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On semi star generalized closed sets in bitopological spaces
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abstract: K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts
of semi star generalized open sets and semi star generalized closed sets in a topo-
logical space. The same concept was extended to bitopological spaces by K. Chan-
drasekhara Rao and
K. Kannan [6,7]. In this paper, we continue the study of τ1τ2-s∗g closed sets in
bitopology and we introduced the newly related concept of pairwise s∗g-continuous
mappings. Also S∗GO-connectedness and S∗GO-compactness are introduced in
bitopological spaces and some of their properties are established.
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1. Introduction

In 1963, J.C. Kelly [15] initiated the study of bitopological spaces. Maheshwari
and Prasad [19] introduced semi open sets in bitopological spaces in 1977 and
further properties of this notion were studied by Bose [29] in 1981 and Fukutake
[11] define one kind of semi open sets in bitopological spaces and studied their
properties in 1989.

Mean while Fukutake introduced generalized closed sets and pairwise general-
ized closure operator [12] in bitopological spaces in 1986. He defined a set A of
a topological space X to be τiτj-generalized closed set (briefly τiτj-g - closed) if
τj-cl(A) ⊆ U whenever A ⊆ U and U is τi-open in X. Also, he defined a new
closure operator and strongly pairwise T 1

2

-space.
Semi generalized closed sets and generalized semi closed sets are extended to

bitopological settings by F. H. Khedr and H. S. Al-saadi [14]. K. Chandrasekhara
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Rao and K. Kannan [6,7] introduced the concepts of semi star generalized closed
sets in bitopological spaces.

The connectedness and components were introduced by Pervin [25] in bitopo-
logical spaces while Reilly and Young [28] introduced the quasi components in
bitopological spaces. We find more detailed study of connecteness in bitopological
spaces in Birsan [2], Reilly [27] and Swart [30]. Das [9] initiated the study of
semi connectedness in topological spaces and Dorsett [10] continued the study of
the same further. M.N. Mukherjee [24] introduced pairwise semi connectedness in
bitopological spaces. In the sequel pairwise S∗GO-connected space is introduced
in fifth section.

In 1995, sg-compact spaces were introduced independently by Caldas [4]. Ac-
cording to him, a topological space (X, τ) is called sg-compact if every cover of X
by sg-open sets has a finite subcover. Devi, Balachandran and Maki [20] defined
the same concept and they used the term SGO-compactness. In the last section
the concept of S∗GO-compact space, introduced by K. Chandrasekhara Rao and
K. Joseph [5] is extended to bitopological spaces.

In the next section some prerequisites and abbreviations are established.

2. Preliminaries

Let (X, τ1, τ2) or simply X denote a bitopological space. For any subset A ⊆ X,
τi-int(A) and τi-cl(A) denote the interior and closure of a set A with respect to the
topology τi, respectively. AC denotes the complement of A in X unless explicitly
stated.

Definition 2.1 A set A of a bitopological space (X, τ1, τ2) is called

(a) τ1τ2-semi open if there exists an τ1-open set U such that U ⊆ A ⊆ τ2-cl(U).

(b) τ1τ2-semi closed if X −A is τ1τ2-semi open.
Equivalently, a set A of a bitopological space (X, τ1, τ2) is called τ1τ2-semi
closed if there exists an τ1-closed set F such that τ2-int(F ) ⊆ A ⊆ F .

(c) τ1τ2-generalized closed (τ1τ2-g closed) if τ2-cl(A) ⊆ U whenever A ⊆ U and
U is τ1-open in X.

(d) τ1τ2-generalized open (τ1τ2-g open) if X −A is τ1τ2-g closed.

(e) τ1τ2-semi generalized closed (τ1τ2-sg closed) if τ2-scl(A) ⊆ U whenever A ⊆U
and U is τ1-semi open in X.

(f) τ1τ2-semi generalized open (τ1τ2-sg open) if X −A is τ1τ2-sg closed.

(g) τ1τ2-generalized semi open (τ1τ2-gs open) if F ⊆ τ2-sint(A) whenever F ⊆ A
and F is τ1-closed in X.

(h) τ1τ2-generalized semi closed (τ1τ2-gs closed) if X −A is τ1τ2-gs open.
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First we prove some results in topological spaces as prerequisites. Recall that
arbitrary union of cl(Ai), i ∈ I is contained in closure of arbitrary union of subsets
Ai in any topological space. The equality holds if the collection {Ai, i ∈ I} is
locally finite. Hence we conclude the following.

