Bol. Soc. Paran. Mat. (3s.) **v. 26** 1-2 (2008): 53–64. ©SPM –ISNN-00378712

ity

Decomposition of continuity via *b*-open set

Ahmad Al-Omari and Mohd. Salmi Md. Noorani

ABSTRACT: We introduce the notions of locally *b*-closed, *b*-*t*-set, *b*-*B*-set, locally *b*-closed continuous, *b*-*t*-continuous, *b*-*B*-continuous functions and obtain decomposition of continuity and complete continuity.

Key Words: *b*-open set, *t*-set, *B*-set, locally closed, decomposition of continu-

Contents

1	introduction	53
2	locally b-closed sets	54
3	b-t-sets	58

4 Decompositions of continuity

1. introduction

Tong [17,18], Ganster-Reilly [5], Hatice [7], Hatir-Noiri [8], Przemski [20], Noiri-Sayed [13] and Erguang-Pengfei [4], gave some decompositions of continuity. Andrijevic [2] introduced a class of generalized open sets in a topological space, the so-called b-open sets. The class of b-open sets is contained in the class of semi-preopen sets and contains all semi-open sets and preopen sets. Tong [18] introduced the concept of t-set and B-set in topological space. In this paper, we introduce the notions of locally b-closed sets, b-t-set, b-B-set, b-closed continuous, *b*-*t*-continuous and *b*-*B*-continuous function, and obtain another decomposition of continuity. All through this paper (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A is regular open if A = Int(Cl(A)) and A is regular closed if its complement is regular open; equivalently A is regular closed if A = Cl(Int(A)). The complement of a b-open set is said to be b-closed. The intersection of all b-closed sets of Xcontaining A is called the b-closure of A and is denoted by bCl(A) of A. The union of all b-open (resp. α -open, semi open, preopen) sets of X contain in A is called binterior (resp. α -interior, semi-interior, pre-interior) of A and is denoted by bInt(A)(resp. $\alpha Int(A)$, sInt(A), pInt(A)). The family of all b-open (resp. α -open, semiopen, preopen, regular open, b-closed, preclosed) subsets of a space X is denoted by bO(X) (resp. $\alpha O(X)$, SO(X) and PO(X), bC(X), PC(X) respectively).

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54C05, 54C08, 54C10

Definition 1.1. A subset A of a space X is said to be:

- 1. α -open [12] if $A \subseteq Int(Cl(Int(A)));$
- 2. Semi-open [9] if $A \subseteq Cl(Int(A))$;
- 3. preopen [15] if $A \subseteq Int(Cl(A))$;
- 4. b-open [1] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$;
- 5. Semi-preopen [2] if $A \subseteq Cl(Int(Cl(A)))$.

The following result will be useful in the sequel.

Lemma 1.1. [1] If A is a subset of a space (X, τ) , then

- 1. $sInt(A) = A \cap Cl(Int(A));$
- 2. $pInt(A) = A \cap Int(Cl(A));$
- 3. $\alpha Int(A) = A \cap Int(Cl(Int(A)));$
- 4. $bInt(A) = sInt(A) \cup pInt(A)$.

2. locally *b*-closed sets

Definition 2.1. A subset A of a space X is called:

- 1. *t*-set [18] if Int(A) = Int(Cl(A)).
- 2. *B*-set [18] if $A = U \cap V$, where $U \in \tau$ and V is a *t*-set.
- 3. locally closed [3] if $A = U \cap V$, where $U \in \tau$ and V is a closed.
- 4. locally b-closed if $A = U \cap V$, where $U \in \tau$ and V is a b-closed.

We recall that a topological space (X, τ) is said to be extremally disconnected (briefly E.D.) if the closure of every open set of X is open in X. We note that a subset A of X is locally closed if and only if $A = U \cap Cl(A)$ for some open set U (see [3]). The following example shows that the two notions of b-open and locally closed are independent.

Example 2.1. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$ with $BO(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$, and the family of all locally closed is $LC(X, \tau) = \{X, \phi, \{b\}, \{a\}, \{a, b\}, \{c, d\}, \{b, c, d\}\}$ it is clear that $\{a\}$ is locally closed but not b-open and $\{b, d\}$ is b-open and not locally closed.

