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An Asymmetric Steklov Problem With Weights: the singular case

A. Anane, O. Chakrone, B. Karim and A. Zerouali

abstract: We prove the existence of a first nonprincipal eigenvalue for an asym-
metric Steklov problem with weights. We are interested in the singular case (in
where one of the weights has meanvalue zero), this case requires some special atten-
tion in connection with the Palais Smale (PS) conditions and with the mountain
pass geometry.
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1. Introduction

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with a Lipschitz continuous bound-

ary. Let 1 < p < ∞ and let N−1
p−1 < q < ∞ if p < N and q ≥ 1 if p ≥ N .

m,n ∈ Lq(∂Ω) with m+ 6= 0 and n+ 6= 0. The asymmetric Steklov problem is
defined by

{

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λ[m(u+)p−1 − n(u−)p−1] on ∂Ω,

(1)

where λ ∈ R
+ is the eigenvalue, u ∈ W 1,p(Ω) is an associated eigenvalue and ν is

the unit exterior normal. The solutions of (1) or of related equations are always
understood in the weak sense, i.e., u ∈W 1,p(Ω) with

∫

Ω

|∇u|p−2∇u∇ϕdx = λ

∫

∂Ω

[m(u+)p−1 − n(u−)p−1]ϕdσ ∀ϕ ∈W 1,p(Ω), (2)

where dσ is the N−1 dimensional Hausdorff measure. In a previous work (see [1]),
we proved the existence of a first nonprincipal eigenvalue for (1) are

∫

∂Ω
mdσ 6=

0 and
∫

∂Ω
ndσ 6= 0 by applying a version of the mountain pass theorem to the

functional f(u) = 1
p

∫

Ω
|∇u|pdx restricted to the manifold

Mm,n := {u ∈W 1,p(Ω);
1

p

∫

∂Ω

[m(u+)p−1 + n(u−)p−1]dσ = 1},
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in this case (PS) condition is satisfied and the geometry of the mountain pass was
derived from observation that ϕm and ϕn where strict local minima (ϕm denotes
the positive first eigenvalue of (1) with m = n). Our purpose in this work is to
prove the existence of a first nonprincipal eigenvalue for (1) where

∫

∂Ω
mdσ = 0 or

∫

∂Ω
ndσ = 0. In this case the Palais Smale condition is not satisfied any more at

level 0 and at least one of the two naturals candidates for local minimum fails to
belong to the manifold Mm,n. To by pass this difficulty we apply a version of the
mountain pass theorem for a local C1 functional restricted to a C1 manifold and
which satisfies the Palais-Smale condition of Cerami (PSC) at certain levels(see
[2]).

2. Preliminaries

Our main purpose in this preliminaries section, is to collect some results relative
to the following eigenvalue problem

△pu = 0 in Ω, |∇u|p−2 ∂u

∂ν
= λm|u|p−2u on ∂Ω. (3)

Clearly 0 is a principal eigenvalue of (3) with the constants as eigenfunctions. The
search for another principal eigenvalue involves the following quantity

λ∗1(m) = inf{
1

p

∫

Ω

|∇u|p;u ∈W 1,p(Ω) and
1

p

∫

∂Ω

m|u|pdσ = 1}, (4)

we have λ∗1(m) <∞ since m+ 6= 0 in Ω.

Proposition 2.1 1. If
∫

Ω
mdσ < 0. Then λ∗1(m) > 0 is the first positive Steklov

eigenvalue. Moreover λ∗1(m) is simple and isolated and it is the only nonzero
Steklov eigenvalue associated to an eigenfunction of definite sign .

2. If
∫

Ω
mdσ > 0.Then λ∗1(m) = 0 and 0 is the unique nonnegative principal

eigenvalue.

3. If
∫

Ω
mdσ = 0. Then λ∗1(m) = 0 and 0 is the unique principal eigenvalue.