Theorem 2.2 The arbitrary union of s∗g-closed sets Ai, i ∈ I in a topological
space (X, τ) is s∗g-closed if the family {Ai, i ∈ I} is locally finite.

Proof. Let {Ai, i ∈ I} be locally finite and Ai is s∗g-closed in a topological space
(X, τ) for each i ∈ I. Let

⋃
Ai ⊆ U and U is semi open in X. Then Ai ⊆ U and

U is semi open in X for each i. Since Ai is s∗g-closed in X for each i ∈ I, we have
cl(Ai) ⊆ U . Consequently,

⋃
[cl(Ai)] ⊆ U . Since the family {Ai, i ∈ I} is locally

finite, cl[
⋃
(Ai)] =

⋃
[cl(Ai)] ⊆ U . Therefore,

⋃
Ai is s∗g-closed in X. �

Theorem 2.3 The arbitrary intersection of s∗g-open sets Ai, i ∈ I in a topological
space (X, τ) is s∗g-open if the family {AC

i , i ∈ I} is locally finite.

Proof. Let {AC
i , i ∈ I} be locally finite and Ai is s∗g-open in X for each i ∈ I.

Then AC
i is s∗g-closed in X for each i ∈ I. Then by theorem , we have

⋃
[AC

i ] is
s∗g-closed in X. Consequently, Let {

⋂
(Ai)}

C is s∗g-closed in X. Therefore,
⋂
Ai

is s∗g-open in X. �

3. τ1τ2-s
∗g closed sets

Definition 3.1 A set A of a bitopological space (X, τ1, τ2) is called τ1τ2-semi star
generalized closed (τ1τ2-s

∗g closed) if τ2-cl(A) ⊆ U whenever A ⊆ U and U is
τ1-semi open in X.

Example 3.2 Let X = {a, b, c}, τ1 = {φ, X, {a}, {b, c}}, τ2 = {φ, X, {a}, {b},
{a, b}}. Then {a, b} is τ1τ2 − s∗g closed and {a} is not τ1τ2 − s∗g closed.

Theorem 3.3 The arbitrary union of τ1τ2-s
∗g closed sets Ai, i ∈ I in a bitopo-

logical space (X, τ1, τ2) is τ1τ2-s
∗g closed if the family {Ai, i ∈ I} is τ2-locally

finite.

Proof. Let {Ai, i ∈ I} be τ2-locally finite and Ai is τ1τ2-s
∗g closed in X for each

i ∈ I. Let
⋃

Ai ⊆ U and U is τ1-semi open in X. Then, Ai ⊆ U and U is τ1-semi
open in X for each i. Since Ai is τ1τ2-s

∗g closed in X for each i ∈ I, we have
τ2-cl(Ai) ⊆ U . Consequently,

⋃
[τ2-cl(Ai)] ⊆ U . Since the family {Ai, i ∈ I} is τ2-

locally finite, τ2-cl[
⋃
(Ai)] =

⋃
[τ2-cl(Ai)] ⊆ U . Therefore,

⋃
Ai is τ1τ2-s

∗g closed
in X. �

Theorem 3.4 The arbitrary intersection of τ1τ2-s
∗g open sets Ai, i ∈ I in a

bitopological space (X, τ1, τ2) is τ1τ2-s
∗g open if the family {AC

i , i ∈ I} is τ2-locally
finite.

Proof. Let {AC
i , i ∈ I} be τ2-locally finite and Ai is τ1τ2-s

∗g open in X for each
i ∈ I. Then, AC

i is τ1τ2-s
∗g closed in X for each i ∈ I. Then by theorem, we have⋃

[AC
i ] is τ1τ2-s

∗g closed in X. Consequently, {
⋂
(Ai)}

C is τ1τ2-s
∗g closed in X.

Therefore,
⋂

Ai is τ1τ2-s
∗g open in X. �
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4. Pairwise s∗g-continuous functions

First we recall the following known definitions.

Definition 4.1 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is

(a) pairwise g-continuous if f−1(U) is τiτj-g closed for each σj-closed set U in
Y , i 6= j and i, j = 1, 2.

(b) pairwise sg-continuous if f−1(U) is τiτj-sg closed for each σj-closed set U in
Y , i 6= j and i, j = 1, 2.