Theorem 2.1. For a subset A of an extremally disconnected space (X, τ) , the following are equivalent:

- 1. A is open,
- 2. A is b-open and locally closed.

Proof. (1) \Rightarrow (2) This is obvious from definitions. (2) \Rightarrow (1) Let A be b-closed and locally closed so $A \subseteq (Int(Cl(A)) \cup Cl(Int(A))), A = U \cap Cl(A)$. Then

$$\begin{aligned} A &\subseteq U \cap (Int(Cl(A)) \cup Cl(Int(A))) \\ &\subseteq [Int(U \cap Cl(A))] \cup [U \cap Cl(Int(A))] \quad (\text{ since } (X,\tau) \text{ is E.D. space we have }) \\ &\subseteq [Int(U \cap Cl(A))] \cup [U \cap Int(Cl(A))] \\ &\subseteq [Int(U \cap Cl(A))] \cup Int([U \cap Cl(A)]) \\ &= Int(A) \cup Int(A) = Int(A) \end{aligned}$$

Therefore A is open.

Definition 2.2. A subset A of a topological space X is called D(c, b)-set if Int(A) = bInt(A).

From the following examples one can deduce that b-open and D(c, b)-set are independent.

Example 2.2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Then $BO(X, \tau) = \{\phi, X, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c\}, \{c, d\}, \{b, c\}, \{b, d\}, \{a, b\}, \{a, c\}, \{d\}, \{c\}\}$, it is clear that $A = \{a\}$ is D(c, b)-set but not b-open. Also $B = \{a, b, d\}$ is b-open but B is not D(c, b).

Theorem 2.2. For a subset A of a space (X, τ) , the following are equivalent:

- 1. A is open,
- 2. A is b-open and D(c, b)-set.

Proof. (1) \Rightarrow (2) If A is open then A is b-open and A = Int(A) = bInt(A) so A is D(c, b)-set.

 $(2) \Rightarrow (1)$ The condition $A \in BO(X)$ and $A \in D(c, b)$ imply A = bInt(A) and Int(A) = bInt(A) and consequently A is open

Proposition 2.1. Let H be a subset of (X, τ) , H is locally b-closed if and only if there exists an open set $U \subseteq X$ such that $H = U \cap bCl(H)$

Proof. Since H is an locally b-closed, then $H = U \cap F$, where U is open and F is b-closed. So $H \subseteq U$ and $H \subseteq F$ then $H \subseteq bCl(H) \subseteq bCl(F) = F$. Therefore $H \subseteq U \cap bCl(H) \subseteq U \cap bCl(F) = U \cap F = H$. Hence $A = U \cap bCl(A)$. Conversely since bCl(H) is b-closed and $H = U \cap bCl(H)$, then H is locally b-closed. \Box

Proposition 2.2. [1].

- 1. The union of any family of b-open sets is b-open.
- 2. The intersection of an open set and a b-open set is a b-open set.

Proposition 2.3. Let A be a subset a topological space X if A is locally b-closed, then

- 1. bCl(A) A is b-closed set.
- 2. $[A \cup (X bCl(A))]$ is b-open.
- 3. $A \subseteq bInt(A \cup (X bCl(A)))$.

Proof. 1. If A is an locally b-closed, there exist an U is open such that $A = U \cap bCl(A)$. Now

$$bCl(A) - A = bCl(A) - [U \cap bCl(A)]$$

$$= bCl(A) \cap [X - (U \cap bCl(A))]$$

$$= bCl(A) \cap [(X - U) \cup (X - bCl(A))]$$

$$= [bCl(A) \cap (X - U)] \cup [bCl(A) \cap (X - bCl(A))]$$

$$= bCl(A) \cap (X - U)$$

which is b-closed by Proposition 2.2

- 2. Since bCl(A) A is b-closed, then [X (bCl(A) A)] is b-open and $[X (bCl(A) A)] = X ((bCl(A) \cap (X A)) = [A \cup (X bCl(A))],$
- 3. It is clear that $A \subseteq [A \cup (X bCl(A))] = bInt[A \cup (X bCl(A))].$

As a consequence of Proposition 2.2, we have the following

Corollary 2.2A. The intersection of a locally b-closed set and locally closed set is locally b-closed.