Proposition 2.1 is proved in [4] (see also [1]). In case 1 or 2 of Proposition 2.1, the
infimum is achieved at ϕm ∈Mm,n the positive eigenfunction associated to λ∗1(m)
with 1

p

∫

∂Ω
mϕp

m = 1. In the case 3 the fact that λ∗1(m) = 0 is easily verified by
considering the sequence

vk =
(1 + ψ/k)

1
p

[ 1
p

∫

∂Ω
m(1 + ψ/k)]

1
p

, (5)

where ψ is any fixed smooth function with ψ ≥ 0 and
∫

∂Ω
mψ > 0. Note that in

case 3 of Proposition 2.1, the infimum in (4) is not achieved (since no constant
satisfies the constraint in that case). To get a first nonprincipal eigenvalue for an
asymmetric Steklov problem with weights, we will use a version of the mountain
pass theorem on C1 manifold, which we now recall. Let E be a real Banach space
and let M := {u ∈ E; g(u) = 1}, where g ∈ C1(E,R) and 1 is a regular value of g.
Let f ∈ C1(E,R) and consider the restriction f̃ of f to M .
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Proposition 2.2 ( [3]) Assume f̃ bounded from below and let

c = inf{f(u);u ∈M}.

Then f̃ satisfies (PSC)c if and only if f̃ satisfies (PS)c.

Remark 2.1 Going back to case 3 of Proposition (2.1), one can see that the
functional f(u) = 1

p

∫

Ω
|∇u|pdx restricted to the manifold Mm,n does not

satisfy the (PS)0. Indeed the sequence vk from (5) provides an unbounded
(PS) sequence. That the (PSC)0 condition does not hold neither will follow
from Proposition 2.2.

Proposition 2.3 ( [3]) Let K be a compact metric space, K0 ⊂ K and h0 ∈
C(K0,M). Consider the family of extensions of h0: H := {h ∈ C(K,M) : h/K0 =
h0}. Assume H nonempty as well as the following condition max

t∈K0

f(h0(t)) <

max
t∈K

f(h(t)) for any h ∈ H. Define

c := inf
h∈H

max
t∈K

f(h(t)). (6)

Assume that f̃ satisfies (PSC)c for c given in (6). Then c is a critical value of f̃ .

Typically, as in the application K = [0, 1], K0 = {0, 1}, f(u) = 1
p

∫

Ω
|∇u|pdx,

E =W 1,p(Ω) and g(u) = 1
p

∫

∂Ω
[m(u+)p−1 + n(u−)p−1]dσ.

3. A first nontrivial eigenvalue

The assumptions on m, n in this section are m, n ∈ Lq(∂Ω) with
∫

∂Ω
m = 0

or
∫

∂Ω
n = 0 and m+ 6= 0, n+ 6= 0. We look for nonnegative eigenvalues λ of (1).

Clearly the only nonnegative principal eigenvalues of (1) are 0, λ∗(m) and λ∗(n).
Moreover multiplying by u+ or u− one easily sees that if (1) with λ ≥ 0 has a
solution which changes sign then λ > max(λ∗(m), λ∗(n)). Proving the existence of
such a solution which changes sign and which in addition corresponds to a minimum
value of λ is our purpose in this section. We will use a variational approach and
consider the functional f(u) = 1

p

∫

Ω
|∇u|pdx on E = W 1,p(Ω), the manifold Mm,n

defined in introduction and the restriction f̃ of f to Mm,n. To state our main result
let us introduce the following family of paths in Mm,n

Γ = {γ ∈ C([0, 1],Mm,n) : γ(0) ≤ 0 and γ(1) ≥ 0}, which is nonempty (see [1]),
and the finite minimax value

c(m,n) = inf
γ∈Γ

max
u∈γ[0,1]

f̃(u). (7)

Theorem 3.1 Assume
∫

∂Ω
m = 0 or

∫

∂Ω
n = 0. Then c(m,n) is an eigenvalue of

(1) which satisfies max{λ∗1(m), λ∗1(n)} < c(m,n). Moreover there is no eigenvalue
of (1) between max{λ∗1(m), λ∗1(n)} and c(m,n).

The rest of this section is devoted to the proof of Theorem 3.1.
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Proposition 3.1 f̃ satisfies (PSC)c for all c > 0.