(c) pairwise gs-continuous if f−1(U) is τiτj-gs closed for each σj-closed set U in
Y , i 6= j and i, j = 1, 2.

Definition 4.2 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise s∗g-continuous
if f−1(U) is τiτj-s

∗g closed for each σj-closed set U in Y , i 6= j and i, j = 1, 2.

Example 4.3 Let X = Y = {a, b, c, d}, τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Let f : (X, τ1, τ2) →
(Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y , f(a) = {a, b, d}, f(b)
= {c}, f(c) = {b}, f(d) = {d}, f(a, b) = {a, c}, f(a, c) = {a, b}, f(a, d) = {b, c},
f(b, c) = {a, d}, f(b, d) = {a, b, c}, f(c, d) = {c, d}, f(a, b, c) = {b, d}, f(a, b, d) =
{a}, f(a, c, d) = {b, c, d}, f(b, c, d) = {a, c, d}. Then f is pairwise s∗g-continuous.

Theorem 4.4 Every pairwise continuous function is pairwise s∗g-continuous.

Proof. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be pairwise continuous. Let U be a σj-
closed set in Y . Then f−1(U) is τj-closed in X. Since every τj-closed set is τiτj-s

∗g
closed, i 6= j and i, j = 1, 2, we have f is pairwise s∗g-continuous. �

The converse of the above theorem need not be true in general. The next example
supports our claim.

Example 4.5 In Example 4.3, {a} is σ1-open in Y . But f−1(a) = {a, b, d} is not
τ1-open in X. Therefore, f is pairwise s∗g-continuous but not pairwise continuous.

Since every τiτj-s
∗g closed set is τiτj-g closed, τiτj-sg closed and τiτj-gs closed,

i 6= j and i, j = 1,2, we have every pairwise s∗g-continuous function is pairwise g
- continuous, pairwise sg-continuous and pairwise gs-continuous. But none of the
above is reversible. The following examples support our claim.

Example 4.6 (a) Let X = Y = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b},
{a, b, c}, {a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Let f :
(X, τ1, τ2) → (Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y , f(a) =
{b}, f(b) = {a}, f(c) = {a, b}, f(d) = {a, c, d}, f(a, b) = {c}, f(a, c) = {a, d},
f(a, d) = {a, c}, f(b, c) = {b, d}, f(b, d) = {b, c}, f(c, d) = {c, d}, f(a, b, c) =
{a, b, d}, f(a, b, d) = {a, b, c}, f(a, c, d) = {d}, f(b, c, d) = {b, c, d}. Then f is
pairwise g-continuous but not pairwise s∗g-continuous.



On semi star generalized closed sets in bitopological spaces 33

(b) Let X = Y = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Let f : (X, τ1, τ2) →
(Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y , f(a) = {b}, f(b)
= {a}, f(c) = {a, b}, f(d) = {d}, f(a, b) = {c}, f(a, c) = {a, d}, f(a, d)
= {a, c}, f(b, c) = {a, b, c}, f(b, d) = {b, c, d}, f(c, d) = {c, d}, f(a, b, c) =
{b, c}, f(a, b, d) = {a, c, d}, f(a, c, d) = {b, c, d}, f(b, c, d) = {a, b, d}. Then f
is both pairwise gs-continuous and pairwise sg-continuous but not pairwise
s∗g-continuous.

Theorem 4.7 The following are equivalent for a function f : (X, τ1, τ2) → (Y, σ1, σ2).

(a) f is pairwise s∗g-continuous.

(b) f−1(U) is τiτj-s
∗g open for each σi-open set U in Y , i 6= j and i, j = 1, 2.

Proof. (a) ⇒ (b): Suppose that f is pairwise s∗g-continuous. Let A be σj-open
in Y . Then AC is σj-closed in Y . Since f is pairwise s∗g-continuous, we have
f−1(AC) is τiτj-s

∗g closed in X, i 6= j and i, j = 1,2. Consequently, f−1(A) is
τiτj-s

∗g open in X.
(b) ⇒ (a) Suppose that f−1(U) is τiτj-s

∗g open for each σi-open set U in Y ,
i 6= j and i, j = 1,2. Let V be σj-closed in Y . Then V C is σj-open in Y . Therefore,
by our assumption, f−1(V C) is τiτj-s

∗g open in X, i 6= j and i, j = 1,2. Hence
f−1(V ) is τiτj-s

∗g closed in X. This completes the proof. �

Definition 4.8 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is

(a) pairwise g-irresolute if f−1(U) is τiτj-g closed for each σiσj-g closed set U in
Y , i 6= j and i, j = 1,2.

