Bol. Soc. Paran. Mat. (3s.) v. 26 1-2 (2008): 65-70. ©SPM -ISNN-00378712

A note on almost δ -semicontinuous functions

Erdal Ekici* and Takashi Noiri

ABSTRACT: In this note, we obtain some improvements of results established on δ -semicontinuous functions in [3] and show that a function $f : (X, \tau) \to (Y, \sigma)$ is almost δ -semicontinuous if and only if $f : (X, \tau_s) \to (Y, \sigma_s)$ is semi-continuous, where τ_s and σ_s are the semiregularizations of τ and σ , respectively.

Key Words: semi-regularization, $\delta\mbox{-semicontinuity},$ almost $\delta\mbox{-semicontinuity},$ semi-continuity.

Contents

1	Introduction	65
2	Preliminaries	65
3	δ -semicontinuous functions	66
4	Almost δ -semicontinuous functions	69

1. Introduction

The notions of semi-open sets and semi-continuity in topological spaces were first introduced and investigated by Levine [6]. Since then, many generalizations of these notions are introduced and studied in the literature. In 1997, Park et al. [13] introduced the notion of δ -semiopen sets by using δ -open sets due to Veličko [16]. Recently, δ -semicontinuity in topological spaces has been defined independently by Ekici and Navalagi [3] and Noiri [12]. Furthermore, Ekici [1] intrduced and investigated almost δ -semicontinuous functions.

In this note, we obtain some improvements of results established in [3] and show that a function $f: (X, \tau) \to (Y, \sigma)$ is almost δ -semicontinuous if and only if $f: (X, \tau_s) \to (Y, \sigma_s)$ is semi-continuous, where τ_s and σ_s are the semiregualarizations of τ and σ , respectively. We point out that if we use this fact then several properties of almost δ -semicontinuous functions established in [1] follow from the corresponding known properties of semi-continuity.

2. Preliminaries

Let (X, τ) be a topological space and A be a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively.

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. Mat.

^{*} Corresponding author

²⁰⁰⁰ Mathematics Subject Classification: 54C08

Definition 2.1. A subset A of a space X is said to be regular open (resp. regular closed) [15] if A = int(cl(A)) (resp. if A = cl(int(A))).

A point $x \in X$ is called a δ -cluster point of A [16] if $A \cap int(cl(B)) \neq \emptyset$ for each open set B containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by δ -cl(A). If δ -cl(A) = A, then A is said to be δ -closed. The complement of a δ -closed set is said to be δ -open. The set $\{x \in X : x \in G \subset A$ for some regular open set G of $X\}$ is called the δ -interior of A and is denoted by δ -int(A).

The family of all regular open (resp. regular closed) sets of a space X will be denoted by RO(X) (resp. RC(X)).

Definition 2.2. A subset A of a space X is said to be

(1) semiopen [6] if $A \subset cl(int(A))$,

(2) δ -semiopen [13] if $A \subset cl(\delta$ -int(A)).

The family of all δ -semiopen sets of a space X will be denoted by $\delta SO(X)$.

Remark 2.1. (1) It is shown in [13] that openness and δ -semiopenness are independent.

(2) The following diagram holds for the subsets defined above:

 $\begin{array}{lll} \delta\text{-open} & \Rightarrow & \delta\text{-semiopen} \\ & & & \Downarrow \\ open & \Rightarrow & semiopen \end{array}$

Definition 2.3. ([15]) The collection of all regular open sets in a space (X, τ) forms a base for a topology τ_s . It is called the semiregularization.

Lemma 2.1. ([12]) A subset A is δ -semiopen in (X, τ) if and only if A is semiopen in (X, τ_s) .

3. δ -semicontinuous functions

In this section, we obtain some improvements of the results established in [3].

Definition 3.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

(1) almost semicontinuous [7] if $f^{-1}(V) \in SO(X)$ for every $V \in RO(Y)$,

(2) almost δ -semicontinuous [1] if for each $x \in X$ and each $V \in RO(Y)$ con-

taining f(x), there exists $U \in \delta SO(X)$ containing x such that $f(U) \subset V$. (3) δ -semicontinuous [3], [12] if $f^{-1}(V)$ is δ -semiopen for every open set $V \subset$

(3) o-semicontinuous [3], [12] if J (V) is o-semiopen for every open set $V \subseteq Y$.

