Existence of solutions for a resonant Steklov Problem

Aomar ANANE, Omar CHAKRONE, Belhadj KARIM and Abdellah ZEROUALI
ABSTRACT: In this paper, we prove the existence of weak solutions to the problem $\triangle_{p} u=0$ in Ω and $|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda_{1} m(x)|u|^{p-2} u+f(x, u)-h$ on $\partial \Omega$, where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 2), m \in L^{q}(\partial \Omega)$ is a weight, λ_{1} is the first positive eigenvalue for the eigenvalue Steklov problem $\triangle_{p} u=0$ in Ω and $|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=$ $\lambda m(x)|u|^{p-2} u$ on $\partial \Omega$. f and h are functions that satisfy some conditions.
Key Words: : Steklov problem, Weights, Landesman-Lazer conditions, PalaisSmale conditions.

Contents

1 Introduction
2 Existence of solutions for a resonant Steklov problem

1. Introduction

Consider the problem

$$
\begin{cases}\triangle_{p} u=0 & \text { in } \Omega \tag{1}\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda_{1} m(x)|u|^{p-2} u+f(x, u)-h & \text { on } \partial \Omega\end{cases}
$$

Ω will be a bounded domain in $\mathbb{R}^{N}(N \geq 2)$, with a Lipschitz continuous boundary, $1<p<\infty, m \in L^{q}(\partial \Omega)$ where $\frac{N-1}{p-1}<q<\infty$ if $p<N$ and $q \geq 1$ if $p \geq N$. We assume that $m^{+}=\max (m, 0) \not \equiv 0$ and $\int_{\partial \Omega} m d \sigma<0 . f: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function satisfying the growth condition

$$
\begin{equation*}
|f(x, s)| \leq a|s|^{r-1}+b(x) \tag{2}
\end{equation*}
$$

for all $s \in \mathbb{R}$ and a.e. $x \in \partial \Omega$. Here $a=c s t>0, b \in L^{r^{\prime}}(\partial \Omega)$ and $h \in L^{r^{\prime}}(\partial \Omega)$, where r^{\prime} is the conjugate of $r=\frac{p q}{q-1}$. λ_{1} design the first positive eigenvalue of the following Steklov problem

$$
\left\{\begin{align*}
\text { To find }(u, \lambda) & \in\left(W^{1, p}(\Omega) \backslash\{0\}\right) \times \mathbb{R}^{+} & & \text {such that } \tag{3}\\
\triangle_{p} u & =0 & & \text { in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} & =\lambda m(x)|u|^{p-2} u & & \text { on } \partial \Omega .
\end{align*}\right.
$$

It is well-known that

$$
\lambda_{1}:=\inf _{u \in W^{1, p}(\Omega)}\left\{\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x: \frac{1}{p} \int_{\partial \Omega} m(x)|u|^{p} d \sigma=1\right\}
$$

Recall that λ_{1} is simple (see [7]). Moreover, there exists a unique positive eigenfunction φ_{1} whose norm in $W^{1, p}(\Omega)$ equals to one. We say that $u \in W^{1, p}(\Omega)$ is a weak solution of (1) if

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \varphi d x=\lambda_{1} \int_{\partial \Omega} m|u|^{p-2} u \varphi d \sigma+\int_{\partial \Omega} f(x, u) \varphi d \sigma-\int_{\partial \Omega} h \varphi d \sigma
$$

for all $\varphi \in W^{1, p}(\Omega)$, where $d \sigma$ is the $N-1$ dimensional Hausdorff measure.
Classical Dirichlet problems involving the p-Laplacian have been studied by various authors, we cite the works [1], [2], [3], [4], [5], [6] and [8]. Our purpose of this paper is to extend some of the results known in the Dirichlet p-Laplacian problem. We prove the existence of solutions for a resonant Steklov problem under Landesman-Lazer conditions.

2. Existence of solutions for a resonant Steklov problem

In this section, we study the solvability of the Steklov problem (1) under Landesman-Lazer conditions and by using the minimum principle. The following theorem is our main ingredient.

Theorem 2.1 (Minimum principle)
Let X be a Banach space and $\Phi \in C^{1}(X, \mathbb{R})$. Assume that Φ satisfies the PalaisSmale condition and bounded from below. Then $c=\inf _{X} \Phi$ is a critical point.