Let $A, B \subseteq X$. Then A and B are said to be separated if $A \cap Cl(B) = \phi$ and $B \cap Cl(A) = \phi$.

Theorem 2.3. Suppose (X, τ) is closed under finite unions of b-closed sets. Let A and B be locally b-closed. If A and B are separated, then $A \cup B$ is locally b-closed.

Proof. Since A and B are locally b-closed, $A = G \cap bCl(A)$ and $B = H \cap bCl(B)$, where G and H are open in X. Put $U = G \cap (X \setminus Cl(B) \text{ and } V = H \cap (X \setminus Cl(A))$. Then $U \cap bCl(A) = (G \cap (X \setminus Cl(B))) \cap bCl(A) = A \cap (X \setminus Cl(B) = A)$, since $A \subseteq X \setminus Cl(B)$. similarly, $V \cap bCl(B) = B$. And $U \cap bCl(B) \subseteq U \cap Cl(B) = \phi$ and $V \cap bCl(A) \subseteq V \cap Cl(A) = \phi$. Since, U and V are open.

$$(U \cup V) \cap bCl(A \cup B) = (U \cup V) \cap (bCl(A) \cup bCl(B))$$
$$= (U \cap bCl(A)) \cup (U \cap bCl(B)) \cup (V \cap bCl(A)) \cup (V \cap bCl(B))$$
$$= A \cup B$$

Hence $A \cup B$ is locally *b*-closed.

Proposition 2.4. [18] A subset A in a topological space X is open if and only it is pre-open set and a B-set.

Proposition 2.5. [10] A subset A in a topological space X is α -set if and only it is pre-open set and semi-open.

Lemma 2.1. [14] For a subset V of a topological space Y, we have pCl(V) = Cl(V) for every $V \in SO(Y)$.

In the topological space (X, τ) in [7] the author defined, $A_5 = B(X) = \{U \cap F | U \in \tau \text{ and } Int(Cl(F)) \subseteq F\}$. It is easy to see that every element in A_5 is B-set.

Proposition 2.6. [7] Let H be a subset of (X, τ) , $H \in A_5$ if and only if there exists an open set U such that $H = U \cap sCl(H)$.

Lemma 2.2. A subset A in a topological space X is B-set if it is locally b-closed and semi-open.

Proof. Let A be locally b-closed and semi-open. Then by Proposition 2.1, there exists an open set U such that

$$= U \cap bCl(A)$$

= $U \cap [sCl(A) \cap pCl(A)]$
= $U \cap [sCl(A) \cap Cl(A)]$ by Lemma 2.1 we have
= $U \cap sCl(A)$

Hence by Proposition 2.6 $A \in A_5$, so A is B-set.

From the following examples one can deduce that α -sets and locally *b*-closed sets are independent.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. It is clearly that $\{a, d\}$ is locally b-closed but not α -open, since $\{a, d\} = \{a, c, d\} \cap \{a, b, d, \}$ and $\{a, d\} \not\subseteq Int(Cl(Int(\{a, d\}))) = \{d\}$.

Example 2.4. Let $X = \{a, b, c, d\}$, and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$ with Then the family of all locally closed set is $LC(X, \tau) = \{X, \phi, \{b\}, \{a\}, \{a, b\}, \{c, d\}, \{b, c, d\}\}$, it is clearly $\{c, b\}$ is α -open but not locally b-closed since $\{c, b\} \neq \{open\} \cap \{b\text{-closed}\}$ and $\{c, b\} \subseteq Int(Cl(Int(\{c, b\}))) = X$.

Theorem 2.4. For a subset A of a space (X, τ) , the following are equivalent:

1. A is open,

Α

2. A is α -set and locally b-closed.

Proof. It is immediate from Proposition 2.4, Proposition 2.5 and Lemma 2.2. \Box

Definition 2.3. Let X be a space. A subset A of X is called a generalized b-closed set (simply; gb-closed set) if $bCl(A) \subseteq U$, whenever $A \subseteq U$ and U is open. The complement of a generalized b-closed set is called generalized b-open (simply; gb-open).

