \operatorname{Sym}(X) \rightarrow \mathbb{N} \cup+\infty$ is defined by

1. $\theta(\varnothing)=0$
2. If $F \neq \emptyset$, then $\theta(F)=\sup \left\{k \in \mathbb{N}\right.$; there exist an odd $\left.f \in C\left(S^{K-1}, F\right)\right\}$.

Let us recall that the numbers $C_{n}(\gamma)=\inf _{K \in A_{n}(\gamma)} \sup _{v \in K} \Phi(v)$ defined in (8), where $A_{n}(\gamma)=\left\{K \in W_{0}^{1, p}(\Omega) \backslash\{0\} / K\right.$ compact, symmetric and $\left.\gamma(K) \geq n\right\}$ are critical points, corresponding to the eigenvalues $\lambda_{n}(\gamma)$ defined in (12), we define $C_{n}(\theta)$ and $\lambda_{n}(\theta)$ in substitute in (8) γ by θ, we obtain

Lemma 6.1 ($c f[3]$)

1. For all $n \geq 1, C_{n}(\theta)$ is a critical point of Φ.
2. $-\infty<\inf _{W_{0}^{1, p}(\Omega)} \Phi=C_{1}(\theta) \leq C_{2}(\theta) \leq \ldots \leq C_{n}(\theta)<0=\Phi(0)$.
3. $\lim _{n \rightarrow+\infty} C_{n}(\theta)=0$.

Lemma 6.2 (cf [3]) For all $n \geq 1$, we have $C_{n}(\theta)=-\frac{1}{4\left(\lambda_{n}(\theta)\right)^{2}}$, where $C_{n}(\theta)$ and $\lambda_{n}(\theta)$ are defined respectively by (8) and (12) in substitute γ by θ.

Corollary 6.1A (cf [3]) Let $\Phi \in C^{1}(X, \mathbb{R})$ be a functional satisfied the PalaisSmale condition $(P S)$ on $X, K_{0} \in S y m(X)$ a compact and $A_{1} \subset X$ a no empty symmetrical set. If the following conditions are verified
$\left(P_{1}\right)$ If $K \in \operatorname{Sym}(X)$ compact with $\gamma(K) \geq \theta\left(K_{0}\right)+1$, then $K \cap A_{1} \neq \emptyset$.
$\left(P_{2}\right) \alpha:=\max _{K_{0}} \Phi<\inf _{A_{1}} \Phi:=\beta$. Then the value

$$
C=\inf _{h \in \Gamma} \max _{u \in h(\bar{D})} \Phi(u)
$$

where $D=c o\left(K_{0}\right):=\left\{t x+(1-t) x^{\prime} ; x, x^{\prime} \in K_{0}, \quad 0 \leq t \leq 1\right\}$ and $\Gamma=\{h \in$ $C(\bar{D}, X \backslash\{0\}) / h=i d$ on $\left.K_{0}\right\}$ is a critical point of the functional Φ. Moreover $C \geq \beta$.

Now we consider the hypothesis $\left(H_{5}\right)$ There exists a Carathéodory function $a_{0}: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ such that $a_{0}(x,$.$) is$ even, strictly convex and continuously differentiable such that

$$
\left|A_{i}(x, t \xi)-t^{p-1} A_{i}^{0}(x, \xi)\right| \leq t^{p-1} C(t)\left(|\xi|^{p-1}+K_{2}(x)\right), \text { a.e. } x \in \Omega, \forall \xi \in \mathbb{R}^{N}, t>0
$$

where $K_{2} \in L^{p^{\prime}}(\Omega), A_{i}(x, \xi)=\frac{\partial a(x, \xi)}{\partial \xi_{i}}, A_{i}^{0}\left(x, \xi_{i}\right)=\frac{\partial a_{0}(x, \xi)}{\partial \xi_{i}}$ and $C(t)$ a certain function of t such that $\lim _{t \rightarrow+\infty} C(t)=0$ and $a_{0}(x, 0)=0, \forall x \in \Omega$.