(b) pairwise sg-irresolute if f−1(U) is τiτj-sg closed for each σiσj-sg closed set
U in Y , i 6= j and i, j = 1,2.

(c) pairwise gs-irresolute if f−1(U) is τiτj-gs closed for each σiσj − gs closed set
U in Y , i 6= j and i, j = 1,2.

Definition 4.9 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise s∗g-irresolute if
f−1(U) is τiτj-s

∗g closed for each σiσj-s
∗g closed set U in Y , i 6= j and i, j = 1,2.

Example 4.10 Let X = Y = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Let f : (X, τ1, τ2) →
(Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y , f(a) = {b}, f(b) =
{a}, f(c) = {c}, f(d) = {d}, f(a, b) = {a, c}, f(a, c) = {a, b}, f(a, d) = {b, c},
f(b, c) = {a, d}, f(b, d) = {b, d}, f(c, d) = {c, d}, f(a, b, c) = {a, b, d}, f(a, b, d) =
{a, b, c}, f(a, c, d) = {a, c, d}, f(b, c, d) = {b, c, d}. Then f is pairwise s∗g-irresolute.

Concerning the composition of functions, we have the following.

Theorem 4.11 Let f : (X, τ1, τ2) → (Y, σ1, σ2) and g : (Y, σ1, σ2) → (Z, µ1, µ2)
be two functions. Then
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(a) If f and g are pairwise s∗g-irresolute, then gof is pairwise s∗g-irresolute.

(b) If f is pairwise s∗g-irresolute and g is pairwise s∗g-continuous, then gof is
pairwise s∗g-continuous.

(c) If f is pairwise g-irresolute and g is pairwise s∗g-continuous, then gof is
pairwise g-continuous.

(d) If f is pairwise sg-irresolute and g is pairwise s∗g-continuous, then gof is
pairwise sg-continuous.

(e) If f is pairwise gs-irresolute and g is pairwise s∗g-continuous, then gof is
pairwise gs-continuous.

(f) If f is pairwise s∗g-continuous and g is pairwise continuous, then gof is
pairwise s∗g-continuous.

Proof. Let f : (X, τ1, τ2) → (Y, σ1, σ2) and g : (Y, σ1, σ2) → (Y, µ1, µ2) be pairwise
s∗g-irresolute. Let U be µiµj-s

∗g closed set in Z, , i 6= j and i, j = 1,2. Since
g is pairwise s∗g-irresolute, g−1(U) is σiσj-s

∗g closed in Y . Since f is pairwise
s∗g-irresolute, (gof)−1 = f−1[g−1(U)] is τiτj-s

∗g closed in X. Therefore, gof is
pairwise s∗g-irresolute.

The proofs of (b)-(f) are similar. �

But the composition of two pairwise s∗g-continuous functions is not a pairwise
s∗g-continuous function in general as shown in the following example.

Example 4.12 Let X = Y = Z = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b},
{a, b, c}, {a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}, µ1 = {φ,Z, {a}},
µ2 = {φ,X, {a}, {b, c}}.

Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y ,
f(a) = {a, b, d}, f(b) = {c}, f(c) = {b}, f(d) = {d}, f(a, b) = {a, c}, f(a, c) =
{a, b}, f(a, d) = {b, c}, f(b, c) = {a, d}, f(b, d) = {a, b, c}, f(c, d) = {c, d}, f(a, b, c)
= {b, d}, f(a, b, d) = {a}, f(a, c, d) = {b, c, d}, f(b, c, d) = {a, c, d}. Then f is
pairwise s∗g-continuous.

Let g : (Y, σ1, σ2) → (Z, µ1, µ2) be a function defined by g(φ) = φ, g(Y ) =
Z, g(a) = {b}, g(b) = {a}, g(c) = {d}, g(d) = {c}, g(a, b) = {a, c}, g(a, c) =
{a, b}, g(a, d) = {a, d}, g(b, c) = {b, d}, g(b, d) = {b, c}, g(c, d) = {a, b, c}, g(a, b, c)
= {c, d}, g(a, b, d) = {a, c, d}, g(a, c, d) = {a, b, d}, g(b, c, d) = {b, c, d}. Then g is
pairwise s∗g-continuous.