Theorem 2.5. For a subset A of a space (X, τ) , the following are equivalent:

1. A is b-closed,

2. A is gb-closed and locally b-closed.

Proof. Let A be b-closed so $A = A \cap X$, then A is locally b-closed. And if $A \subseteq U$ then $bCl(A) = A \subseteq U$ and A is gb-closed. Conversely if A is locally b-closed, then there exist open set U such that $A = U \cap bCl(A)$, since $A \subseteq U$ and A is gb-closed then $bCl(A) \subseteq U$. Therefore $bCl(A) \subseteq U \cap bCl(A) = A$. Hence A is b-closed. \Box

3. *b*-*t*-sets

In this section, we introduce the following notions.

Definition 3.1. A subset A of a space X is said to be:

- 1. *b*-*t*-set if Int(A) = Int(bCl(A));
- 2. *b*-*B*-set if $A = U \cap V$, where $U \in \tau$ and *V* is a *b*-*t*-set;
- 3. b-semiopen if $A \subseteq Cl(bInt(A))$;
- 4. *b*-preopen if $A \subseteq Int(bCl(A))$.

Proposition 3.1. For subsets A and B of a space (X, τ) , the following properties hold:

- 1. A is a b-t-set if and only if it is b-semiclosed.
- 2. If A is b-closed, then it is a b-t-set.
- 3. If A and B are b-t-sets, then $A \cap B$ is a b-t-set.

Proof. (1) Let A be b-t-set. Then Int(A) = Int(bCl(A)). Therefore $Int(bCl(A)) \subseteq Int(A) \subseteq A$ and A is b-semiclosed. Conversely if A is b-semiclosed, then $Int(bCl(A)) \subseteq A$ thus $Int(bCl(A)) \subseteq Int(A)$. Also $A \subseteq bCl(A)$ and $Int(A) \subseteq Int(bCl(A))$. Hence Int(A) = Int(bCl(A)).

(2) Let A be b-closed, then A = bCl(A), and Int(A) = Int(bCl(A)) therefore A is b-t-set.

(3) Let A and B be b-t-set. Then we have

$$\begin{aligned} Int(A \cap B) &\subseteq Int(bCl(A \cap B)) \\ &\subseteq (Int(bCl(A)) \cap (bCl(B))) \\ &= Int(bCl(A) \cap Int(bClB)) \\ &= Int(A) \cap Int(B) \qquad (\text{ since } A \text{ and } B \text{ are } b\text{-}t\text{-set}) \\ &= Int(A \cap B) \end{aligned}$$

Then $Int(A \cap B) = Int(bCl(A \cap B))$ hence $A \cap B$ is b-t-set.

The converses of the statements in Proposition 3.1(2) are false as the following example shows.

Example 3.1. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Then $\{b, c\}$ is b-t-set but it is not b-closed.

Proposition 3.2. For a subset A of a space (X, τ) , the following properties hold:

- 1. If A is t-set then it is b-t-set;
- 2. If A is b-t-set then it is b-B-set;
- 3. If A is B-set then it is b-B-set.

Theorem 3.1. For a subset A of a space (X, τ) , the following are equivalent:

- 1. A is open,
- 2. A is b-preopen and a b-B-set.

Proof. (1) \Rightarrow (2) Let A be open. Then $A \subseteq bCl(A)$, $A = Int(A) \subseteq Int(Cl_b(A))$ and A is b-preopens. Also $A = A \cap X$ hence A is b-B-set. (2) \Rightarrow (1) Since A is b-B-set, we have $A = U \cap V$, where U is open set and Int(V) = Int(bCl(V)). By the hypothesis, A is also b-preopen, and we have

$$A \subseteq Int(bCl(A)$$

= $Int(bCl(U \cap V)$
 $\subseteq Int(bCl(U) \cap bCl(V))$
= $Int(bCl(U)) \cap Int(bCl(V))$
= $Int(bCl(U)) \cap Int(V)$

Hence

$$A = U \cap V = (U \cap V) \cap U$$
$$\subseteq (Int(bCl(U)) \cap Int(V)) \cap U$$
$$= (Int(bCl(U)) \cap U) \cap Int(V)$$
$$= U \cap Int(V)$$

Therefore $A = (U \cap V) = (U \cap Int(V))$, and A is open.