Suppose that f satisfies the hypotheses below

$$
\begin{gather*}
\lim _{s \rightarrow-\infty} f(x, s)=l(x) ; \lim _{s \rightarrow+\infty} f(x, s)=k(x) \text { a.e. } x \in \partial \Omega \tag{4}\\
\int_{\partial \Omega} k(x) \varphi_{1} d \sigma<\int_{\partial \Omega} h(x) \varphi_{1} d \sigma<\int_{\partial \Omega} l(x) \varphi_{1} d \sigma \tag{5}
\end{gather*}
$$

where φ_{1} is the normalized positive eigenfunction associated to λ_{1}.
The following theorem is main result in this paper.
Theorem 2.2 Let $m \in L^{q}(\partial \Omega), m^{+} \neq 0$ and $\int_{\partial \Omega} m d \sigma<0$. Assume (2), (4) and (5) are fulfilled. Then the problem (1) admits at least a weak solution in $W^{1, p}(\Omega)$.

The following lemmas will be used in the proof of Theorem 2.2, it guarantees the existence of a critical point. The functional energy associated to the problem (1) is

$$
\Phi(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{1}{p} \int_{\partial \Omega} m|u|^{p} d \sigma-\int_{\partial \Omega} F(x, u) d \sigma+\int_{\partial \Omega} h u d \sigma,
$$

where

$$
F(x, t):=\int_{0}^{t} f(x, s) d s
$$

Lemma 2.1 Let $m \in L^{q}(\partial \Omega), m^{+} \neq 0$ and $\int_{\partial \Omega} m d \sigma<0$. Assume (4) and (5) are fulfilled. Then Φ satisfies the Palais-Smale condition (PS) on $W^{1, p}(\Omega)$.

Proof: Let $\left(u_{n}\right)$ be a sequences in $W^{1, p}(\Omega)$ and c be a real number such that $\left|\Phi\left(u_{n}\right)\right| \leq c$ for all n and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$. We prove that $\left(u_{n}\right)$ is bounded in $W^{1, p}(\Omega)$, we assume by contradiction that $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, thus v_{n} is bounded, for a subsequence still denoted by $\left(v_{n}\right)$, we have $v_{n} \rightharpoonup v$ weakly in $W^{1, p}(\Omega), v_{n} \rightarrow v$ strongly in $L^{p}(\Omega)$ and $v_{n} \rightarrow v$ strongly in $L^{\frac{p q}{q-1}}(\partial \Omega)$. The hypothesis $\left|\Phi\left(u_{n}\right)\right| \leq c$ implies

$$
\lim _{n \rightarrow+\infty}\left(\frac{1}{p} \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x-\frac{\lambda_{1}}{p} \int_{\partial \Omega} m\left|v_{n}\right|^{p} d \sigma-\int_{\partial \Omega} \frac{F\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d \sigma+\int_{\partial \Omega} h \frac{u_{n}}{\left\|u_{n}\right\|^{p}} d \sigma\right)=0
$$

Since, by hypotheses on p, h, u_{n} and using (4)

$$
\lim _{n \rightarrow+\infty}\left(-\int_{\partial \Omega} \frac{F\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d \sigma+\int_{\partial \Omega} h \frac{u_{n}}{\left\|u_{n}\right\|^{p}} d \sigma\right)=0
$$

while

$$
\lim _{n \rightarrow+\infty} \frac{1}{p} \int_{\partial \Omega} m\left|v_{n}\right|^{p} d \sigma=\frac{1}{p} \int_{\partial \Omega} m|v|^{p} d \sigma
$$

we have

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=\lambda_{1} \int_{\partial \Omega} m|v|^{p} d \sigma
$$

Using the weak lower semi-continuity of norm and the definition of λ_{1}, we get

$$
\lambda_{1} \int_{\partial \Omega} m|v|^{p} d \sigma \leq \int_{\Omega}|\nabla v|^{p} d x \leq \liminf _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=\lambda_{1} \int_{\partial \Omega} m|v|^{p} d \sigma
$$

Thus, $v_{n} \rightarrow v$ strongly in $W^{1, p}(\Omega)$ and

$$
\lambda_{1} \int_{\partial \Omega} m|v|^{p} d \sigma=\int_{\Omega}|\nabla v|^{p} d x .
$$

This implies, by the definition of φ_{1}, that $v= \pm \varphi_{1}\left(\right.$ since $\left.\int_{\partial \Omega} m d \sigma<0\right)$.
Letting

$$
g(x, s)= \begin{cases}\frac{F(x, s)}{s}, & \text { if } s \neq 0 \\ f(x, 0), & \text { if } s=0\end{cases}
$$

Case 1: Suppose that $v_{n} \rightarrow \varphi_{1}$, then we have $u_{n}(x) \rightarrow+\infty$ and

$$
\begin{aligned}
& f\left(x, u_{n}(x)\right) \rightarrow k(x) \text { a.e. } x \in \partial \Omega \\
& g\left(x, u_{n}(x)\right) \rightarrow k(x) \text { a.e. } x \in \partial \Omega
\end{aligned}
$$

