<u></u>₫₽<u>₽₽</u>₽

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 on line SPM: www.spm.uem.br/spm (3s.) **v. 27** 1 (2009): 85–90. ISSN-00378712 in press doi:10.5269/bspm.v27i1.9070

Existence of solutions for a resonant Steklov Problem

Aomar ANANE, Omar CHAKRONE, Belhadj KARIM and Abdellah ZEROUALI

ABSTRACT: In this paper, we prove the existence of weak solutions to the problem $\triangle_p u = 0$ in Ω and $|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda_1 m(x) |u|^{p-2} u + f(x, u) - h$ on $\partial \Omega$, where Ω is a bounded domain in \mathbb{R}^N $(N \ge 2)$, $m \in L^q(\partial \Omega)$ is a weight, λ_1 is the first positive eigenvalue for the eigenvalue Steklov problem $\triangle_p u = 0$ in Ω and $|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda m(x) |u|^{p-2} u$ on $\partial \Omega$. f and h are functions that satisfy some conditions.

Key Words:: Steklov problem, Weights, Landesman-Lazer conditions, Palais– Smale conditions.

Contents

1 Introduction

2 Existence of solutions for a resonant Steklov problem 86

1. Introduction

Consider the problem

$$\begin{cases} \Delta_p u = 0 & \text{in } \Omega, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = \lambda_1 m(x) |u|^{p-2} u + f(x, u) - h & \text{on } \partial\Omega, \end{cases}$$
(1)

 Ω will be a bounded domain in \mathbb{R}^N $(N \ge 2)$, with a Lipschitz continuous boundary, $1 , <math>m \in L^q(\partial \Omega)$ where $\frac{N-1}{p-1} < q < \infty$ if p < N and $q \ge 1$ if $p \ge N$. We assume that $m^+ = \max(m, 0) \neq 0$ and $\int_{\partial \Omega} m d\sigma < 0$. $f : \partial \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function satisfying the growth condition

$$|f(x,s)| \le a|s|^{r-1} + b(x)$$
(2)

for all $s \in \mathbb{R}$ and a.e. $x \in \partial\Omega$. Here a = cst > 0, $b \in L^{r'}(\partial\Omega)$ and $h \in L^{r'}(\partial\Omega)$, where r' is the conjugate of $r = \frac{pq}{q-1}$. λ_1 design the first positive eigenvalue of the following Steklov problem

It is well-known that

$$\lambda_1 := \inf_{u \in W^{1,p}(\Omega)} \left\{ \frac{1}{p} \int_{\Omega} |\nabla u|^p dx : \frac{1}{p} \int_{\partial \Omega} m(x) |u|^p d\sigma = 1 \right\}.$$

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. de Mat.

85

²⁰⁰⁰ Mathematics Subject Classification: 35J70, 35P30

Recall that λ_1 is simple (see [7]). Moreover, there exists a unique positive eigenfunction φ_1 whose norm in $W^{1,p}(\Omega)$ equals to one. We say that $u \in W^{1,p}(\Omega)$ is a weak solution of (1) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi dx = \lambda_1 \int_{\partial \Omega} m |u|^{p-2} u \varphi d\sigma + \int_{\partial \Omega} f(x, u) \varphi d\sigma - \int_{\partial \Omega} h \varphi d\sigma$$

for all $\varphi \in W^{1,p}(\Omega)$, where $d\sigma$ is the N-1 dimensional Hausdorff measure.

Classical Dirichlet problems involving the *p*-Laplacian have been studied by various authors, we cite the works [1], [2], [3], [4], [5], [6] and [8]. Our purpose of this paper is to extend some of the results known in the Dirichlet *p*-Laplacian problem. We prove the existence of solutions for a resonant Steklov problem under Landesman-Lazer conditions.

2. Existence of solutions for a resonant Steklov problem

In this section, we study the solvability of the Steklov problem (1) under Landesman-Lazer conditions and by using the minimum principle. The following theorem is our main ingredient.

Theorem 2.1 (Minimum principle)

Let X be a Banach space and $\Phi \in C^1(X, \mathbb{R})$. Assume that Φ satisfies the Palais-Smale condition and bounded from below. Then $c = \inf_X \Phi$ is a critical point.

Suppose that f satisfies the hypotheses below

$$\lim_{s \to -\infty} f(x,s) = l(x); \lim_{s \to +\infty} f(x,s) = k(x) \text{ a.e. } x \in \partial\Omega$$
(4)

$$\int_{\partial\Omega} k(x)\varphi_1 d\sigma < \int_{\partial\Omega} h(x)\varphi_1 d\sigma < \int_{\partial\Omega} l(x)\varphi_1 d\sigma,$$
(5)

where φ_1 is the normalized positive eigenfunction associated to λ_1 .