From the following examples one can deduce that b-preopen sets and a b-B-sets are independent.

Example 3.2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. It is clearly that $\{c, b\}$ is b-B-set but it is not b-preopen, since $\{c, b\} = \{b, c, d\} \cap \{c, b\}, \{c, b\}$ is b-t-set and $\{c, b\} \not\subseteq Int(bCl(\{c, b\})) = \{c\}$

Example 3.3. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$. It is clearly that $\{c, b\}$ is b-preopen but it is not b-B-set, since $\{c, b\} \subseteq Int(bCl(\{c, b\})) = X$, since $\{c, b\}$ is not b-t-set and the open set containing $\{c, b\}$ is X or $\{b, c, d\}$, therefore $\{c, b\}$ is not b-B-set.

Lemma 3.1. Let A be an open subset of a space X. Then bCl(A) = Int(Cl(A))and Int(bCl(A)) = Int(Cl(A)).

Proof. Let A be open set, then

$$bCl(A) = sCl(A) \cap pCl(A)$$

= $A \cup (Int(Cl(A)) \cap Cl(Int(A)))$
= $A \cup (Int(Cl(A)) \cap Cl(A))$
= $A \cup (Int(Cl(A)))$
= $Int(Cl(A)).$

Proposition 3.3. For a subset A of space (X, τ) , the following are equivalent:

- 1. A is regular open,
- 2. A = Int(bCl(A)),
- 3. A is b-preopen and a b-t-set.

Proof. (1) \Rightarrow (2) Let A be regular open. Since $bCl \subseteq Cl(A)$. Therefore, we have $Int(bCl(A)) \subseteq Int(Cl(A)) = A$, since A is open, $A \subseteq Int(bCl(A))$ hence A = Int(bCl(A)).

 $(2) \Rightarrow (3)$ This is obvious

 $(3) \Rightarrow (1)$ Let A be b-preopen and a b-t-set. Then $A \subseteq Int(bCl(A)) = Int(A) \subseteq A$ and A is open. by Lemma 3.1, A = Int(bCl(A)) = Int(Cl(A)), hence A is regular open. \Box

Definition 3.2. A subset A of a topological space X is called *sb*-generalized closed if $s(bCl(A)) \subseteq U$, whenever $A \subseteq U$ and U is *b*-preopen.

Theorem 3.2. For a subset A of topological space X, the following properties are equivalent:

1. A is regular open;

2. A is b-preopen and sb-generalized.

Proof. (1) \Rightarrow (2) Let A be regular open. Then A is b-open. $A \subseteq Int(bCl(A))$. Moreover, by Lemma 3.1 $s(bCl(A)) = A \cup Int(bCl(A)) = Int(bCl(A)) = Int(Cl(A)) = A$. Therefore, A is sb-generalized closed.

 $(2) \Rightarrow (1)$ Let A be b-preopen and sb-generalized closed. Then we have $s(bCl(A) \subseteq A$ and hence A is b-semiclosed. Therefore $Int(b(Cl(A))) \subseteq A$. Also A is b-preopen, $A \subseteq Int(b(Cl(A)))$ then A = Int(bCl(A)). Therefore by Proposition 3.3 A is regular open. \Box

4. Decompositions of continuity

In this section, we provide some theorems concerning the decomposition of continuity via the notion of locally b-closed set.

Definition 4.1. A function $f : X \to Y$ is called *b*-continuous [19](resp. α continuous [16], semi continuous [9], *B*-continuous [18] locally closed continuous [6], D(c, b)-continuous, locally *b*-closed continuous) if $f^{-1}(V)$ is *b*-open
(resp. α -open, semi open, *B*-set, locally closed, D(c, b)-set, locally *b*-closed)
in *X* for each open set *V* of *Y*.

Theorem 4.1. Let $f : X \to Y$ be a function. Then

- 1. If X is extremally disconnected, f is continuous if and only if f is b-continuous and locally closed-continuous.
- 2. f is continuous if and only if f is b-continuous and D(c, b)-continuous.
- 3. f is continuous if and only if f is α -continuous and locally b-closed-continuous.