Remark 6.2 The hypotheses $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{5}\right)$ imply that $\lim _{\|v\|_{1, p} \rightarrow+\infty} \frac{G(v)-G_{0}(v)}{\|v\|_{1, p}^{p}}=$ 0. For all $v \in W_{0}^{1, p}(\Omega), r \in \mathbb{R}$, we have $G_{0}(r v)=|r|^{p} G_{0}(v)$ and $G_{0}(v) \geq \delta\|v\|_{1, p}^{p}$, where δ is defined in (5).

Consider the problem

$$
\left\{\begin{align*}
-\operatorname{div}(A(x, \nabla u)) & =\lambda m|u|^{p-2} u+h & & \text { in } \Omega \tag{14}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, m \in M^{+}(\Omega)$ and $h \in W^{-1, p^{\prime}}(\Omega)$.
Theorem 6.3 Assume that the hypotheses $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{5}\right)$ hold. Then for all λ positive that does not belong to the spectrum of G_{0}^{\prime}, the problem (14) admits a solution.

Example 6.4 $\mathcal{A}(u)=-\operatorname{div}\left(\left(\varepsilon+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \nabla u\right)$, with $\varepsilon>0, G(u)=\frac{1}{p} \int_{\Omega}(\varepsilon+$ $\left.|\nabla u|^{2}\right)^{\frac{p}{2}} d x$ and $G_{0}(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x$.

Proof: [Proof of Theorem (6.3).] Consider the energy functional $\Phi: W_{0}^{1, p}(\Omega) \rightarrow \overline{\mathbb{R}}$ associated to the problem (14)

$$
\begin{equation*}
\Phi(u)=G(u)-\frac{\lambda}{p} \int_{\Omega} m|u|^{p} d x-\langle h, u\rangle, \text { and } \Phi^{\prime}(u)=G^{\prime}(u)-\lambda m|u|^{p-2} u-h, \tag{15}
\end{equation*}
$$

where $G^{\prime}(u)=-\operatorname{div}(A(x, \nabla u))$. If $0 \leq \lambda<\lambda_{1}(\Omega, m)$, then Φ is coercive, and from our hypotheses the problem admits a solution. If $\lambda_{1}(\Omega, m)<\lambda$, applying the Corollary 6.1A. Previously we show that the functional Φ satisfies the PalaisSmale condition, otherwise suppose that there exists a sequences $\left(u_{n}\right)$ in $W_{0}^{1, p}(\Omega)$ such that $\left(\Phi\left(u_{n}\right)\right)$ is bounded and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W_{0}^{1, p}(\Omega)$, and $\left\|u_{n}\right\|_{1, p} \rightarrow+\infty$. Put $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{1, p}}$ and $t_{n}=\left\|u_{n}\right\|_{1, p},\left(v_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$, so there exists a subsequences still denoted by $\left(v_{n}\right)$ such that $v_{n} \rightharpoonup v$ weakly in $W_{0}^{1, p}(\Omega)$, and $v_{n} \rightarrow v$ strongly in $L^{P}(\Omega)$. Let

$$
\begin{equation*}
\Phi_{0}(u)=G_{0}(u)-\frac{\lambda}{p} \int_{\Omega} m|u|^{p} d x-\langle h, u\rangle, \Phi_{0}^{\prime}(u)=G_{0}^{\prime}(u)-\lambda m|u|^{p-2} u-h \tag{16}
\end{equation*}
$$

From (15) and (16), we obtain

$$
\begin{equation*}
\frac{\Phi^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}-\frac{\Phi_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}=\frac{G^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}-\frac{G_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}} \tag{17}
\end{equation*}
$$

For all $\varphi \in W_{0}^{1, p}(\Omega) \backslash\{0\}$, we have

$$
\begin{equation*}
\left|\left\langle\frac{G^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}-\frac{G_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}, \varphi\right\rangle\right| \leq C\left(t_{n}\right)\left(\left\|v_{n}\right\|_{1, p}^{p-1}+\left\|K_{2}\right\|_{L^{P^{\prime}}(\Omega)}\right) \sum_{i=1}^{i=N}\left(\int_{\Omega}\left|\frac{\partial \varphi}{\partial x_{i}}\right|^{p} d x\right)^{\frac{1}{p}} \tag{18}
\end{equation*}
$$