But (gof)−1({b, c, d}) = {a, c, d} is not τ1τ2 − s∗g closed in X. Hence gof is
not pairwise s∗g-continuous.

Definition 4.13 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise pre s∗g-
continuous if f−1(U) is τiτj-s

∗g closed for each σiσj-semi closed set U in Y , i 6= j
and i, j = 1,2.
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Example 4.14 Let X = Y = {a, b, c},τ1 = {φ,X, {a}, {b, c}}, τ2 = {φ,X, {a}}, σ1

= {φ, Y, {c}, {a, b}}, σ2 = {φ, Y, {c}}. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function
defined by f(φ) = φ, f(X) = Y , f(a) = {a, c}, f(b) = {b}, f(c) = {c}, f(a, b) =
{a, b}, f(a, c) = {a}, f(b, c) = {a, b}. Then f is pairwise pre s∗g-continuous.

Obviously every pairwise pre s∗g-continuous function is pairwise s∗g-continuous.
But it is not reversible. It is shown in the following example.

Example 4.15 In Example 4.3, f is pairwise s∗g-continuous but not pairwise pre
s∗g-continuous.

Theorem 4.16 Let Y be a pairwise semi T 1

2

-space. A function f : (X, τ1, τ2) →

(Y, σ1, σ2) is pairwise s∗g-irresolute if it is pairwise pre s∗g-continuous.

Proof. Let f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise pre s∗g-continuous. Let A be
σiσj-s

∗g closed in Y , i, j = 1, 2 and i 6= j. Since every σiσj-s
∗g closed set is σiσj-sg

closed, we have A is σiσj-sg closed in Y . Since Y is pairwise semi T 1

2

-space and
every σiσj-sg closed set is σj-semi closed in a pairwise semi T 1

2

-space, we have A

is σiσj-semi closed. Since f is pairwise pre s∗g - continuous, we have f−1(A) is
τiτj-s

∗g closed in X. Hence f is pairwise s∗g-irresolute. �

Definition 4.17 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise s∗g-closed if
f(U) is σiσj-s

∗g closed for each τj-closed set U in X, i 6= j and i, j = 1,2.

Example 4.18 Let X = Y = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Let f : (X, τ1, τ2) →
(Y, σ1, σ2) be a function defined by f(φ) = φ, f(X) = Y , f(a) = {b}, f(b) =
{a}, f(c) = {b, c, d}, f(d) = {d}, f(a, b) = {a, c}, f(a, c) = {a, b}, f(a, d) = {b, c},
f(b, c) = {a, d}, f(b, d) = {a, b, c}, f(c, d) = {c, d}, f(a, b, c) = {b, d}, f(a, b, d) =
{a, b, d}, f(a, c, d) = {c}, f(b, c, d) = {a, c, d}. Then f is pairwise s∗g-closed.

Definition 4.19 A function f : (X, τ1, τ2) → (Y, σ1, σ2) is pairwise pre s∗g-closed
if f(U) is σiσj-s

∗g closed for each τiτj-semi closed set U in X, i 6= j and i, j = 1,2.

Example 4.20 Let X = Y = {a, b, c},τ1 = {φ,X, {a}, {b, c}}, τ2 = {φ,X, {a}, σ1

= {φ, Y, {c}, {a, b}}, σ2 = {φ, Y, {c}}. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a function
defined by f(φ) = φ, f(X) = Y , f(a) = {a}, f(b) = {b}, f(c) = {a, c}, f(a, b) =
{b, c}, f(a, c) = {c}, f(b, c) = {a, b}. Then f is pairwise pre s∗g-closed.

5. Pairwise S∗GO-connected space

Definition 5.1 A bitopological space (X, τ1, τ2) is pairwise S∗GO-connected if X
can not be expressed as the union of two nonempty disjoint sets A and B such that
[A ∩ τ1-s

∗gcl(B)] ∪ [τ2-s
∗gcl(A) ∩B] = φ.

Suppose X can be so expressed then X is called pairwise S∗GO-disconnected and
we write X = A\B and call this pairwise S∗GO-separation of X.
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Example 5.2 (a) Let X = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}. Then (X, τ1, τ2) is pairwise S∗GO-connected.

(b) Y = {a, b, c, d}, σ1 = {φ, Y, {a}}, σ2 = {φ, Y, {a, b}, {a, b, c}}. Then (Y, σ1, σ2)
is pairwise S∗GO-connected.

