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Existence of solutions for a resonant Steklov Problem

Aomar ANANE, Omar CHAKRONE, Belhadj KARIM and Abdellah ZEROUALI

abstract: In this paper, we prove the existence of weak solutions to the problem
△pu = 0 in Ω and |∇u|p−2 ∂u

∂ν
= λ1m(x)|u|p−2u + f(x, u) − h on ∂Ω, where Ω is

a bounded domain in R
N (N ≥ 2), m ∈ Lq(∂Ω) is a weight, λ1 is the first positive

eigenvalue for the eigenvalue Steklov problem △pu = 0 in Ω and |∇u|p−2 ∂u
∂ν

=

λm(x)|u|p−2u on ∂Ω. f and h are functions that satisfy some conditions.

Key Words: : Steklov problem, Weights, Landesman-Lazer conditions, Palais–
Smale conditions.
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1. Introduction

Consider the problem
{

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λ1m(x)|u|p−2u+ f(x, u)− h on ∂Ω,

(1)

Ω will be a bounded domain in R
N (N ≥ 2), with a Lipschitz continuous boundary,

1 < p < ∞, m ∈ Lq(∂Ω) where N−1
p−1 < q < ∞ if p < N and q ≥ 1 if p ≥ N .

We assume that m+ = max(m, 0) 6≡ 0 and
∫

∂Ω
mdσ < 0. f : ∂Ω × R →R is a

Carathéodory function satisfying the growth condition

|f(x, s)| ≤ a|s|r−1 + b(x) (2)

for all s ∈ R and a.e. x ∈ ∂Ω. Here a = cst > 0, b ∈ Lr′(∂Ω) and h ∈ Lr′(∂Ω),
where r′ is the conjugate of r = pq

q−1 . λ1 design the first positive eigenvalue of the
following Steklov problem







To find (u, λ) ∈ (W 1,p(Ω) \ {0})× R
+ such that

△pu = 0 in Ω,
|∇u|p−2 ∂u

∂ν
= λm(x)|u|p−2u on ∂Ω.

(3)

It is well-known that

λ1 := inf
u∈W 1,p(Ω)

{

1

p

∫

Ω

|∇u|pdx :
1

p

∫

∂Ω

m(x)|u|pdσ = 1

}

.
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Recall that λ1 is simple (see [7]). Moreover, there exists a unique positive eigen-
function ϕ1 whose norm in W 1,p(Ω) equals to one. We say that u ∈ W 1,p(Ω) is a
weak solution of (1) if

∫

Ω

|∇u|p−2∇u∇ϕdx = λ1

∫

∂Ω

m|u|p−2uϕdσ +

∫

∂Ω

f(x, u)ϕdσ −

∫

∂Ω

hϕdσ

for all ϕ ∈ W 1,p(Ω), where dσ is the N − 1 dimensional Hausdorff measure.
Classical Dirichlet problems involving the p-Laplacian have been studied by

various authors, we cite the works [1], [2], [3], [4], [5], [6] and [8] . Our purpose
of this paper is to extend some of the results known in the Dirichlet p-Laplacian
problem. We prove the existence of solutions for a resonant Steklov problem under
Landesman-Lazer conditions.

2. Existence of solutions for a resonant Steklov problem

In this section, we study the solvability of the Steklov problem (1) under
Landesman-Lazer conditions and by using the minimum principle. The following
theorem is our main ingredient.

Theorem 2.1 (Minimum principle)
Let X be a Banach space and Φ ∈ C1(X,R). Assume that Φ satisfies the Palais–
Smale condition and bounded from below. Then c = inf

X
Φ is a critical point.

Suppose that f satisfies the hypotheses below

lim
s→−∞

f(x, s) = l(x); lim
s→+∞

f(x, s) = k(x) a.e. x ∈ ∂Ω (4)

∫

∂Ω

k(x)ϕ1dσ <

∫

∂Ω

h(x)ϕ1dσ <

∫

∂Ω

l(x)ϕ1dσ, (5)

where ϕ1 is the normalized positive eigenfunction associated to λ1.

The following theorem is main result in this paper.

Theorem 2.2 Let m ∈ Lq(∂Ω), m+ 6= 0 and
∫

∂Ω
mdσ < 0. Assume (2), (4) and

(5) are fulfilled. Then the problem (1) admits at least a weak solution in W 1,p(Ω).