(4) super-continuous [8] if for each $x \in X$ and each open set V of Y containing f(x), there exists an open set U of X containing x such that $f(int(cl(U))) \subset V$.

(5) semi-continuous [9] if $f^{-1}(V)$ is semi-open in X for every open set $V \subset Y$.

66

Remark 3.1. The following implications are hold for a function $f: X \to Y$:

$super\ continuity$	\Rightarrow	δ -semicontinuity	\Rightarrow	almost δ -semicontinuity
\Downarrow		\Downarrow		\downarrow
continuity	\Rightarrow	semi-continuity	\Rightarrow	$almost\ semi-continuity$

In the above diagram, none of the implications is reversible as shown by the following examples.

Example 3.1. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $f : X \to X$ be a function defined by f(a) = a, f(b) = d, f(c) = c, f(d) = d. Then, f is continuous but not almost δ -semicontinuous.

Example 3.2. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $f : X \to X$ be a function defined by f(a) = a, f(b) = c, f(c) = a, f(d) = d. Then, f is δ -semicontinuous but it is not continuous.

Example 3.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $f : X \to X$ be a function defined by f(a) = b, f(b) = b, f(c) = c, f(d) = a. Then, f is almost δ -semicontinuous but it is not semi-continuous.

Theorem 3.1. ([12]) The following properties hold for a function $f : (X, \tau) \rightarrow (Y, \sigma)$:

(1) f is super-continuous if and only if $f: (X, \tau_s) \to (Y, \sigma)$ is continuous.

(2) f is δ -semicontinuous if and only if $f : (X, \tau_s) \to (Y, \sigma)$ is semi-continuous.

Theorem 3.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(1) $f: (X, \tau) \to (Y, \sigma)$ is almost δ -semicontinuous,

(2) $f: (X, \tau_s) \to (Y, \sigma)$ is almost semi-continuous,

(3) $f: (X, \tau) \to (Y, \sigma_s)$ is δ -semicontinuous,

(4) $f: (X, \tau_s) \to (Y, \sigma_s)$ is semi-continuous.

Proof. $(1) \Rightarrow (2)$: Let $f: (X, \tau) \to (Y, \sigma)$ be almost δ -semicontinuous and $A \in RO(Y)$. Then, by (1) $f^{-1}(A)$ is δ -semiopen in X. By Lemma 5, $f^{-1}(A)$ is semiopen in (X, τ_s) . Thus, f is almost semi-continuous.

 $(2) \Rightarrow (3)$: Let $V \in \sigma_s$. Then there exist regular open sets U_i $(i \in I)$ such that $V = \cup U_i$. Since $f: (X, \tau_s) \to (Y, \sigma)$ is almost semi-continuous, $f^{-1}(U_i)$ is semiopen in (X, τ_s) for each $i \in I$. By Lemma 5, $f^{-1}(U_i)$ is δ -semiopen in (X, τ) for each $i \in I$. Thus, $f^{-1}(V)$ is δ -semiopen in (X, τ) and hence $f: (X, \tau) \to (Y, \sigma_s)$ is δ -semicontinuous.

 $(3) \Rightarrow (4)$: The proof is similar to $(1) \Rightarrow (2)$.

 $(4) \Rightarrow (1)$: Let $f: (X, \tau_s) \to (Y, \sigma_s)$ be semi-continuous and $A \in RO(Y)$. We have $A \in \sigma_s$. By (4), $f^{-1}(A)$ is semi-open in (X, τ_s) . By Lemma 5, $f^{-1}(A)$ is δ -semiopen in (X, τ) . Thus, it follows from Theorem 11 of [1] that $f: (X, \tau) \to (Y, \sigma)$ is almost δ -semicontinuous.

Definition 3.2. A space X is called δ -semiconnected [3] (resp. semi-connected [14]) if X cannot be expressed by the disjoint union of two nonempty δ -semiopen (resp. semi-open) sets.

It is shown in Theorem 3.3 of [14] that every semi-connected space is connected but the converse is not true.