Theorem 5.3 The following conditions are equivalent for any bitopological space.

(a) X is pairwise S∗GO-connected.

(b) X can not be expressed as the union of two nonempty disjoint sets A and B
such that A is τ1-s

∗g open and B is τ2-s
∗g open.

(c) X contains no nonempty proper subset which is both τ1-s
∗g open and τ2-s

∗g
closed.

Proof. (a) ⇒ (b) : Suppose that X is pairwise S∗GO-connected. Suppose that X
can be expressed as the union of two nonempty disjoint sets A and B such that
A is τ1-s

∗g open and B is τ2-s
∗g open. Then A ∩ B = φ. Consequently A ⊆ BC .

Then τ2-s
∗gcl(A) ⊆ τ2-s

∗gcl(BC) = BC . Therefore, τ2-s
∗gcl(A)∩B = φ. Similarly

we can prove A∩ τ1-s
∗gcl(B) = φ. Hence [A∩ τ1-s

∗gcl(B)]∪ [τ2-s
∗gcl(A)∩B] = φ.

This is a contradiction to the fact that X is pairwise S∗GO-connected. Therefore,
X can not be expressed as the union of two nonempty disjoint sets A and B such
that A is τ1-s

∗g open and B is τ2-s
∗g open.

(b) ⇒ (c) : Suppose that X can not be expressed as the union of two nonempty
disjoint sets A and B such that A is τ1-s

∗g open and B is τ2-s
∗g open. Suppose

that X contains a nonempty proper subset A which is both τ1-s
∗g open and τ2-s

∗g
closed. Then X = A ∪ AC where A is τ1-s

∗g open, AC is τ2-s
∗g open and A, AC

are disjoint. This is the contradiction to our assumption. Therefore, X contains
no nonempty proper subset which is both τ1-s

∗g open and τ2-s
∗g closed.

(c) ⇒ (a) : Suppose that X contains no nonempty proper subset which is both
τ1-s

∗g open and τ2-s
∗g closed. Suppose that X is pairwise S∗GO-disconnected.

Then X can be expressed as the union of two nonempty disjoint sets A and B such
that [A ∩ τ1-s

∗gcl(B)] ∪ [τ2-s
∗gcl(A) ∩ B] = φ. Since A ∩ B = φ, we have A =

BC and B = AC . Since τ2-s
∗gcl(A) ∩ B = φ, we have τ2-s

∗gcl(A) ⊆ BC . Hence
τ2-s

∗gcl(A) ⊆ A. Therefore, A is τ2-s
∗g closed. Similarly, B is τ1-s

∗g closed. Since
A = BC , A is τ1-s

∗g open. Therefore, there exists a nonempty proper set A which
is both τ1-s

∗g open and τ2-s
∗g closed. This is the contradiction to our assumption.

Therefore, X is pairwise S∗GO-connected. �

Theorem 5.4 If A is pairwise S∗GO-connected subset of a bitopological space
(X, τ1, τ2) which has the pairwise S∗GO-separation X = C\D, then A ⊆ C or
A ⊆ D.

Proof. Suppose that (X, τ1, τ2) has the pairwise S∗GO-separation X = C\D.
Then X = C ∪D where C and D are two nonempty disjoint sets such that [C ∩ τ1-
s∗gcl(D)]∪ [τ2-s

∗gcl(C)∩D] = φ. Since C∩D = φ, we have C = DC and D = CC .
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Now, [(C∩A)∩τ1-s
∗gcl(D∩A)]∪[τ2-s

∗gcl(C∩A)∩(D∩A)] ⊆ [C∩τ1-s
∗gcl(D)]∪[τ2-

s∗gcl(C)∩D] = φ. Hence A = (C ∩A)\(D∩A) is pairwise S∗GO-separation of A.
Since A is pairwise S∗GO-connected, we have either (C ∩A) = φ or (D ∩A) = φ.
Consequently, A ⊆ CC or A ⊆ DC . Therefore, A ⊆ C or A ⊆ D. �

Theorem 5.5 If A is pairwise S∗GO-connected and A ⊆ B ⊆ τ1-s
∗gcl(A) ∩ τ2-

s∗gcl(A) then B is pairwise S∗GO-connected.