Proof. 1. It follows from Theorem 2.1.

- 2. It follows from Theorem 2.2.
- 3. It follows from Theorem 2.4.

From the following example we can see that b-continuous functions and D(c, b)-continuous functions are independent.

Example 4.1. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a function $f : X \longrightarrow X$ such that f(a) = c, f(b) = a and f(c) = d = f(d). Then $f \ D(c, d)$ -continuous, but it is not b-continuous, since $f^{-1}(\{c\}) = \{a\}$ is D(c, d)-set, but it is not a b-open. And a function $f : X \longrightarrow X$ such that f(a) = c, f(b) = c, f(c) = b, f(d) = d. Then f is b-continuous, but it is not D(c, d)-set.

From the following example we can see that *b*-continuous functions and locally closed-continuous functions are independent.

Example 4.2. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$

Define a function $f: X \longrightarrow X$ such that f(a) = b, f(b) = c, f(c) = c and f(d) = d. Then f is locally closed -continuous, but it is not b-continuous, since $f^{-1}(\{b\}) = \{a\}$ is locally closed but it is not b-open. And a function $f: X \longrightarrow X$ such that f(a) = d, f(b) = b, f(c) = a, f(d) = c, then f is b-continuous, but it is not locally closed-continuous, since $f^{-1}(\{b, c, d\}) = \{a, b, d\}$ which is b-open not locally closed

From the following examples we can see that α -continuous functions and locally *b*-closed-continuous functions are independent.

Example 4.3. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a function $f : X \longrightarrow X$ such that f(a) = c, f(b) = a, f(c) = b and f(d) = d is locally b-closed continuous but it is not α -continuous, since $f^{-1}(\{c, d\}) = \{a, d\}$ which is locally b-closed not α -open.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$. Define a function $f: X \longrightarrow X$ such that f(a) = c, f(b) = b, f(c) = a and f(d) = d then f is α -continuous but it is not locally b-closed-continuous, since $f^{-1}(\{a, b\}) = \{c, b\}$ which is α -open not locally b-closed.

Definition 4.2. A function $f: X \to Y$ is called contra *b*-continuous [19](resp. contra *gb*-continuous) if $f^{-1}(V)$ is *b*-closed (resp. *gb*-closed) in X for each open set V of Y.

Theorem 4.2. Let $f : X \to Y$ be a function. Then f is contra b-continuous if and only if it is locally b-closed-continuous and contra gb-continuous.

Proof. It follows from Theorem 2.5

From the following examples we can see that locally b-closed-continuous and contra gb-continuous are independent.

Example 4.5. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $Y = \{a, b, c, \}$, with the topology $\sigma = \{\phi, Y, \{a\}\}$. Then the function $f : (X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a) = b, f(b) = c, f(c) = a and f(d) = a. Then f is contra gb-continuous, but it is not locally b-closed-continuous, since $f^{-1}(\{a\}) = \{c, d\}$ which is gb-closed not locally b-closed

Example 4.6. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$. Let $Y = \{a, b, c, \}$, with the topology $\sigma = \{\phi, Y, \{a\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ is defined by f(a) = b, f(b) = a, f(c) = a and f(d) = c. Then f is locally b-closed-continuous, but it is not contra gb-continuous, since $f^{-1}(\{a\}) = \{c, b\}$ which is locally b-closed.

Theorem 4.3. Let $f : X \to Y$ be a function. Then f is B-continuous if and only if it is locally b-closed-continuous and semi-continuous.

Proof. It follows from Lemma 2.2

Definition 4.3. A function $f : X \to Y$ is called *b*-pre continuous (resp. *b-B*-continuous, *b-t*-continuous contra *sb*-continuous) if $f^{-1}(V)$ is *b*-preopen (resp. *b-B*-set, *b-t*-set, *sb*-generalized closed) in X for each open set V of Y.

Theorem 4.4. Let $f : X \to Y$ be a function. Then f is continuous if and only if it is b-pre-continuous and b-B-continuous.

Proof. The proof is obvious from Theorem **3.1**.

From the following example we can see that b-pre continuous functions and b-B-continuous functions are independent.