Lemma 3.1. For a topological space (X, τ) , the following properties are equivalent: (1) cl(V) = X for every nonempty open set V of X,

(2) $U \cap V \neq \emptyset$ for any nonempty semi-open sets U and V of X,

(3) (X, τ) is semi-connected,

(4) (X, τ) is δ -semiconnected.

Proof. This follows from Theorem 3.2 of [11] and Theorem 6.3 of [12].

Theorem 3.3. If $f : (X, \tau) \to (Y, \sigma)$ is an almost semi-continuous surjection and (X, τ) is δ -semiconnected, then (Y, σ) is δ -semiconnected.

Proof. Suppose that (Y, σ) is not a δ -semiconnected space. There exist nonempty disjoint δ -semiopen sets A and B such that $Y = A \cup B$. Since A and B are nonempty δ -semiopen, they are nonempty semi-open and hence int(A) and int(B) are nonempty and disjoint. Therefore, by using Lemma 2 of [9], we obtain that int(cl(A)) and int(cl(B)) are nonempty disjoint regular open sets in Y. Since f is almost semi-continuous, $f^{-1}(int(cl(A)))$ and $f^{-1}(int(cl(B)))$ are nonempty disjoint semi-open sets in X. By Lemma 14, (X, τ) is not δ -semiconnected. \Box

Corollary 3.3A. ([3]) If $f : (X, \tau) \to (Y, \sigma)$ is a δ -semicontinuous surjection and (X, τ) is δ -semiconnected, then (Y, σ) is connected.

Definition 3.3. A space X is said to be δ -semi-T₂ [3] if for each pair of distinct points x and y in X, there exist disjoint δ -semiopen sets A and B in X such that $x \in A$ and $y \in B$.

Theorem 3.4. If $f : (X, \tau) \to (Y, \sigma)$ is an almost semi-continuous injection and (Y, σ) is T_2 , then (X, τ) is δ -semi- T_2 .

Proof. Let x and y be any pair of distinct points of X. There exist disjoint open sets U and V in Y such that $f(x) \in A$ and $f(y) \in B$. The sets int(cl(A)) and int(cl(B)) are disjoint regular open sets in Y. Since f is almost semi-continuous, $f^{-1}(int(cl(A)))$ and $f^{-1}(int(cl(B)))$ is semi-open in X containing x and y, respectively. Thus, $f^{-1}(int(cl(A))) \cap f^{-1}(int(cl(B))) = \emptyset$ and hence by Theorem 6.5 of [12] (X, τ) is δ -semi-T₂.

Corollary 3.4B. ([3]) If $f : (X, \tau) \to (Y, \sigma)$ is a δ -semicontinuous injection and (Y, σ) is T_2 , then (X, τ) is δ -semi- T_2 .

Definition 3.4. A space X is said to be r- T_1 [2] if for each pair of distinct points x and y of X, there exist regular open sets A and B containing x and y respectively such that $y \notin A$ and $x \notin B$.

Definition 3.5. A space X is said to be δ -semi- T_1 [3] if for each pair of distinct points x and y of X, there exist δ -semiopen sets A and B containing x and y, respectively such that $y \notin A$ and $x \notin B$.

Theorem 3.5. If $f : (X, \tau) \to (Y, \sigma)$ is an almost δ -semicontinuous injection and (Y, σ) is r- T_1 , then (X, τ) is δ -semi- T_1 .

Proof. Let Y be r- T_1 and x, y be distinct points in X. There exist regular open subsets A, B in Y such that $f(x) \in A$, $f(y) \notin A$, $f(x) \notin B$ and $f(y) \in B$. Since f is almost δ -semicontinuous, $f^{-1}(A)$ and $f^{-1}(B)$ are δ -semiopen subsets of X such that $x \in f^{-1}(A), y \notin f^{-1}(A), x \notin f^{-1}(B)$ and $y \in f^{-1}(B)$. Hence, X is δ -semi- T_1 . \Box

Corollary 3.5C. ([3]) If $f : (X, \tau) \to (Y, \sigma)$ is a δ -semicontinuous injection and (Y, σ) is T_1 , then (X, τ) is δ -semi- T_1 .