Consequently from the hypotheses $\left(H_{5}\right)$, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{G^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}-\frac{G_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}=0 \tag{19}
\end{equation*}
$$

(17), (19) and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W_{0}^{1, p}(\Omega)$, show that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\Phi_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}=0 \tag{20}
\end{equation*}
$$

From (16), we have

$$
\begin{equation*}
\frac{\Phi_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}=G_{0}^{\prime}\left(v_{n}\right)-\lambda m\left|v_{n}\right|^{p-2} v_{n}-\frac{h}{\left\|u_{n}\right\|_{1, p}^{p-1}} \tag{21}
\end{equation*}
$$

therefore $\left.\left\langle\frac{\Phi_{0}^{\prime}\left(u_{n}\right)}{\left\|u_{n}\right\|_{1, p}^{p-1}}, v_{n}-v\right\rangle=\left.\left\langle G_{0}^{\prime}\left(v_{n}\right)-\lambda m\right| v_{n}\right|^{p-2} v_{n}-\frac{h}{\left\|u_{n}\right\|_{1, p}^{p-1}}, v_{n}-v\right\rangle$. By (20) and (21), we have $\lim _{n \rightarrow+\infty}\left\langle G_{0}^{\prime}\left(v_{n}\right), v_{n}-v\right\rangle=0$, since G_{0}^{\prime} posses the $\left(S^{+}\right)$property, we conclude that $v_{n} \rightarrow v$. From (21), we have $G_{0}^{\prime}(v)=\lambda m|v|^{p-2} v$, this contradicts our assumption, finally Φ satisfies the Palais-Smale condition. According to the hypothesis of our Theorem there exists $n \in \mathbb{N}^{*}$ such that $\lambda_{n}(\theta, m)<\lambda<\lambda_{n+1}(\theta, m)$. Now we must verify the conditions $\left(P_{1}\right)$ and $\left(P_{2}\right)$ of Corollary (6.1A). Consider the set

$$
\begin{equation*}
A_{1}=\left\{v \in W_{0}^{1, p}(\Omega) \backslash\{0\} ; \lambda_{n+1}(\theta, m) \int_{\Omega} m|v|^{p} d x \leq p G_{0}(v)\right\} \tag{22}
\end{equation*}
$$

we have $\Phi(u)=G(u)-\frac{\lambda}{p} \int_{\Omega} m|u|^{p} d x-\langle h, u\rangle$, from the Remark (6.2) we conclude that for $\varepsilon>0$, there exists $R>0$ such that $G(u) \geq(1-\varepsilon) G_{0}(u)$ for all $\|u\|_{1, p}>R$, therefore $\Phi(u) \geq G_{0}(u)\left(1-\varepsilon-\frac{\lambda}{\lambda_{n+1}(\theta, m)}\right)-\langle h, u\rangle$, for $\|u\|_{1, p}>R$ and $u \in A_{1}$. Hence for ε rather small and $p>1, \Phi$ is coercive on A_{1} and the value $\beta:=\inf _{u \in A_{1}} \Phi(u)$ is well defined. On the other hand let $\varepsilon>0$, from (12), there exists $K^{\prime} \in \Gamma_{n}(\theta)$ such that for all $u \in K^{\prime}$

$$
\frac{1}{\lambda_{n}(\theta, m)}-\varepsilon \leq \min _{u \in K^{\prime}} \int_{\Omega} m|u|^{p} d x \leq \int_{\Omega} m|u|^{p} d x
$$

hence for all $v \in \mathbb{R} K^{\prime}, p G_{0}(v)\left(\frac{1}{\lambda_{n}(\theta, m)}-\varepsilon\right) \leq \int_{\Omega} m|v|^{p} d x$, we have $\Phi(v) \leq G(v)-$ $\frac{\lambda}{\lambda_{n}(\theta, m)} G_{0}(v)+\varepsilon \lambda G_{0}(v)-\langle h, v\rangle$ and from the Remark (5.2) there exists $R>0$ such that for all $v \in \mathbb{R} K^{\prime}$ and $\|v\|_{1, p}>R$.