Proof. Let uk ∈Mm,n be a (PSC)c sequence for f̃ , with c > 0. So
∫

Ω
|∇uk|

pdx→
c and

|

∫

Ω

|∇uk|
p−2∇uk∇ξdx| 6

ǫk
1 + ‖uk‖

‖ξ‖ ∀ξ ∈ Tuk
Mm,n (8)

where ǫk → 0. We will show that uk remains bounded and concludes that uk admits
a convergent subsequence. Let us assume by contradiction that for a subsequence,
‖uk‖ → ∞. Write vk = uk

‖uk‖
. For a further subsequence, vk → v0 weakly in

W 1,p(Ω). Since
∫

Ω
|∇uk|

pdx remains bounded, one has
∫

Ω
|∇vk|

pdx → 0 and it
follows easily that v0 ≡ cst 6= 0 and that vk → v0 strongly in W 1,p(Ω). On the
other hand, taking ξ = ak(ω) := ω− [

∫

∂Ω
(m(u+k )

p−1−n(u−k )
p−1)ω]uk in (8), where

ω ∈W 1,p(Ω) and dividing by ‖uk‖
p−1, one gets

∣

∣

∣

∣

∫

Ω

|∇vk|
p−2∇vk∇ω − [

∫

∂Ω

(m(v+k )
p−1 − n(v−k )

p−1)ω]

∫

Ω

|uk|
p

∣

∣

∣

∣

6 ǫk
‖uk‖

1 + ‖uk‖

∥

∥

∥

∥

ω

‖uk‖p
− [

∫

∂Ω

(m(v+k )
p−1 − n(v−k )

p−1)ω]vk

∥

∥

∥

∥

.

By passing to the limit, we implies that v0 is a solution of

−∆pv0 = 0 in Ω, |∇v0|
p−2 ∂v0

∂ν
= c[m(v+0 )

p−1 − n(v−0 )
p−1] on ∂Ω, (9)

where c is the level appearing in the (PSC)c sequence. Since v0 ≡ cst, the right-
hand side of (9) is ≡ 0, and since c > 0, one gets m(v+0 )

p−1 − n(v−0 )
p−1 ≡ 0. This

relation with a nonzero constant v0 implies m ≡ 0 or n ≡ 0, which contradicts
m+ 6≡ 0 and n+ 6≡ 0. Thus uk remains bounded, for a subsequence, uk → u0
weakly in W 1,p(Ω). Taking ξ = ak(ω) in (8), one deduces

∣

∣

∣

∣

∫

Ω

|∇uk|
p−2∇uk∇ω − [

∫

∂Ω

(m(u+k )
p−1 − n(u−k )

p−1)ω]

∫

Ω

|uk|
p

∣

∣

∣

∣

6 ǫk
‖ak(ω)‖

1 + ‖uk‖
6 Dǫk

‖uk‖
p + 1

‖uk‖+ 1
‖ω‖

for some constant D; taking now ω = uk − u0 in the above, one obtains
∫

Ω
|∇uk|

p−2∇uk∇(uk − u0) → 0. Since
∫

Ω
|uk|

p−2uk(uk − u0) → 0, it then follows
from the (S+) property that uk → u0 strongly in W 1,p(Ω), which yields the con-
clusion. 2

We now turn to the geometry of f̃ . The situation here is again simpler in the
non singular case (see Preliminaries). We start by giving an important proposition,
which is proved in [1].

Proposition 3.2 If
∫

∂Ω
mdσ 6= 0, then ϕm ∈ Mm,n is a strict local minimum of

f̃ , with in addition for some ǫ0 > 0 and all 0 < ǫ < ǫ0,

f̃(ϕm) = λ∗1(m) < inf{f̃(u);u ∈Mm,n ∩ ∂B(ϕm, ǫ)}, (10)
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where B(ϕm, ǫ) denotes the ball in W 1,p(Ω) of center ϕm and radius ǫ. Similar
conclusion for −ϕn if

∫

∂Ω
ndσ 6= 0.

In the singular case, one at least of the two local minima provided by Propo-
sition 3.2 is missing. The search for suitable endpoints of path which allow the
application of a mountain pass argument will be based on the following lemmas
(see in particular Lemma 3.4).

Lemma 3.1 Assume
∫

∂Ω
mdσ = 0 or

∫

∂Ω
ndσ = 0. Then max{λ∗(m), λ∗(n)} <

c(m,n).