The following lemmas will be used in the proof of Theorem 2.2, it guarantees
the existence of a critical point. The functional energy associated to the problem
(1) is

Φ(u) =
1

p

∫

Ω

|∇u|pdx−
1

p

∫

∂Ω

m|u|pdσ −

∫

∂Ω

F (x, u)dσ +

∫

∂Ω

hudσ,

where

F (x, t) :=

∫ t

0

f(x, s)ds.
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Lemma 2.1 Let m ∈ Lq(∂Ω), m+ 6= 0 and
∫

∂Ω
mdσ < 0. Assume (4) and (5)

are fulfilled. Then Φ satisfies the Palais–Smale condition (PS) on W 1,p(Ω).

Proof: Let (un) be a sequences in W 1,p(Ω) and c be a real number such that
|Φ(un)| ≤ c for all n and Φ′(un) → 0. We prove that (un) is bounded in W 1,p(Ω),
we assume by contradiction that ||un|| → +∞ as n → +∞. Let vn = un

||un||
, thus

vn is bounded, for a subsequence still denoted by (vn), we have vn ⇀ v weakly

in W 1,p(Ω), vn → v strongly in Lp(Ω) and vn → v strongly in L
pq

q−1 (∂Ω). The
hypothesis |Φ(un)| ≤ c implies

lim
n→+∞

(

1

p

∫

Ω

|∇vn|
pdx−

λ1

p

∫

∂Ω

m|vn|
pdσ −

∫

∂Ω

F (x, un)

||un||p
dσ +

∫

∂Ω

h
un

||un||p
dσ

)

= 0.

Since, by hypotheses on p, h, un and using (4)

lim
n→+∞

(

−

∫

∂Ω

F (x, un)

||un||p
dσ +

∫

∂Ω

h
un

||un||p
dσ

)

= 0,

while

lim
n→+∞

1

p

∫

∂Ω

m|vn|
pdσ =

1

p

∫

∂Ω

m|v|pdσ,

we have

lim
n→+∞

∫

Ω

|∇vn|
pdx = λ1

∫

∂Ω

m|v|pdσ.

Using the weak lower semi-continuity of norm and the definition of λ1, we get

λ1

∫

∂Ω

m|v|pdσ ≤

∫

Ω

|∇v|pdx ≤ lim inf
n→+∞

∫

Ω

|∇vn|
pdx = λ1

∫

∂Ω

m|v|pdσ.

Thus, vn → v strongly in W 1,p(Ω) and

λ1

∫

∂Ω

m|v|pdσ =

∫

Ω

|∇v|pdx.

This implies, by the definition of ϕ1, that v = ±ϕ1 (since
∫

∂Ω
mdσ < 0).

Letting

g(x, s) =

{

F (x,s)
s

, if s 6= 0;
f(x, 0), if s = 0.

Case 1: Suppose that vn → ϕ1, then we have un(x) → +∞ and

f(x, un(x)) → k(x) a.e. x ∈ ∂Ω,

g(x, un(x)) → k(x) a.e. x ∈ ∂Ω.

Therefore, the Lebesgue theorem implies that

lim
n+∞

∫

∂Ω

(pg(x, un(x))− f(x, un(x))) vndσ = (p− 1)

∫

∂Ω

k(x)ϕ1(x)dσ.
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On the other hand, |Φ(un)| ≤ c implies that

− cp ≤

∫

Ω

|∇vn|
pdx− λ1

∫

∂Ω

m|vn|
pdσ−

∫

∂Ω

pF (x, un)dσ+

∫

∂Ω

hundσ ≤ cp, (6)

and Φ′(un) → 0 implies that for all ε > 0 there exists n0 ∈ N such that for all
n ≥ n0, we have

−ε ≤ −

∫

Ω

|∇un|
pdx+λ1

∫

∂Ω

m|un|
pdσ+

∫

∂Ω

f(x, un(x))un(x)dσ−

∫

∂Ω

h(x)un(x)dσ ≤ ε.

(7)
By summing up (6) and (7), we get

∫

∂Ω

f(x, un(x))un(x)dσ −

∫

∂Ω

pF (x, un)dσ + (p− 1)

∫

∂Ω

h(x)un(x)dσ ≥ −cp− ε,

dividing by ||un||, we obtain

∫

∂Ω

f(x, un(x))vn(x)dσ−

∫

∂Ω

pg(x, un)vn(x)dσ+(p−1)

∫

∂Ω

h(x)vn(x)dσ ≥
−cp− ε

||un||
.