Proof. Suppose that B is not pairwise S∗GO-connected. Then B = C ∪D where
C and D are two nonempty disjoint sets such that [C∩τ1-s

∗gcl(D)]∪ [τ2-s
∗gcl(C)∩

D] = φ. Since A is pairwise S∗GO-connected, we have A ⊆ C or A ⊆ D. Suppose
A ⊆ C. Then D ⊆ D ∩ B ⊆ D ∩ τ2-s

∗gcl(A) ⊆ D ∩ τ2-s
∗gcl(C) = φ. Therefore,

φ ⊆ D ⊆ φ. Consequently, D = φ. Similarly, we can prove C = φ if A ⊆ D {by
Theorem 5.4}. This is the contradiction to the fact that C and D are nonempty.
Therefore, B is pairwise S∗GO-connected. �

Theorem 5.6 The union of any family of pairwise S∗GO-connected sets having a
nonempty intersection is pairwise S∗GO-connected.

Proof. Let I be an index set and i ∈ I. Let A =
⋃
Ai where each Ai is pairwise

S∗GO-connected with
⋂
Ai 6= φ. Suppose that A is not pairwise S∗GO-connected.

Then A = C ∪D, where C and D are two nonempty disjoint sets such that [C ∩ τ1-
s∗gcl(D)] ∪ [τ2-s

∗gcl(C) ∩ D] = φ. Since Ai is pairwise S∗GO-connected and
Ai ⊆ A, we have Ai ⊆ C or Ai ⊆ D. Therefore,

⋃
(Ai) ⊆ C or

⋃
(Ai) ⊆ D. Hence,

A ⊆ C or A ⊆ D. Since
⋂
Ai 6= φ, we have x ∈

⋂
Ai. Therefore, x ∈ Ai for all i.

Consequently, x ∈ A. Therefore, x ∈ C or x ∈ D. Suppose x ∈ C. Since C ∩ D
= φ, we have x /∈ D. Therefore, A * D. Therefore, A ⊆ C. Therefore, A is not
pairwise S∗GO-connected. This shows that A is pairwise S∗GO-connected. �

Theorem 5.7 Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a pairwise continuous bijective
and pairwise pre semi closed. Then inverse image of a σi-s

∗g closed set is τi-s
∗g

closed.

Theorem 5.8 Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a pairwise continuous bijec-
tive and pairwise pre semi closed function. Then the image of a pairwise S∗GO-
connected space under f is pairwise S∗GO-connected.

Proof. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be pairwise continuous surjection and
pairwise pre semi closed. Let X is pairwise S∗GO-connected. Suppose that Y
is pairwise S∗GO-disconnected. Then Y = A ∪ B where A is σ1-s

∗g open and
B is σ2-s

∗g open in Y . Since f is pairwise continuous and pairwise pre semi
closed, we have f−1(A) is τ1-s

∗g open and f−1(B) is τ2-s
∗g open in X. Also X

= f−1(A) ∪ f−1(B), f−1(A) and f−1(B) are two nonempty disjoint sets. Then
X is pairwise S∗GO-disconnected. This is the contradiction to the fact that X is
pairwise S∗GO-connected. Therefore, Y is pairwise S∗GO-connected. �
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6. Pairwise S∗GO-compact space

Definition 6.1 A nonempty collection ζ = {Ai, i ∈ I, an index set} is called a
pairwise s∗g-open cover of a bitopological space (X, τ1, τ2) if X =

⋃
Ai and ζ ⊆ τ1-

S∗GO(X, τ1, τ2) ∪ τ2-S
∗GO(X, τ1, τ2) and ζ contains at least one member of τ1-

S∗GO(X, τ1, τ2) and one member of τ2-S
∗GO(X, τ1, τ2).

Definition 6.2 A bitopological space (X, τ1, τ2) is pairwise S∗GO-compact if ev-
ery pairwise s∗g-open cover of X has a finite subcover.

Definition 6.3 A set A of a bitopological space (X, τ1, τ2) is pairwise S∗GO-
compact relative to X if every pairwise s∗g-open cover of B by has a finite subcover
as a subspace.

Example 6.4 Let X = {a, b, c, d},τ1 = {φ,X, {a}, {a, b}}, τ2 = {φ,X, {a, b}, {a, b, c},
{a, b, d}}. Let ζ = {{a}, {a, b}, {a, b, c}, {a, b, d}. Then (X, τ1, τ2) is pairwise
S∗GO-compact.

Theorem 6.5 Every pairwise s∗g-compact space is pairwise compact.