$$
\Phi(v) \leq G_{0}(v)\left(1+\varepsilon-\frac{\lambda}{\lambda_{n}(\theta, m)}+\varepsilon \lambda\right)-\langle h, v\rangle
$$

Consequently for ε rather small $\Phi(v) \rightarrow-\infty$ when $\|v\|_{1, p} \rightarrow+\infty$. Since K^{\prime} is a compact there exists t_{0} rather big such that $\alpha:=\max _{v \in t_{0} K^{\prime}} \Phi(v)<\beta$. Next putting $K_{0}=t_{0} K^{\prime}$, we have $K_{0} \in \operatorname{Sym}\left(W_{0}^{1, P}(\Omega)\right), K_{0}$ is a compact and $\theta\left(K_{0}\right) \geq n$, therefore $\left(P_{2}\right)$ is verified. There remains to verify $\left(P_{1}\right)$, let K a compact, symmetric and $\gamma(K) \geq n+1$, we put $\widetilde{K}=\left\{\frac{u}{\left(p G_{0}(u)\right)^{\frac{1}{p}}} ; u \in K\right\}$, we have $\widetilde{K} \in$ $\Gamma_{n+1}(\theta)$ and $\min _{u \in \widetilde{K}} \int_{\Omega} m|u|^{p} d x \leq \frac{1}{\lambda_{n+1}(\theta, m)}$, finally there exists $u_{0} \in K$ such that $\lambda_{n+1}(\theta, m) \int_{\Omega} m\left|u_{0}\right|^{p} d x \leq p G_{0}\left(u_{0}\right)$ i.e., $K \cap A_{1} \neq$.

7. The eigenvalue in the case $N=1$

In this section we consider that $N=1$.
Proposition 7.1 Assume that the hypotheses $\left(H_{1}\right)$, $\left(H_{2}\right)$ and $\left(H_{5}\right)$ hold. Then there exists $\delta^{\prime}>0$ such that $A^{0}(x, 1)>\delta^{\prime}$, a.e.x $\in \Omega$, and $\left\langle G_{0}^{\prime}(u), u\right\rangle=\int_{\Omega} A^{0}(x, 1)\left|u^{\prime}\right|^{p} d x=$ $p G_{0}(u)$, for all $u \in W_{0}^{1, p}(\Omega)$, where $A^{0}(x, \xi)=\frac{\partial a_{0}(x, \xi)}{\partial \xi}$, is defined in (6).

Proof: From (6) and Proposition (2.1), we have $A^{0}(x, r)=r^{p-1} A^{0}(x, 1)$, for all $r>0$, hence there exits $c>0$ such that $a_{0}(x, 1)=c^{p-1} A^{0}(x, 1)$, consequently from (5) there exists $\delta^{\prime}>0$ such that $A^{0}(x, 1)>\delta^{\prime}$, a.e. $x \in \Omega$. On the other hand consider the function $f(t)=G_{0}(t u), t \in \mathbb{R}$, from Proposition (2.1), we have $\left\langle G_{0}^{\prime}(u), u\right\rangle=\int_{\Omega} A^{0}(x, 1)\left|u^{\prime}\right|^{p} d x=p G_{0}(u)$.

Remark 7.1 From (12) and Proposition (7.1), we conclude that for all $n \geq 1$,

$$
\begin{equation*}
\frac{1}{\lambda_{n}(\gamma)}=\sup _{K \in \Gamma_{n}(\gamma)} \inf _{u \in K} \int_{\Omega} m|u|^{p} d x \tag{23}
\end{equation*}
$$

where $\Gamma_{n}(\gamma)$ is defined in (11) and

$$
\begin{equation*}
S_{p}=\left\{u \in W_{0}^{1, p}(\Omega) ; \int_{\Omega} A^{0}(x, 1)\left|u^{\prime}\right|^{p} d x=1\right\} \tag{24}
\end{equation*}
$$

