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A note on iterative solutions for a nonlinear fourth order ode ∗

Edson Alves, Emerson Arnaut de Toledo, Luiz Antonio Pereira Gomes
and Maria Bernadete de Souza Cortes

abstract: This work is concerned with the existence of iterative solutions for
a class of fourth order differential equations with nonlinear boundary conditions
modeling beams on nonlinear elastic foundations. Some numerical simulations are
also considered.
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1. Introduction

In this work we are concerned with the boundary value problem

u(iv)(t) = f(t, u, u′), 0 < t < L (1)

u(0) = 0, u(L) = 0 (2)

u′′(0) = g(u′(0)), u′′(L) = h(u′(L)), (3)

which models bending equilibrium of elastic beams on nonlinear supports. Follow-
ing Ginsberg [7] or Grossinho and Tersian [8], u represents the configuration of
an elastic beam of length L, subject to a force f exerted by the foundation. Both
ends are attached to fixed torsional springs represented by the functions g and h.

Our objective is to show the existence of iterative solutions under local condi-
tions on the functions f, g, h. Some numerical simulations are also presented. We
refer the reader to [2,3,4,5,8,9] for other related works.

2. Iterative Solutions

Our existence result is the following.

Theorem 2.1 Suppose that f, g, h are continuous functions and there exist con-

stants A,B,C > 0 such that

|f(t, u, v)| ≤ A, ∀ (t, u, v) ∈ [0, T ]× [−L
2R, L

2R]× [−R,R], (4)
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|g(z)| ≤ B, ∀ z ∈ [−R,R], (5)

and

|h(z)| ≤ C, ∀ z ∈ [−R,R]. (6)

Then if
L3

16
A+

L

2
(B + C) ≤ R, (7)

problem (1)-(3) has at least a solution.

Theorem 2.2 Suppose the assumptions of Theorem 2.1 hold. Suppose further that

there exist constants λf , λg, λh > 0 such that

|f(t, u, u′)− f(t, v, v′)| ≤ λf max{|u− v|, |u′ − v′|}, (8)

for all (t, u, u′), (t, v, v′) ∈ [0, L]× [−L
2R , L

2R]× [−R,R],

|g(u)− g(v)| ≤ λg|u− v|, ∀u, v ∈ [−R,R], (9)

and

|h(u)− h(v)| ≤ λh|u− v|, ∀u, v ∈ [−R,R]. (10)

Then if
L3

16
max{L

2 , 1}λf +
L

2
(λg + λh) < 1, (11)

problem (1)-(3) has an iterative solution u with ‖u′‖∞ ≤ R.

The proofs rely on fixed point theorems. We begin by rewriting problem (1)-(3)
into a second order system. If v = u′′ then we have

{

u′′ = v, 0 < t < L

u(0) = 0, u(L) = 0
(12)

and
{

v′′(t) = f(t, u, u′)
v(0) = g(u′(0)), v(L) = h(u′(L)).

(13)

The Green’s function associated to the second order problem (12) is precisely

G(x, t) =

{

x(L−t)
L

, if x ≤ t ≤ L
t(L−x)

L
, if t ≤ x ≤ L,

and gives

u(x) =

∫ L

0

−G(x, t)v(t)dt.

Analogously, from (13) we have

v(t) =

∫ L

0

−G(t, s)f(s, u(s), u′(s))ds+
L− t

L
g(u′(0)) +

t

L
h(u′(L)).
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Then, combining the above identities we get

u(x) =

∫ L

0

∫ L

0

G(x, t)G(t, s)f(s, u(s), u′(s))dsdt

−

∫ L

0

G(x, t)

[

(L− t)

L
g(u′(0)) +

t

L
h(u′(L))

]

dt. (14)

We can see that u is a solution of (1)-(3) if and only if it is a solution of (14). Next
we apply fixed point arguments to solve (14). In view of (2) we apply fixed point
theorems on the Banach space

E = {u ∈ C1([0, L]) |u(0) = u(L) = 0}.