Example 4.7. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{b, c, d\}, \{b\}, \{a, b\}\}$. Let $Y = \{a, b, c, \}$, with the topology $\sigma = \{\phi, Y, \{a\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ is defined by f(a) = b, f(b) = a, f(c) = a and f(d) = c. Then f is b-precontinuous, but it is not b-B-continuous, since $f^{-1}(\{a\}) = \{c, b\}$ which is b-peropen not b-B-set.

Example 4.8. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $Y = \{a, b, c, \}$, with the topology $\sigma = \{\phi, Y, \{a\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ is defined by f(a) = b, f(b) = a, f(c) = a and f(d) = c. Then f is b-B-continuous, but it is not b-pre continuous, since $f^{-1}(\{a\}) = \{c, b\}$ which is b-B-set not b-peropen.

Theorem 4.5. Let $f : X \to Y$ be a function. Then f is completely continuous if and only if b-pre continuous and b-t-continuous.

Proof. It follows from Theorem 3.3.

Theorem 4.6. Let $f : X \to Y$ be a function. Then f is completely continuous if and only if it is b-pre continuous and contra sb-continuous.

Proof. It follows from Theorem 3.2.

Acknowledgments

This work is financially supported by the Ministry of Higher Education, Malaysia under FRGS grant no: UKM-ST-06-FRGS0008-2008. We also would like to thank the referees for useful comments and suggestions.

References

- 1. D. Andrijević, "On b-open sets", Mat. Vesnik 48(1996), 59-64.
- 2. D. Andrijević, "Semi-preopen sets", Mat. Vesnik 38(1)(1986), 24-32.
- 3. N. Bourbaki, "General Topology", Part 1, Addison-Wesley (Reading, Mass, 1966).
- Y. Erguang and T. Pengfei "On Decomposition Of A-continuity " Acta Math. Hungar. 110(4)(2006), 309-313.
- M. Ganster and I.L. Reilly, "A Decomposition of continuity" Acta Math. Hungar. 56(1990), 229-301.
- M. Ganster and I.L. Reilly, "Locally closed sets and LC-continuous functions" International Journal of Mathematics and Mathematical Sciences, vol.12, (1989), 239-249.
- 7. T. Hatice, "Decomposition of continuity" Acta Math. Hungar. 64(3)(1994), 309-313.
- T. Hatice, T. Noiri "Decomposition of continuity and complete Continuity" Acta Math. Hungar. 113(4)(2006), 281-278.

- N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer Math. Monthly 70(1963), 36-41.
- I.L. Reilly and M.K. Vamanamurthy, "On α-Continuity In Topological Spaces" Acta Math. Hungar. 45(1-2)(1985), 27-32.
- A.A. Nasef, "On b-locally closed sets and related topic", Chaos Solitions & Fractals 12(2001), 1909-1915.
- 12. O. Njastad, "On some classes of nearly open sets" Pacific J. Math. 15(1965), 961-970.
- T. Noiri, R. Sayed "On Decomposition of continuity " Acta Math. Hungar. 111(1-2)(2006), 1-8.
- 14. T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math. 20(1989), 571-576.
- A.S. Mashhour , M.E. Abd El-Monsef and S.N. El-Deeb, "On precontinuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Egypt 53(1982), 47-53.
- 16. A.S. Mashhour , I.A. Hasanein and S.N. El-Deeb,
, " α -continuity and α -open mappings"
 Acta Math. Hungar. 41(1983), 213-218.
- 17. J. Tong, "A Decomposition of continuity" Acta Math. Hungar. 48(1986), 11-15.
- J. Tong, "On Decomposition of continuity in topological spaces" Acta Math. Hungar. 54(1-2)(1989), 51-55.
- 19. J.H. Park, "Strongly θ -b continuous functions" Acta Math. Hungar. **110**(4)(2006), 347-359.
- M. Przemski, "A Decomposition of continuity and α-Continuity" Acta Math. Hungar. 61(1-2)(1993), 93-98.

Ahmad Al-Omari and Mohd. Salmi Md. Noorani School of mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia. omarimutah1@yahoo.com, (Corresponding author) msn@pkrisc.cc.ukm.my