Let $\rho(x)=a_{0}(x, 1)$ and $\Omega=I=(a, b)$ such that $a<b$, if $\rho \in C^{1}(I) \cap C^{0}(\bar{I})$, then we have

Theorem 7.2 ([5]) For all $p>1, m \in M^{+}(\Omega)$ the problem (2), has a non trivial solution if and only if λ belongs to an increasing sequence $\left(\lambda_{n}\right)_{n \geq 1}$. Moreover

1. Each λ_{n} is simple and any corresponding eigenfunction takes the forme $\alpha v_{n}(x)$ with $\alpha \in \mathbb{R}$, namely the multiplicity of each eigenfunction is 1 . Moreover $v_{n}(x)$ has exactly $n-1$ simple zeros.
2. Each λ_{n} verifies the strict monotonicity with respect to the weight and the domain Ω.
3. $\sigma^{+}\left(G_{0}\right)=\left\{\lambda_{n}, n=1,2 \ldots\right\}$. The eigenvalues are ordered as $0<\lambda_{1}(m)<$ $\lambda_{2}(m)<\lambda_{3}(m)<\ldots \lambda_{n}(m) \rightarrow+\infty$ as $n \rightarrow+\infty$.
7.1. Application. Consider the Dirichlet problem

$$
\left\{\begin{align*}
-\left(A\left(x, u^{\prime}\right)\right)^{\prime} & =f(x, u)+h & & \text { in } \Omega \tag{25}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $A: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, satisfies the Carathéodory conditions and $h \in W^{-1, p^{\prime}}(\Omega)$. Now supposing that f satisfies the hypotheses $\left(H_{\alpha, \beta}\right)$: for $\alpha, \beta \in \mathbb{R}$, with $\alpha<\beta$, we have

1. for all $R>0$, there exists $\phi_{R} \in L^{p^{\prime}}(\Omega)$ such that

$$
\begin{equation*}
\max _{|s| \leq R}|f(x, s)| \leq \phi_{R}(x) \text { a.e. } x \in \Omega \tag{26}
\end{equation*}
$$

2. $\left(f_{\alpha, \beta}\right)$ for all $\varepsilon>0$ there exists $b_{\varepsilon} \in L^{p^{\prime}}(\Omega)$ such that a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, we have

$$
\begin{equation*}
-b_{\varepsilon}(x)+(\alpha-\varepsilon)|s|^{p} \leq s f(x, s) \leq(\beta+\varepsilon)|s|^{p}+b_{\varepsilon}(x) \tag{27}
\end{equation*}
$$

3. $\left(F_{\alpha, \beta}\right) \alpha \leq \neq l(x):=\liminf _{|s| \rightarrow+\infty} \frac{p F(x, s)}{|s|^{p}}, \limsup _{|s| \rightarrow+\infty} \frac{p F(x, s)}{|s|^{p}}:=k(x) \leq \neq \beta \quad$ a.e. $x \in \Omega$ and for all $\varepsilon>0$, there exists $d_{\varepsilon} \in L^{1}(\Omega)$, such that a.e. $x \in \Omega$, for all $s \in \mathbb{R}$, we have

$$
\begin{equation*}
-d_{\varepsilon}(x)+(l(x)-\varepsilon) \frac{|s|^{p}}{p} \leq F(x, s) \leq(k(x)+\varepsilon) \frac{|s|^{p}}{p}+d_{\varepsilon}(x) \tag{28}
\end{equation*}
$$

where $F(x, s)=\int_{0}^{s} f(x, t) d t, m_{1}(x) \leq \neq m_{2}(x)$, "i.e.," $m_{1}(x) \leq m_{2}(x)$ a.e. $x \in$ Ω and $m_{1}(x)<m_{2}(x)$, in some subset of Ω of nonzero measure, for all $m_{1}, m_{2} \in M^{+}(\Omega)$. Let the energy functional Φ corresponding to the problem (25), we have $\Phi(u)=G(u)-\int_{\Omega} F(x, u) d x-\langle h, u\rangle$, where G is defined in Remarks (2.1).