Proof. Let (X, τ1, τ2) be pairwise S∗GO-compact. Let ζ = {Ai, i ∈ I, an index set}
be a pairwise open cover of X. Then X =

⋃
Ai and ζ ⊆ τ1 ∪ τ2 and ζ contains

at least one member of τ1 and one member of τ2. Since every τi-open set is τi-
s∗g open, we have X =

⋃
Ai and ζ ⊆ τ1-S

∗GO(X, τ1, τ2) ∪ τ2-S
∗GO(X, τ1, τ2)

and ζ contains at least one member of τ1-S
∗GO(X, τ1, τ2) and one member of

τ2-S
∗GO(X, τ1, τ2). Therefore, ζ is the pairwise s∗g-open cover of X. Since X

is pairwise S∗GO-compact, we have ζ has the finite subcover. Therefore, X is
pairwise compact. �

But the converse of the above theorem need not be true in general.

Theorem 6.6 Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a pairwise continuous, bijective
and pairwise pre semi closed. Then the image of a pairwise S∗GO-compact space
under f is pairwise S∗GO-compact.

Proof. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be pairwise continuous surjection and
pairwise pre semi closed. Let X be pairwise S∗GO-compact. Let ζ = {Ai, i ∈
I, an index set} be a pairwise s∗g-open cover of Y . Then Y =

⋃
Ai and ζ ⊆ σ1-

S∗GO(Y, σ1, σ2) ∪ σ2-S
∗GO(Y, σ1, σ2) and ζ contains at least one member of σ1-

S∗GO(Y, τ1, τ2) and one member of σ2-S
∗GO(Y, σ1, σ2). Therefore, X = f−1[

⋃
(Ai)]

=
⋃
f−1(Ai) and f−1(ζ) ⊆ τ1-S

∗GO(X, τ1, τ2) ∪ τ2-S
∗GO(X, τ1, τ2) and f−1(ζ)

contains at least one member of τ1-S
∗GO(X, τ1, τ2) and one member of τ2-S

∗GO(X, τ1, τ2).
Therefore, f−1(ζ) is the pairwise s∗g-open cover of X. Since X is pairwise S∗GO-
compact, we have X =

⋃
f−1(Ai), i = 1 to n. ⇒ Y = f(X) =

⋃
(Ai), i = 1 to n.

Hence, ζ has the finite subcover. Therefore, Y is pairwise S∗GO-compact. �

Theorem 6.7 If Y is τ1-s
∗g closed subset of a pairwise S∗GO-compact space

(X, τ1, τ2), then Y is τ2-S
∗GO compact.
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Proof. Let (X, τ1, τ2) be a pairwise S∗GO-compact space. Let ζ = {Ai, i ∈
I, an index set} be a τ2-s

∗g open cover of Y . Since Y is τ1-s
∗g closed subset,

Y C is τ1-s
∗g open. Also ζ ∪ Y C = Y C ∪ {Ai, i ∈ I, an index set} be a pairwise

s∗g-open cover of X. Since X is pairwise S∗GO-compact, X = Y C ∪A1∪ ....∪An.
Hence Y = A1 ∪ .... ∪An. Therefore, Y is τ2-S

∗GO compact. �

Since every τ1-closed set is τ1-s
∗g closed, we have the following.

Theorem 6.8 If Y is τ1-closed subset of a pairwise S∗GO-compact space (X, τ1, τ2),
then Y is τ2-S

∗GO compact.

Theorem 6.9 If (X, τ1) and (X, τ2) are Hausdorff and (X, τ1, τ2) is pairwise S∗GO-
compact, then τ1 = τ2.

Proof. Let (X, τ1) and (X, τ2) be Hausdorff and (X, τ1, τ2) is pairwise S∗GO-
compact. Since every pairwise S∗GO - compact space is pairwise compact, we
have (X, τ1) and (X, τ2) are Hausdorff and (X, τ1, τ2) is pairwise compact. Let F
be τ1-closed in X. Then FC is τ1 - open in X. Let ζ = {Ai, i ∈ I, an index set} be
the τ2-open cover for X. Therefore, ζ ∪FC is the pairwise open cover for X. Since
X is pairwise compact, X = FC ∪A1 ∪ ....∪An. Hence F = A1 ∪ ....∪An. Hence
F is τ2-compact. Since (X, τ2) is Hausdorf, we have F is τ2-closed. Similarly, every
τ2-closed set is τ1-closed. Therefore, τ1 = τ2. �
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