The following theorem is main result in this paper.

Theorem 2.2 Let $m \in L^q(\partial\Omega)$, $m^+ \neq 0$ and $\int_{\partial\Omega} m d\sigma < 0$. Assume (2), (4) and (5) are fulfilled. Then the problem (1) admits at least a weak solution in $W^{1,p}(\Omega)$.

The following lemmas will be used in the proof of Theorem 2.2, it guarantees the existence of a critical point. The functional energy associated to the problem (1) is

$$\Phi(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^p dx - \frac{1}{p} \int_{\partial \Omega} m |u|^p d\sigma - \int_{\partial \Omega} F(x, u) d\sigma + \int_{\partial \Omega} h u d\sigma,$$

where

$$F(x,t) := \int_0^t f(x,s) ds.$$

Lemma 2.1 Let $m \in L^q(\partial\Omega)$, $m^+ \neq 0$ and $\int_{\partial\Omega} md\sigma < 0$. Assume (4) and (5) are fulfilled. Then Φ satisfies the Palais–Smale condition (PS) on $W^{1,p}(\Omega)$.

Proof: Let (u_n) be a sequences in $W^{1,p}(\Omega)$ and c be a real number such that $|\Phi(u_n)| \leq c$ for all n and $\Phi'(u_n) \to 0$. We prove that (u_n) is bounded in $W^{1,p}(\Omega)$, we assume by contradiction that $||u_n|| \to +\infty$ as $n \to +\infty$. Let $v_n = \frac{u_n}{||u_n||}$, thus v_n is bounded, for a subsequence still denoted by (v_n) , we have $v_n \to v$ weakly in $W^{1,p}(\Omega)$, $v_n \to v$ strongly in $L^p(\Omega)$ and $v_n \to v$ strongly in $L^{\frac{pq}{q-1}}(\partial\Omega)$. The hypothesis $|\Phi(u_n)| \leq c$ implies

$$\lim_{n \to +\infty} \left(\frac{1}{p} \int_{\Omega} |\nabla v_n|^p dx - \frac{\lambda_1}{p} \int_{\partial \Omega} m |v_n|^p d\sigma - \int_{\partial \Omega} \frac{F(x, u_n)}{||u_n||^p} d\sigma + \int_{\partial \Omega} h \frac{u_n}{||u_n||^p} d\sigma \right) = 0$$

Since, by hypotheses on p, h, u_n and using (4)

$$\lim_{n \to +\infty} \left(-\int_{\partial \Omega} \frac{F(x, u_n)}{||u_n||^p} d\sigma + \int_{\partial \Omega} h \frac{u_n}{||u_n||^p} d\sigma \right) = 0,$$

while

$$\lim_{n \to +\infty} \frac{1}{p} \int_{\partial \Omega} m |v_n|^p d\sigma = \frac{1}{p} \int_{\partial \Omega} m |v|^p d\sigma,$$

we have

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla v_n|^p dx = \lambda_1 \int_{\partial \Omega} m |v|^p d\sigma.$$

Using the weak lower semi-continuity of norm and the definition of λ_1 , we get

$$\lambda_1 \int_{\partial \Omega} m |v|^p d\sigma \le \int_{\Omega} |\nabla v|^p dx \le \liminf_{n \to +\infty} \int_{\Omega} |\nabla v_n|^p dx = \lambda_1 \int_{\partial \Omega} m |v|^p d\sigma.$$

Thus, $v_n \to v$ strongly in $W^{1,p}(\Omega)$ and

$$\lambda_1 \int_{\partial \Omega} m |v|^p d\sigma = \int_{\Omega} |\nabla v|^p dx.$$

This implies, by the definition of φ_1 , that $v = \pm \varphi_1$ (since $\int_{\partial \Omega} m d\sigma < 0$). Letting

$$g(x,s) = \begin{cases} \frac{F(x,s)}{s}, & \text{if } s \neq 0; \\ f(x,0), & \text{if } s = 0. \end{cases}$$

Case 1: Suppose that $v_n \to \varphi_1$, then we have $u_n(x) \to +\infty$ and

$$\begin{split} f(x,u_n(x)) &\to k(x) \text{ a.e. } x \in \partial \Omega, \\ g(x,u_n(x)) &\to k(x) \text{ a.e. } x \in \partial \Omega. \end{split}$$