Proof. The inequality 6 easily follows from the definition of λ∗(m) and λ∗(n).
Indeed for any γ ∈ Γ, γ(1) ∈ Mm,n, is nonnegative and so satisfies the constraint
in the definition of λ∗(m). Consequently c(m,n) > λ∗(m), and a similar argument
applies to λ∗(n). To prove the strict inequality assume by contradiction that for
instance λ∗(m) = c(m,n). So there exists a sequence γk ∈ Γ such that

max
t∈[0,1]

f̃(γk(t)) → λ∗(m). (11)

Put uk := γk(1). Since uk > 0, one has

λ∗(m) 6

∫

Ω

|∇uk|
p
6 max

t∈[0,1]
f̃(γk(t)) → λ∗(m), (12)

and consequently
∫

Ω
|∇uk|

p → λ∗(m). Let us now distinguish two cases: First
case, ‖uk‖ remains bounded, for a subsequence, uk → u0 weakly in W 1,p(Ω). Since
uk ∈ Mm,n and uk > 0, one has

∫

∂Ω
m|u0|

p = 1, and so λ∗(m) 6
∫

Ω
|∇u0|

p 6

lim inf
∫

Ω
|∇uk|

p = λ∗(m), which implies that
∫

Ω
|∇u0|

p = λ∗(m). Consequently
uk → u0 strongly in W 1,p(Ω).
If

∫

∂Ω
mdσ = 0, then λ∗(m) = 0 and so u0 ≡ cst, which leads to a contradiction

with
∫

∂Ω
m|u0|

p = 1. So
∫

∂Ω
mdσ 6= 0 and we conclude that u0 = ϕm. Let us

now choose ǫ > 0 such that f̃(ϕm) = λ∗(m) < inf{f̃(u) : u ∈ Mm,n ∩ ∂B(ϕm, ǫ)},
and B(ϕm, ǫ) does not contain any function v with v 6 0, which clearly possible.
For k sufficiently large uk := γk(1) ∈ B(ϕm, ǫ), while γk(0) 6∈ B(ϕm, ǫ) since
γk(0) 6 0. It follows that the path γk intersects ∂B(ϕm, ǫ) and consequently
max
t∈[0,1]

f̃(γk(t)) > inf{f̃(u) : u ∈ Mm,n ∩ ∂B(ϕm, ǫ)} > λ∗(m), this contradicts

(10). Second case, ‖uk‖ → ∞, we put vk := uk

‖uk‖
. For a subsequence, vk → v0

weakly in W 1,p(Ω). Since
∫

Ω
|∇uk|

p remains bounded, we obtain
∫

Ω
|∇vk|

p → 0
and so v0 ≡ cst 6≡ 0. Moreover

∫

∂Ω
m|v0|

pdσ = 0 since
∫

∂Ω
m|uk|

pdσ = 1. We
have reached a contradiction if

∫

∂Ω
mdσ 6= 0. So let us assume from now on that

∫

∂Ω
mdσ = 0. We first observe that for any γ ∈ Γ there exists t0 = t0(γ) ∈ [0, 1]

such that
1

p

∫

∂Ω

m(γ(t0)
+)pdσ =

1

p

∫

∂Ω

n(γ(t0)
−)pdσ =

1

2
. (13)



40 A. Anane, O. Chakrone, B. Karim and A. Zerouali

Consider now wk := γk(t0(γk)). We have now instead of (12)

0 6
1

p

∫

Ω

|∇wk|
p
6 max

t∈[0,1]
f̃(γk(t)) → λ∗(m) = 0. (14)

We again distinguish two case: First case, wk → w0 weakly in W 1,p(Ω). It follows
from (14) that w0 ≡ cst and that wk → w0 strongly in W 1,p(Ω). A contradiction
then follows from 1

p

∫

∂Ω
m(w+

0 )
pdσ = 1

p

∫

∂Ω
n(w−

0 )
pdσ = 1

2 . Second case, ‖wk‖ →

∞, we put zk := wk

‖wk‖
. For a subsequence zk → z0 weakly in W 1,p(Ω). It follows

from (14) that z0 ≡ cst and that zk → z0 strongly in W 1,p(Ω), consequently ‖z0‖ =
1. If z0 > 0 (a similar argument applies if z0 < 0), then |wk < 0| = |zk < 0| → 0;

moreover wk changes sign and by (13)
∫
∂Ω

n+|w−

k
|p

∫
Ω
|∇w

−

k
|p

>
1
2∫

Ω
|∇wk|p

→ +∞. This yields

a contradiction with the following lemma.

Lemma 3.2 (see [1]) Let vk ∈W 1,p(Ω) with vk ≥ 0, vk 6≡ 0 and |vk > 0| → 0. Let

nk be bounded in Lq(∂Ω). Then
∫
∂Ω

nkv
p

k
dσ∫

Ω
|∇vk|pdx

→ 0.