Proposition 7.2 Assume that the hypotheses $\left(H_{1}\right),\left(H_{2}\right),\left(H_{5}\right)$ hold and f satisfies the hypotheses $\left(H_{\alpha, \beta}\right)$. If Φ does not satisfied the Palais-Smale condition (PS), then there exist $m(x) \in L^{\infty}(\Omega), v \in W_{0}^{1, p}(\Omega) \backslash\{0\}$, and $\left(u_{n}\right) \subset W_{0}^{1, p}(\Omega)$ such that v is nontrivial solution of the problem

$$
\left(P_{m}\right) \begin{cases}G_{0}^{\prime}(u)=m|u|^{p-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and

$$
\left\{\begin{array}{l}
\alpha \leq \neq m(x) \leq \neq \beta \\
\left\|u_{n}\right\|_{1, p} \rightarrow+\infty, \frac{u_{n}}{\left\|u_{n}\right\|_{1, p}} \rightarrow v \text { in } W_{0}^{1, p}(\Omega) \\
\left(\Phi\left(u_{n}\right)\right) \text { is a bounded sequences. }
\end{array}\right.
$$

Proof: The proof is an adaptation of the Theorem ((4.1) see [3]) and the Theorem (6.3).

Theorem 7.3 Assume that the hypotheses $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{5}\right)$ hold. If f satisfies $\left(H_{\lambda_{n}(1), \lambda_{n+1}(1)}\right)$, for $n \geq 1$, then Φ will satisfy the Palais-Smale condition $(P S)$ and the problem (25) admits a solution.

Proof: If Φ does not satisfied $(P S)$, then from Proposition (7.2), there exists $m(x) \in L^{\infty}(\Omega)$ such that $\lambda_{n}(1) \leq \neq m(x) \leq \neq \lambda_{n+1}(1)$, this contradicts with Theorem (7.2), the rest of the proof is an adaptation of the Theorem (6.3).

References

1. Anane A.: Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C.R.Acad.Sci.Paris t.305, pp. 725-728, 1987.
2. Anane A.: Etude des valeurs propres et de la résonance pour l'opérateur p-laplacien, These de Doctorat, Université Libre de Bruxelles, 1987.
3. Anane A., Chakrone O.: Sur un théorème de point critique et application à un problème de non-résonance entre deux valeurs propre du p-laplacien. Annales de la faculté des sciences de Toulouse Sèr. 6,9 no. 1(2000), p. 5-30.
4. Anane A., Chakrone O.: Strongly nonlinear elliptic problem without growth condition, 2002Fez Conference on Partial Differential Equations, Electronic Journal of Differential Equations. Conference 09, 2002, pp. 41-47.
5. Anane A., Chakrone O. and Moussa M.: Spectrum of one dimensional p-laplacian operator with indefinite weight. E.J. Qualitative Theory of Diff.Equ.,no. 17.(2002), pp. 1-11.
6. Anane A., Tsouli N.: On a resonance condition between the first and the second eigenvalues for the p-laplacien.IJMMS 26:10(2001)625-634.
7. Berkovits J and Vesa Mustonen.: V(1988) Nonlinear Mappings of Monotone Type, Classification and Degree Theory. Number 2/88 in Mathematics. Faculty of Science, University of Oulu.
8. Costa D G.: Tôpicos en anàlise nào-lineare e aplicaçoes às equaçoes diferenciais, Proc. E.L.A.M., Rio de Janeiro(1986), Sprenger Lect. Notes.
9. Zeidler E.: Nonlinear functional analysis and its applications, Tome III, variational Methods and Optimization, Springer Verlag(1984).
[^1]
[^0]: 2000 Mathematics Subject Classification: 35P30, 34L30

[^1]: Aomar Anane - ananeomar@yahoo.fr
 Omar Chakrone - chakrone@yahoo.fr
 Mohammed Filali- filali@sciences.univ-oujda.ac.ma
 Belhadj Karim - karembelf@hotmail.com
 Université Mohamed I, Faculté des Sciences,
 Département de mathématiques et Informatique,
 Oujda, Maroc.