Therefore, the Lebesgue theorem implies that

$$\lim_{n+\infty} \int_{\partial\Omega} \left(pg(x, u_n(x)) - f(x, u_n(x)) \right) v_n d\sigma = (p-1) \int_{\partial\Omega} k(x) \varphi_1(x) d\sigma.$$

On the other hand, $|\Phi(u_n)| \leq c$ implies that

$$-cp \leq \int_{\Omega} |\nabla v_n|^p dx - \lambda_1 \int_{\partial \Omega} m |v_n|^p d\sigma - \int_{\partial \Omega} pF(x, u_n) d\sigma + \int_{\partial \Omega} hu_n d\sigma \leq cp,$$
(6)

and $\Phi'(u_n) \to 0$ implies that for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have

$$-\varepsilon \leq -\int_{\Omega} |\nabla u_n|^p dx + \lambda_1 \int_{\partial \Omega} m |u_n|^p d\sigma + \int_{\partial \Omega} f(x, u_n(x)) u_n(x) d\sigma - \int_{\partial \Omega} h(x) u_n(x) d\sigma \leq \varepsilon$$
(7)

By summing up (6) and (7), we get

$$\int_{\partial\Omega} f(x, u_n(x)) u_n(x) d\sigma - \int_{\partial\Omega} pF(x, u_n) d\sigma + (p-1) \int_{\partial\Omega} h(x) u_n(x) d\sigma \ge -cp - \varepsilon_n$$

dividing by $||u_n||$, we obtain

$$\int_{\partial\Omega} f(x, u_n(x)) v_n(x) d\sigma - \int_{\partial\Omega} pg(x, u_n) v_n(x) d\sigma + (p-1) \int_{\partial\Omega} h(x) v_n(x) d\sigma \ge \frac{-cp - \varepsilon}{||u_n||}.$$

Passing to the limit, we obtain

$$\int_{\partial\Omega} h(x)\varphi_1(x)d\sigma \ge \int_{\partial\Omega} k(x)\varphi_1(x)d\sigma,$$

which contradicts (5).

Case 2: Suppose that $v_n \to -\varphi_1$, then we have $u_n(x) \to -\infty$ and

$$\begin{split} f(x,u_n(x)) &\to l(x) \text{ a.e. } x \in \partial \Omega, \\ g(x,u_n(x)) &\to l(x) \text{ a.e. } x \in \partial \Omega. \end{split}$$

By summing up (6) and (7), we get

$$\int_{\partial\Omega} f(x, u_n(x)) u_n(x) d\sigma - \int_{\partial\Omega} pF(x, u_n) d\sigma + (p-1) \int_{\partial\Omega} h(x) u_n(x) d\sigma \le cp + \varepsilon,$$

dividing by $||u_n||$, we obtain

$$\int_{\partial\Omega} f(x, u_n(x)) v_n(x) d\sigma - \int_{\partial\Omega} pg(x, u_n) v_n(x) d\sigma + (p-1) \int_{\partial\Omega} h(x) v_n(x) d\sigma \le \frac{cp + \varepsilon}{||u_n||}$$

Passing to the limits, we get

$$\int_{\partial\Omega} l(x)\varphi_1(x)d\sigma \le \int_{\partial\Omega} h(x)\varphi_1(x)d\sigma.$$

which contradicts (5). Finally, (u_n) is bounded in $W^{1,p}(\Omega)$, for a subsequences still denoted by (u_n) , there exists $u \in W^{1,p}(\Omega)$ such that $u_n \rightharpoonup u$ weakly in $W^{1,p}(\Omega)$

and $u_n \to u$ strongly in $L^{\frac{pq}{q-1}}(\partial\Omega)$. By the hypotheses on m, h, u_n and using (4), we deduce that

$$\lim_{n \to +\infty} \int_{\partial \Omega} m |u_n|^{p-2} u_n (u_n - u) d\sigma = 0,$$
$$\lim_{n \to +\infty} \int_{\partial \Omega} f(x, u_n)(x) (u_n - u) d\sigma = 0,$$
$$\lim_{n \to +\infty} \int_{\partial \Omega} h(u_n - u) d\sigma = 0.$$

On the other hand, we have

$$\lim_{n \to +\infty} \Phi'(u_n)(u_n - u) = 0,$$

therefore

$$\lim_{n \to +\infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla (u_n - u) dx = 0,$$

of more $u_n \to u$ strongly in $L^p(\Omega)$, thus

$$\lim_{n \to +\infty} \int_{\Omega} |u_n|^{p-2} u_n (u_n - u) dx = 0,$$

it then follows from the (S^+) property that $u_n \to u$ strongly in $W^{1,p}(\Omega)$. \Box

Lemma 2.2 Let $m \in L^q(\partial\Omega)$, $m^+ \neq 0$ and $\int_{\partial\Omega} m d\sigma < 0$. Assume (4) and (5) are fulfilled. Then Φ is bounded from below.