Passing to the limit, we obtain

∫

∂Ω

h(x)ϕ1(x)dσ ≥

∫

∂Ω

k(x)ϕ1(x)dσ,

which contradicts (5).
Case 2: Suppose that vn → −ϕ1, then we have un(x) → −∞ and

f(x, un(x)) → l(x) a.e. x ∈ ∂Ω,

g(x, un(x)) → l(x) a.e. x ∈ ∂Ω.

By summing up (6) and (7), we get

∫

∂Ω

f(x, un(x))un(x)dσ −

∫

∂Ω

pF (x, un)dσ + (p− 1)

∫

∂Ω

h(x)un(x)dσ ≤ cp+ ε,

dividing by ||un||, we obtain

∫

∂Ω

f(x, un(x))vn(x)dσ−

∫

∂Ω

pg(x, un)vn(x)dσ+(p−1)

∫

∂Ω

h(x)vn(x)dσ ≤
cp+ ε

||un||
.

Passing to the limits, we get

∫

∂Ω

l(x)ϕ1(x)dσ ≤

∫

∂Ω

h(x)ϕ1(x)dσ.

which contradicts (5). Finally, (un) is bounded in W 1,p(Ω), for a subsequences
still denoted by (un), there exists u ∈ W 1,p(Ω) such that un ⇀ u weakly in W 1,p(Ω)
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and un → u strongly in L
pq

q−1 (∂Ω). By the hypotheses on m, h, un and using (4),
we deduce that

lim
n→+∞

∫

∂Ω

m|un|
p−2un(un − u)dσ = 0,

lim
n→+∞

∫

∂Ω

f(x, un)(x)(un − u)dσ = 0,

lim
n→+∞

∫

∂Ω

h(un − u)dσ = 0.

On the other hand, we have

lim
n→+∞

Φ′(un)(un − u) = 0,

therefore

lim
n→+∞

∫

Ω

|∇un|
p−2∇un∇(un − u)dx = 0,

of more un → u strongly in Lp(Ω), thus

lim
n→+∞

∫

Ω

|un|
p−2un(un − u)dx = 0,

it then follows from the (S+) property that un → u strongly in W 1,p(Ω). 2

Lemma 2.2 Let m ∈ Lq(∂Ω), m+ 6= 0 and
∫

∂Ω
mdσ < 0. Assume (4) and (5)

are fulfilled. Then Φ is bounded from below.

Proof: It suffices to show that Φ is coercive. Suppose by contradiction that there
exists a sequence (un) such that ||un|| → +∞ and Φ(un) ≤ c. As in proof of
Lemma 2.1, we can show that vn = un

||un||
→ ±ϕ1. By the definition of λ1, we have

0 ≤

∫

Ω

|∇un|
pdx− λ1

∫

∂Ω

m|un|
pdσ,

thus

−

∫

∂Ω

F (x, un(x))dσ +

∫

∂Ω

hundσ ≤ Φ(un) ≤ c. (8)

Case 1: Suppose that vn → ϕ1. Dividing (8) by ||un||, we obtain

−

∫

∂Ω

F (x, un(x))

||un||
dσ +

∫

∂Ω

hun

||un||
dσ ≤

Φ(un)

||un||
≤

c

||un||
.

Passing to the limit, we get

−

∫

∂Ω

k(x)ϕ1dσ +

∫

∂Ω

h(x)ϕ1dσ ≤ 0,
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which contradicts (5).
Case 2: Assume that vn → −ϕ1. Dividing (8) by ||un||, we obtain

−

∫

∂Ω

F (x, un(x))

||un||
dσ +

∫

∂Ω

hun

||un||
dσ ≤

Φ(un)

||un||
≤

c

||un||
.

Passing to the limit, we get

∫

∂Ω

l(x)ϕ1dσ −

∫

∂Ω

h(x)ϕ1dσ ≤ 0,

which contradicts (4). 2

Proof: [Proof of Theorem 2.2] Assumption (2) implies that Φ in a C1 functional on
W 1,p(Ω). By Lemma 2.1, Φ satisfies the Palais–Smale condition and it is bounded
from below by Lemma 2.2. To prove that Φ attains its proper infimum in W 1,p(Ω)
(see Theorem 2.2). Finally the problem (1) admits a least a weak solution. 2
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