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On (δ, p)-continuous functions and (δ, p)-closed graphs

M. Caldas, E. Ekici, S. Jafari and S. P. Moshokoa

abstract: It is the object of this paper to introduce the notions of (δ, p) -
continuity and (δ, p)-closed graphs by utilizing the notion of (δ, p)-open sets and
investigate the fundamental properties of (δ, p)-continuous functions and also present
some properties of functions with (δ, p)-closed graphs.
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1. Introduction

In this paper X and Y denote the topological spaces. Let A be a subset of X.
We denote the interior and the closure of a set A by Int(A) and Cl(A) respectively.
Jafari [2] introduced the notion of pre-regular p-open sets and further investigated
its fundamental properties in [3]. A subset A of a topological space (X, τ) is called
a pre-regular p-open [2] if A = pInt(pCl(A)). Now we recall the following notions
from [1] which will be used in the sequel: A point x ∈ X is called the (δ, p)-cluster
point of A if A ∩ U 6= ∅ for every pre-regular p-open set U of X containing x.
The set of all (δ, p)-cluster points of A is called the (δ, p)-closure of A, denoted
by δClp(A). If δClp(A) = A, then A is called (δ, p)-closed. The complement of a
(δ, p)-closed set is called (δ, p)-open. We say that a set U in a topological space
(X, τ) is a (δ, p)-neighborhood of a point x if U contains a (δ, p)-open set to which x
belongs. We denote the collection of all (δ, p)-open (respectively (δ, p)-closed) sets
by δPO(X, τ) (respectively δPC(X, τ)).

In this paper we offer a new class of functions called (δ, p)-continuous functions
and a new notion of the graph of a function called a (δ, p)-closed graph. We also
investigate some of their fundamental properties.

2. Some properties

Definition 2.1 A function f : X → Y is said to be (δ, p)-continuous if for every
open set V of Y , f−1(V ) is (δ, p)-open in X.
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Theorem 2.1 The following are equivalent for a function f : X → Y :
(1) f is (δ, p)-continuous,
(2) The inverse image of every closed set in Y is (δ, p)-closed in X,
(3) For each subset A of X, f(δClp(A)) ⊂ Cl(f(A)),
(4) For each subset B of Y , δClp(f

−1(B)) ⊂ f−1(Cl(B)).

Proof. (1) ⇔ (2) : Obvious.
(3) ⇔ (4) : Let B is any subset of Y . Then by (3), we have f(δClp(f

−1(B))) ⊂
Cl(f(f−1(B))) ⊂ Cl(B). This implies δClp(f

−1(B)) ⊂ f−1(f(δClp(f
−1(B)))) ⊂

f−1(Cl(B)).
Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have,

δClp(A) ⊂ δClp(f
−1(f(A))) ⊂ f−1(Cl(f(A))). Thus, f(δClp(A)) ⊂ Cl(f(A)).

(2) ⇒ (4) : Let B ⊂ Y . Since f−1(Cl(B)) is (δ, p)-closed and f−1(B) ⊂
f−1(Cl(B)), then δClp(f

−1(B)) ⊂ f−1(Cl(B)).
(4) ⇒ (2) : Let K ⊂ Y be a closed set. By (4), δClp(f

−1(K)) ⊂ f−1(Cl(K)) =
f−1(K). Thus, f−1(K) is (δ, p)-closed.

Recall that for a function f : X → Y , the subset {(x, f(x)) | x ∈ X} of the
product space X × Y is called the graph of f and is denoted by G(f).

Definition 2.2 For a function f : X → Y , the graph G(f) = {(x, f(x)) | x ∈ X}
is said to be (δ, p)-closed if for each (x, y) ∈ X×Y \G(f), there exist U ∈ δPO(X,x)
and an open set V of Y containing y such that (U × V ) ∩G(f) = ∅.

Lemma 2.1 Let f : X → Y be a function. Then the graph G(f) is (δ, p)-closed in
X × Y if and only if for each point (x, y) ∈ X × Y \G(f), there exist a (δ, p)-open
set U and an open set V containing x and y, respectively, such that f(U)∩ V = ∅.

Proof. It follows readily from the above definition.

Definition 2.3 A space X is said to be (δ, p)-T1 [1] if for each pair of distinct
points x and y of X, there exist a (δ, p)-open set U containing x but not y and a
(δ, p)-open set V containing y but not x.

Theorem 2.2 If f : X → Y is an injective function with the (δ, p)-closed graph,
then X is (δ, p)-T1.

Proof. Let x and y be two distinct points of X. Then f(x) 6= f(y). Thus there
exist a (δ, p)-open set U and an open set V containing x and f(y), respectively,
such that f(U) ∩ V = ∅. Therefore y /∈ U and it follows that X is (δ, p)-T1.