Proof: It suffices to show that Φ is coercive. Suppose by contradiction that there exists a sequence (u_n) such that $||u_n|| \to +\infty$ and $\Phi(u_n) \leq c$. As in proof of Lemma 2.1, we can show that $v_n = \frac{u_n}{||u_n||} \to \pm \varphi_1$. By the definition of λ_1 , we have

$$0 \le \int_{\Omega} |\nabla u_n|^p dx - \lambda_1 \int_{\partial \Omega} m |u_n|^p d\sigma,$$

thus

$$-\int_{\partial\Omega} F(x, u_n(x))d\sigma + \int_{\partial\Omega} hu_n d\sigma \le \Phi(u_n) \le c.$$
(8)

Case 1: Suppose that $v_n \to \varphi_1$. Dividing (8) by $||u_n||$, we obtain

$$-\int_{\partial\Omega}\frac{F(x,u_n(x))}{||u_n||}d\sigma + \int_{\partial\Omega}\frac{hu_n}{||u_n||}d\sigma \le \frac{\Phi(u_n)}{||u_n||} \le \frac{c}{||u_n||}.$$

Passing to the limit, we get

$$-\int_{\partial\Omega}k(x)\varphi_{1}d\sigma+\int_{\partial\Omega}h(x)\varphi_{1}d\sigma\leq0,$$

which contradicts (5).

Case 2: Assume that $v_n \to -\varphi_1$. Dividing (8) by $||u_n||$, we obtain

$$-\int_{\partial\Omega}\frac{F(x,u_n(x))}{||u_n||}d\sigma + \int_{\partial\Omega}\frac{hu_n}{||u_n||}d\sigma \le \frac{\Phi(u_n)}{||u_n||} \le \frac{c}{||u_n||}.$$

Passing to the limit, we get

$$\int_{\partial\Omega} l(x)\varphi_1 d\sigma - \int_{\partial\Omega} h(x)\varphi_1 d\sigma \le 0,$$

which contradicts (4).

Proof: [Proof of Theorem 2.2] Assumption (2) implies that Φ in a C^1 functional on $W^{1,p}(\Omega)$. By Lemma 2.1, Φ satisfies the Palais–Smale condition and it is bounded from below by Lemma 2.2. To prove that Φ attains its proper infimum in $W^{1,p}(\Omega)$ (see Theorem 2.2). Finally the problem (1) admits a least a weak solution. \Box

References

- 1. A. Anane and J. P. Gossez; Strongly nonlinear elliptic problems near resonance: a variational approach, *Comm. Partial Diff. Eqns.* **15** (1990), 1141–1159.
- D. Arcoya and L. Orsina; Landesman–Lazer conditions and quasilinear elliptic equations, Nonlinear Analysis 28 (1997), 1623–1632.
- 3. L. Boccardo, P. Drabek and M, Kucera; Landesman–Lazer conditions for strongly nonlinear boundary value problem, *Comment. Math. Univ. Carolinae* **30** (1989), 411–427.
- D. M. Duc and N. T. Vu, Non-uniformly elliptic equations of p-Laplacian type, Nonlinear Anaysis, 61 (2005), 1483–1495.
- P. De Napoli and M. C. Mariani, Mountain pass solutions to equation of p-Laplacian type, Nonlinear Anaysis, 54 (2003), 1205–1219.
- Q. A. Ngo and H. Q. Toan, Existence of solutions for a resonant problem under Landesman-Lazer conditions, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 98 and pp. 1–10.
- O. Torné, Steklov problem with an indefinite weight for the *p*-Laplacien, Electronic Journal of Differential Equations, Vol. 2005(2005), No. 87 and pp. 1–8.
- N. T. Vu, Mountain pass solutions and non-uniformly elliptic to equation, Vietnam J. of Math. 33:4 (2005), 391–408. Non-uniformly

Aomar ANANE –ananeomar@yahoo.fr Omar CHAKRONE – chakrone@yahoo.fr Belhadj KARIM – karembelf@hotmail.com Abdellah ZEROUALI – abdellahzerouali@yahoo.fr Université Mohamed I, Faculté des Sciences, Département de Mathématiques et Informatique, Oujda, Maroc