Therefore, the Lebesgue theorem implies that

$$
\lim _{n+\infty} \int_{\partial \Omega}\left(p g\left(x, u_{n}(x)\right)-f\left(x, u_{n}(x)\right)\right) v_{n} d \sigma=(p-1) \int_{\partial \Omega} k(x) \varphi_{1}(x) d \sigma
$$

On the other hand, $\left|\Phi\left(u_{n}\right)\right| \leq c$ implies that

$$
\begin{equation*}
-c p \leq \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x-\lambda_{1} \int_{\partial \Omega} m\left|v_{n}\right|^{p} d \sigma-\int_{\partial \Omega} p F\left(x, u_{n}\right) d \sigma+\int_{\partial \Omega} h u_{n} d \sigma \leq c p \tag{6}
\end{equation*}
$$

and $\Phi^{\prime}\left(u_{n}\right) \rightarrow 0$ implies that for all $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$, we have
$-\varepsilon \leq-\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x+\lambda_{1} \int_{\partial \Omega} m\left|u_{n}\right|^{p} d \sigma+\int_{\partial \Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d \sigma-\int_{\partial \Omega} h(x) u_{n}(x) d \sigma \leq \varepsilon$.
By summing up (6) and (7), we get

$$
\int_{\partial \Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d \sigma-\int_{\partial \Omega} p F\left(x, u_{n}\right) d \sigma+(p-1) \int_{\partial \Omega} h(x) u_{n}(x) d \sigma \geq-c p-\varepsilon
$$

dividing by $\left\|u_{n}\right\|$, we obtain
$\int_{\partial \Omega} f\left(x, u_{n}(x)\right) v_{n}(x) d \sigma-\int_{\partial \Omega} p g\left(x, u_{n}\right) v_{n}(x) d \sigma+(p-1) \int_{\partial \Omega} h(x) v_{n}(x) d \sigma \geq \frac{-c p-\varepsilon}{\left\|u_{n}\right\|}$.
Passing to the limit, we obtain

$$
\int_{\partial \Omega} h(x) \varphi_{1}(x) d \sigma \geq \int_{\partial \Omega} k(x) \varphi_{1}(x) d \sigma
$$

which contradicts (5).
Case 2: Suppose that $v_{n} \rightarrow-\varphi_{1}$, then we have $u_{n}(x) \rightarrow-\infty$ and

$$
\begin{aligned}
& f\left(x, u_{n}(x)\right) \rightarrow l(x) \text { a.e. } x \in \partial \Omega \\
& g\left(x, u_{n}(x)\right) \rightarrow l(x) \text { a.e. } x \in \partial \Omega
\end{aligned}
$$

By summing up (6) and (7), we get

$$
\int_{\partial \Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d \sigma-\int_{\partial \Omega} p F\left(x, u_{n}\right) d \sigma+(p-1) \int_{\partial \Omega} h(x) u_{n}(x) d \sigma \leq c p+\varepsilon
$$

dividing by $\left\|u_{n}\right\|$, we obtain
$\int_{\partial \Omega} f\left(x, u_{n}(x)\right) v_{n}(x) d \sigma-\int_{\partial \Omega} p g\left(x, u_{n}\right) v_{n}(x) d \sigma+(p-1) \int_{\partial \Omega} h(x) v_{n}(x) d \sigma \leq \frac{c p+\varepsilon}{\left\|u_{n}\right\|}$.
Passing to the limits, we get

$$
\int_{\partial \Omega} l(x) \varphi_{1}(x) d \sigma \leq \int_{\partial \Omega} h(x) \varphi_{1}(x) d \sigma .
$$

which contradicts (5). Finally, $\left(u_{n}\right)$ is bounded in $W^{1, p}(\Omega)$, for a subsequences still denoted by $\left(u_{n}\right)$, there exists $u \in W^{1, p}(\Omega)$ such that $u_{n} \rightharpoonup u$ weakly in $W^{1, p}(\Omega)$
and $u_{n} \rightarrow u$ strongly in $L^{\frac{p q}{q-1}}(\partial \Omega)$. By the hypotheses on m, h, u_{n} and using (4), we deduce that

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \int_{\partial \Omega} m\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right) d \sigma=0 \\
\lim _{n \rightarrow+\infty} \int_{\partial \Omega} f\left(x, u_{n}\right)(x)\left(u_{n}-u\right) d \sigma=0 \\
\lim _{n \rightarrow+\infty} \int_{\partial \Omega} h\left(u_{n}-u\right) d \sigma=0
\end{gathered}
$$

On the other hand, we have

$$
\lim _{n \rightarrow+\infty} \Phi^{\prime}\left(u_{n}\right)\left(u_{n}-u\right)=0
$$

therefore

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla\left(u_{n}-u\right) d x=0
$$

of more $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$, thus

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right) d x=0
$$

it then follows from the $\left(S^{+}\right)$property that $u_{n} \rightarrow u$ strongly in $W^{1, p}(\Omega)$.