Recall that a space X is said to be T1 if for each pair of distinct points x and y
of X, there exist an open set U containing x but not y and an open set V containing
y but not x.

Theorem 2.3 If f : X → Y is a surjective function with the (δ, p)-closed graph,
then Y is T1.
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Proof. Let y1 and y2 be two distinct points of Y . Since f is surjective, there
exists a point x in X such that f(x) = y2. Therefore (x, y1) /∈ G(f). By Lemma 2.1,
there exist a (δ, p)-open set U and an open set V containing x and y1, respectively,
such that f(U) ∩ V = ∅. It follows that y2 /∈ V . Hence Y is T1.

Definition 2.4 A function f : X → Y is said to be (δ, p)-W -continuous if for each
x ∈ X and each open set V of Y containing f(x), there exists a (δ, p)-open set U
in X containing x such that f(U) ⊂ Cl(V ).

Theorem 2.4 If f : X → Y is (δ, p)-W -continuous and Y is Hausdorff, then G(f)
is (δ, p)-closed.

Proof. Suppose that (x, y) /∈ G(f), then f(x) 6= y. By the fact that Y is
Hausdorff, there exist open sets W and V such that f(x) ∈ W , y ∈ V and V ∩W =
∅. It follows that Cl(W ) ∩ V = ∅. Since f is (δ, p)-W -continuous, there exists
U ∈ δPO(X,x) such that f(U) ⊂ Cl(W ). Hence, we have f(U) ∩ V = ∅. This
means that G(f) is (δ, p)-closed.

Corollary 2.4A If f : X → Y is (δ, p)-continuous and Y is Hausdorff, then G(f)
is (δ, p)-closed in X × Y .

Definition 2.5 A subset A of a space X is said to be (δ, p)-compact relative to X
if every cover of A by (δ, p)-open sets of X has a finite subcover.

Theorem 2.5 Let f : X → Y have a (δ, p)-closed graph. If K is (δ, p)-compact
relative to X, then f(K) is closed in Y .

Proof. Suppose y /∈ f(K). For each x ∈ K, f(x) 6= y. By Lemma 2.1, there
exist Ux ∈ δPO(X,x) and an open neighbourhood Vx of y such that f(Ux)∩Vx = ∅.
The family {Ux | x ∈ K} is a cover of K by (δ, p)-open sets of X and there exists
a finite subset K0 of K such that K ⊂

⋃
{Ux | x ∈ K0}. Put V =

⋂
{Vx | x ∈ K0}.

Then V is an open neighbourhood of y and f(K) ∩ V = ∅. This means that f(K)
is closed in Y .

Definition 2.6 A function f : X → Y is called perfectly continuous [4] if for each
open set A ⊂ Y , f−1(A) is open and closed in X.

Lemma 2.2 ([3]) If A and B are pre-regular p-open sets of the spaces X and Y ,
respectively, then A×B is a pre-regular p-open set of X × Y .

Theorem 2.6 If f : X → Z has a (δ, p)-closed graph G(f) and g : Y → Z is a
perfectly continuous function, then the set {(x, y) : f(x) = g(y)} is (δ, p)-closed in
X × Y .

Proof. Let A = {(x, y) : f(x) = g(y)} and (x, y) ∈ X\A. We have f(x) 6= g(y)
and then (x, g(y)) ∈ (X × Z)\G(f). Since f has a (δ, p)-closed graph G(f), there
exist a (δ, p)-open set U and an open set V containing x and g(y), respectively
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such that f(U) ∩ V = ∅. This implies that there exists a pre-regular p-open set
N containing x such that N ⊂ U and f(N) ∩ V = ∅. Since g is a perfectly
continuous function, then there exist an open and closed set G containing y such
that g(G) ⊂ V . We have f(U) ∩ g(G) = ∅. This implies that (N × G) ∩ A = ∅.
Since N ×G is pre-regular p-open, then (x, y) /∈ δClp(A). Thus, E is (δ, p)-closed
in X × Y .

Corollary 2.6B If f : X → Z is a (δ, p)-continuous function and g : Y → Z is a
perfectly continuous function and Z is Hausdorff, then the set {(x, y) : f(x) = g(y)}
is (δ, p)-closed in X × Y .

Proof. It follows from Corollary 2.6A and Theorem 2.6.

Theorem 2.7 If f : X → Y is a (δ, p)-continuous function and Y is Hausdorff,
then the set {(x, y) ∈ X ×X : f(x) = f(y)} is (δ, p)-closed in X ×X.