Because u(0) = u(L) = 0, we see that

‖u‖∞ ≤
L

2
‖u′‖∞, ∀u ∈ E,

and, in particular, the usual norm ‖u‖C1 = max{‖u‖∞, ‖u′‖∞} is equivalent to

‖u‖E = ‖u′‖∞, (15)

which will be adopted here. Then we note that ‖u‖E ≤ R implies |u′(x)| ≤ R and
|u(x)| ≤ L

2R, for all x ∈ [0, L].

Proof of Theorem 2.1 Let us define the operator T : E → E with (Tu)(x) equal
to the right hand side of (14). Then fixed points of T are solutions of problem (1)-
(3). Next we show that T maps the closed ball B[0, R] of E into itself. Indeed,
noting that

∫ L

0

|G(x, t)| dt ≤
L2

8
and

∫ L

0

|Gx(x, t)| dt ≤
L

2
,

we have from

(Tu)′(x) =

∫ L

0

Gx(x, t)

[

∫ L

0

G(t, s)f(s, u(s), u′(s))ds

]

dt

−

∫ L

0

Gx(x, t)

[

(L− t)

L
g(u′(0)) +

t

L
h(u′(L))

]

dt,

that for u ∈ B[0, R] and using (4)-(7),

‖(Tu)′‖∞ ≤
L3

16
max |f(t, u, u′)|+

L

2
(|g(u′(L))|+ |h(u′(L))|)

≤
L3

16
A+

L

2
(B + C) ≤ R.
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Therefore with respect to the norm (15), T (B[0, R]) ⊂ B[0, R]. To conclude the
proof we note that T is completely continuous on B[0, R] (by Arzela-Ascoli theo-
rem) and therefore it has a fixed point by the Schauder’s fixed point theorem (e.g.
[1]). �

Proof of Theorem 2.2 Let u, v ∈ B[0, R]. Then as before, but using (8)-(10),

‖(Tu− Tv)′‖∞ ≤
L3

16
max |f(t, u, u′)− f(t, v, v′)|

+
L

2
|g(u′(L))− g(v′(L))|+

L

2
|h(u′(L))− h(v′(L))|

≤
L3

16
λf max{|u− v|, |u′ − v′|}+

L

2
(λg + λh)|u

′ − v′|

≤
L3

16
λf max{L

2 , 1}‖u
′ − v′‖∞ +

L

2
(λg + λh)‖u

′ − v′‖∞.

Therefore

‖Tu− Tv‖E ≤

(

L3

16
max{L

2 , 1}λf +
L

2
(λg + λh)

)

‖u− v‖E .

From (11) we see that T is a contraction on B[0, R] and then it has a fixed point
from the Banach’s fixed point theorem (e.g. [1]). �

3. Numerical Simulations

From Theorem 2.2 we obtain the iterative formulae uk+1 = Tuk, were

uk+1(x) =

∫ L

0

∫ L

0

G(x, t)G(t, s)f(s, uk(s), uk′(s))dsdt

−

∫ L

0

G(x, t)

[

(L− t)

L
g(uk′(0)) +

t

L
h(uk′(L))

]

dt, (16)

which converges to a solution of (1)-(3) for any initial approximation u0 ∈ B[0, R].

We show two numerical simulations to illustrate the use of (16). In both ex-
amples, L = 1, u0 = 0 and mesh size is 0.1. The integrals are approximated by
trapezoidal method.

Example 1 First example we take

f(x, u, v) = x5 − x4 − x3 + 121x− 24− u,

g(v) = 0 and h(v) = −2v.

The exact solution in [0, 1] is

u(x) = x5 − x4 − x3 + x.
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After 10 iterations we get maximum error

E = ‖u− u10‖∞ = .303411× 10−2.

Other values are shown in the Table 1.

Table 1: Errors for Example 1 using mesh size ∆ = 0.1.

Iteration Ek

1 .135393e-0
2 .811294e-1
3 .437432e-1

10 .303411e-2
20 .208102e-2
30 .207709e-2

Example 2 In this example we take

f(x, u, v) = 4π4 sin(πx) cos(πx)−
1

16
sin2(πx) cos2(πx) + u2,

g(v) = h(v) =
v

2
−

π

8
.

Then the exact solution in [0, 1] is

u(x) =
1

4
sin(πx) cos(πx).

After 4 iterations we get maximum error

E = ‖u− u4‖∞ = .812751× 10−2.
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