Lemma 2.2 Let $m \in L^{q}(\partial \Omega), m^{+} \neq 0$ and $\int_{\partial \Omega} m d \sigma<0$. Assume (4) and (5) are fulfilled. Then Φ is bounded from below.

Proof: It suffices to show that Φ is coercive. Suppose by contradiction that there exists a sequence $\left(u_{n}\right)$ such that $\left\|u_{n}\right\| \rightarrow+\infty$ and $\Phi\left(u_{n}\right) \leq c$. As in proof of Lemma 2.1, we can show that $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|} \rightarrow \pm \varphi_{1}$. By the definition of λ_{1}, we have

$$
0 \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\lambda_{1} \int_{\partial \Omega} m\left|u_{n}\right|^{p} d \sigma
$$

thus

$$
\begin{equation*}
-\int_{\partial \Omega} F\left(x, u_{n}(x)\right) d \sigma+\int_{\partial \Omega} h u_{n} d \sigma \leq \Phi\left(u_{n}\right) \leq c \tag{8}
\end{equation*}
$$

Case 1: Suppose that $v_{n} \rightarrow \varphi_{1}$. Dividing (8) by $\left\|u_{n}\right\|$, we obtain

$$
-\int_{\partial \Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|} d \sigma+\int_{\partial \Omega} \frac{h u_{n}}{\left\|u_{n}\right\|} d \sigma \leq \frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|} \leq \frac{c}{\left\|u_{n}\right\|}
$$

Passing to the limit, we get

$$
-\int_{\partial \Omega} k(x) \varphi_{1} d \sigma+\int_{\partial \Omega} h(x) \varphi_{1} d \sigma \leq 0
$$

which contradicts (5).
Case 2: Assume that $v_{n} \rightarrow-\varphi_{1}$. Dividing (8) by $\left\|u_{n}\right\|$, we obtain

$$
-\int_{\partial \Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|} d \sigma+\int_{\partial \Omega} \frac{h u_{n}}{\left\|u_{n}\right\|} d \sigma \leq \frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|} \leq \frac{c}{\left\|u_{n}\right\|}
$$

Passing to the limit, we get

$$
\int_{\partial \Omega} l(x) \varphi_{1} d \sigma-\int_{\partial \Omega} h(x) \varphi_{1} d \sigma \leq 0
$$

which contradicts (4).

Proof: [Proof of Theorem 2.2] Assumption (2) implies that Φ in a C^{1} functional on $W^{1, p}(\Omega)$. By Lemma 2.1, Φ satisfies the Palais-Smale condition and it is bounded from below by Lemma 2.2. To prove that Φ attains its proper infimum in $W^{1, p}(\Omega)$ (see Theorem 2.2). Finally the problem (1) admits a least a weak solution.

References

1. A. Anane and J. P. Gossez; Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Diff. Eqns. 15 (1990), 1141-1159.
2. D. Arcoya and L. Orsina; Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Analysis 28 (1997), 1623-1632.
3. L. Boccardo, P. Drabek and M, Kucera; Landesman-Lazer conditions for strongly nonlinear boundary value problem, Comment. Math. Univ. Carolinae 30 (1989), 411-427.
4. D. M. Duc and N. T. Vu, Non-uniformly elliptic equations of p-Laplacian type, Nonlinear Anaysis, 61 (2005), 1483-1495.
5. P. De Napoli and M. C. Mariani, Mountain pass solutions to equation of p-Laplacian type, Nonlinear Anaysis, 54 (2003), 1205-1219.
6. Q. A. Ngo and H. Q. Toan, Existence of solutions for a resonant problem under LandesmanLazer conditions, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 98 and pp. 1-10.
7. O. Torné, Steklov problem with an indefinite weight for the p-Laplacien, Electronic Journal of Differential Equations, Vol. 2005(2005), No. 87 and pp. 1-8.
8. N. T. Vu, Mountain pass solutions and non-uniformly elliptic to equation, Vietnam J. of Math. 33:4 (2005), 391-408. Non-uniformly