Proof. Let A = {(x, y) : f(x) = f(y)} and let (x, y) ∈ (X × X)\A. It follows
that f(x) 6= f(y). Since Y is Hausdorff, there exist open sets U and V containing
f(x) and f(y), respectively, such that U ∩V = ∅. Since f is (δ, p)-continuous, there
exist pre-regular p-open sets H and G in X containing x and y, respectively, such
that f(H) ⊂ U and f(G) ⊂ V . This implies (H × G) ∩ A = ∅. We have H × G
is a pre-regular p-open set in X ×X containing (x, y). Hence, A is (δ, p)-closed in
X ×X.

Definition 2.7 A function f : X → Y is called contra (δ, p)-open if the image of
every (δ, p)-open set in X is closed in Y .

Theorem 2.8 If f : X → Y is a contra (δ, p)-open function such that inverse
image of each point of Y is (δ, p)-closed, then f has a (δ, p)-closed graph G(f).

Proof. Let (x, y) ∈ X\G(f). We have x /∈ f−1(y). Since f−1(y) is (δ, p)-closed,
there exists a pre-regular p-open set A containing x such that A ∩ f−1(y) = ∅.
Since f is contra (δ, p)-open, then f(A) is closed. This implies that there exist an
open set B in Y containing y such that f(A)∩B = ∅. Hence, f has a (δ, p)-closed
graph G(f).

Theorem 2.9 If f : (X, τ) → (Y, σ) has a (δ, p)-closed graph G(f), then for each
x ∈ X, {f(x)} = ∩

x∈A∈δPO(X,τ)
Cl(f(A)).

Proof. Suppose that y 6= f(x) and y ∈ ∩
x∈A∈δPO(X,τ)

Cl(f(A)). Then y ∈

Cl(f(A)) for each x ∈ A ∈ δPO(X, τ). This implies that for each open set B
containing y, B ∩ f(A) 6= ∅. Since (x, y) /∈ G(f) and G(f) is a (δ, p)-closed graph,
this is a contradiction.

Definition 2.8 A space X is said to be (δ, p)-T2 if for each pair of distinct points
x and y in X, there exist disjoint (δ, p)-open sets A and B in X such that x ∈ A
and y ∈ B.
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Definition 2.9 A function f : X → Y is called (δ, p)-open if the image of every
(δ, p)-open set in X is open in Y .

Theorem 2.10 If f : X → Y is a surjective (δ, p)-open function with a (δ, p)-
closed graph G(f), then Y is T2 .

Proof. Let y1 and y2 be any distinct points of Y . Since f is surjective f(x) = y1
for some x ∈ X and (x, y2) ∈ (X × Y )\G(f). This implies that there exist a
(δ, p)-open set A of X and an open set B of Y such that (x, y2) ∈ A × B and
(A × B) ∩ G(f) = ∅. We have f(A) ∩ B = ∅. Since f is (δ, p)-open, then f(A) is
open such that f(x) = y1 ∈ f(A). Thus, Y is T2.

Theorem 2.11 If f : X → Y is a (δ, p)-continuous injection and Y is T2, then X
is (δ, p)-T2.

Proof. Let x and y in X be any pair of distinct points. Then there exist
disjoint open sets A and B in Y such that f(x) ∈ A and f(y) ∈ B. Since f
is (δ, p)-continuous, f−1(A) and f−1(B) is (δ, p)-open in X containing x and y
respectively. We have f−1(A) ∩ f−1(B) = ∅. Thus, X is (δ, p)-T2.

Lemma 2.3 ([3]) If a space X is submaximal, then any finite intersection of pre-
regular p-open sets is pre-regular p-open.

Theorem 2.12 If f , g : X → Y are (δ, p)-continuous functions, X is submaximal
and Y is Hausdorff, then the set {x ∈ X : f(x) = g(x)} is (δ, p)-closed in X.

Proof. Let A = {x ∈ X : f(x) = g(x)}. Take x ∈ X\A. We have f(x) 6= g(x).
Since Y is Hausdorff, then there exist open sets U and V in Y containing f(x)
and g(x), respectively, such that U ∩ V = ∅. Since f and g are (δ, p)-continuous,
then f−1(U) and g−1(V ) are (δ, p)-open in X with x ∈ f−1(U) and x ∈ g−1(V ).
Then there exist pre-regular p-open sets G and H such that x ∈ G ⊂ f−1(U) and
x ∈ H ⊂ g−1(V ). Take K = G ∩ H. By Lemma 2.3, K is pre-regular p-open.
Thus, f(K) ∩ g(K) = ∅ and hence x /∈ δClp(A). This shows that A is (δ, p)-closed
in X.
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