Lemma 3.3 For any d > 0, the set O := {u ∈ Mm,n;u ≥ 0 and Ã(u) < d} is
arcwise connected. Similar conclusion if u ≥ 0 is replaced by u ≤ 0.

Proof. Since O is empty if d ≤ λ∗1(m), we can assume from now on d > λ∗1(m).
The case where

∫

∂Ω
mdσ 6= 0 is proved in [1]. Consider now the case where

∫

∂Ω
mdσ = 0. Let u1, u2 ∈ O. One starts by decreasing a little bit the weight

m into a weight m̂ ∈ Lq(∂Ω) such that m̂ 6 m,
∫

∂Ω
m̂dσ < 0,

∫

∂Ω
m̂up1dσ > 0,

∫

∂Ω
m̂up2dσ > 0 and

∫
Ω
|∇u1|

p

∫
∂Ω

m̂u
p
1dσ

< d,
∫
Ω
|∇u2|

p

∫
∂Ω

m̂u
p
2dσ

< d, which is clearly possible since

λ∗(m) < d. Put v1 := u1

( 1
p

∫
∂Ω

m̂u
p
1dσ)

1
p

and v2 := u2

( 1
p

∫
∂Ω

m̂u
p
2dσ)

1
p

. By the first case,

there exists a path γ ∈ Mm̂,m̂ which goes from v1, v2, is made of nonnegative
functions and is such that f(γ(t)) < d for all t. Consider now the path γ1(t) :=

γ(t)

( 1
p

∫
∂Ω

m|γ(t)|pdσ)
1
p

. By the choice of m̂,

1

p

∫

∂Ω

m|γ(t)|pdσ >
1

p

∫

∂Ω

m̂|γ(t)|pdσ = 1, (15)

and consequently γ1 is a well defined path in Mm,n, which clearly goes from
u1 to u2 and is made of nonnegative functions. Moreover, by (15), f(γ1(t)) =

f(γ(t))
1
p

∫
∂Ω

m|γ(t)|pdσ
6 f(γ(t)) < d for all t. This concludes the proof of Lemma 3.3 for

O with u > 0. Similar argument in the case u ≤ 0. 2

Lemma 3.4 Assume
∫

∂Ω
mdσ = 0 or

∫

∂Ω
ndσ = 0. Then there exist u1 ≥ 0 and

u2 ≤ 0 in Mm,n such that f̃(u1) < c(m,n) and f̃(u2) < c(m,n). Moreover, for any
such choice of u1, u2, one has

c(m,n) = inf
γ∈Γ̄

max
u∈γ([0,1])

f̃(u) (16)
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where Γ̄ := {γ ∈ C([0, 1],Mm,n); γ(0) = u2 and γ(1) = u1} and c(m,n) is defined
by (7).

Proof. If
∫

∂Ω
mdσ 6= 0, one takes u1 = ϕm and the inequality f̃(u1) < c(m,n)

follows from Lemma 3.1. Similarly with u2 = −ϕn in case
∫

∂Ω
ndσ 6= 0. If now

∫

∂Ω
mdσ = 0, one takes u1 = vk for k sufficiently large, where vk is defined in (5).

Indeed f̃(vk) → 0 and by Lemma 3.1, 0 < c(m,n), so that f̃(vk) < c(m,n) for k
sufficiently large. Similar argument for the choice of u2 in case

∫

∂Ω
ndσ = 0. To

prove the equality (16), one uses the Lemma 3.3 and the same argument given by
Lemma 3.9 in [1]. 2

We are now in position to give the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.1, one has c(m,n) > max{λ∗1(m), λ∗1(n)}.
To prove that c(m,n) is an eigenvalue, we pick u1, u2 as in Lemma 3.4 and we will
show that c̄, the right-hand side of (16), is a critical value of f̃ . Since

∫

∂Ω
mdσ = 0

or
∫

∂Ω
ndσ = 0, we know (see Proposition 3.1) that f̃ satisfies (PSC)c for all

c > 0 and the mountain pass theorem (see Proposition 2.3) yields the conclusion.
To show that there is no eigenvalue between max{λ∗(m), λ∗(n)} and c(m,n), we
follow the same proof from the nonsingular case (see [1]).2
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