4. Almost δ -semicontinuous functions

In this section, we point out that if we use Theorem 12 then several properties of almost δ -semicontinuous functions established in [1] follow from the corresponding known properties of semi-continuity. For example, we can obtain the following two theorems by Lemma 24 and Theorems 6 and 5 of [9].

Lemma 4.1. ([5]) Let $\{X_i : i \in I\}$ be any families of spaces. For the product space $\prod_{i \in I} X_i$, $(\prod_{i \in I} X_i)_s = \prod_{i \in I} (X_i)_s$.

Theorem 4.1. ([1]) If a function $f : X \to \prod Y_i$ is almost δ -semicontinuous, then $p_i \circ f : X \to Y_i$ is almost δ -semicontinuous for each $i \in I$, where p_i is the projection of $\prod Y_i$ onto Y_i .

Proof. Let $f : X \to \prod Y_i$ be almost δ -semicontinuous. Then, by Theorem 12, $f : X_s \to (\prod Y_i)_s$ is semi-continuous and hence by Theorem 6 of [9] and Lemma 24 $p_i \circ f : X_s \to (Y_i)_s$ is semi-continuous. By Theorem 12, $p_i \circ f : X \to Y_i$ is almost δ -semicontinuous. \Box

Theorem 4.2. ([1]) The product function $f : \prod X_i \to \prod Y_i$ is almost δ -semicontinuous if and only if $f_i : X_i \to Y_i$ is almost δ -semicontinuous for each $i \in I$.

Proof. Let $f : \prod X_i \to \prod Y_i$ be almost δ -semicontinuous. Then, by Theorem 12 $f : (\prod X_i)_s \to (\prod Y_i)_s$ is semi-continuous and by Lemma 24 $f : \prod (X_i)_s \to \prod (Y_i)_s$ is semi-continuous. It follows from Theorem 5 of [9] that $f_i : (X_i)_s \to (Y_i)_s$ is semi-continuous for each $i \in I$. Therefore, $f_i : X_i \to Y_i$ is almost δ -semicontinuous for each $i \in I$. Therefore, $f_i : X_i \to Y_i$ is almost δ -semicontinuous for each $i \in I$. Therefore, $f_i : X_i \to Y_i$ is almost δ -semicontinuous for each $i \in I$. The converse is similarly proven.

Remark 4.1. Theorem 30 (resp. Theorem 35, Theorem 37, Theorem 40) in [1] follows from Theorem 2 of [10] (resp. Theorem 3 of [9], Theorem 4 of [9], Theorem 2.6 of [4]).

References

- 1. E. Ekici, On δ -semiopen sets and a generalization of functions, Bol. Soc. Paran. Mat. (3s), 23, 1-2 (2005), 73-84.
- 2. E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta Math. Hungar., 107 (3) (2005), 193-206.
- 3. E. Ekici and G. B. Navalagi, δ-semicontinuous functions, Math. Forum, 17 (2005), 29-42.
- 4. T. R. Hamlett, Semi-continuous functions, Math. Chronicle, 4 (1976), 101-107.
- L. L. Herrington, Properties of nearly-compact spaces, Proc. Amer. Math. Soc., 45, no. 3, (1974), 431-436.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- B. M. Munshi and D. S. Bassan, Almost semi-continuous mappings, Math. Student, 49 (1981), 239-248.
- 8. B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math., 13 (1982), 229-236.
- 9. T. Noiri, On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 54 (1973), 210-214.
- T. Noiri, A note on semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 55 (1973), 400-403.
- T. Noiri, Hyperconnectedness and preopen sets, Rev. Roum. Math. Pure Appl., 29 (1984), 329-334.
- 12. T. Noiri, Remarks on $\delta\text{-semi-open}$ sets and $\delta\text{-preopen}$ sets, Demonstratio Math., 36 (2003), 1007-1020.
- 13. J. H. Park, B. Y. Lee and M. J. Son, On $\delta\text{-semiopen sets}$ in topological space, J. Indian Acad. Math., 19 (1) (1997), 59-67.
- 14. V. Pipitone and G. Russo, Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo (2), 24 (1975), 273-285.
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937) 375-381.
- 16. N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.

Erdal Ekici Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale - TURKEY eekici@comu.edu.tr

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, JAPAN t.noiri@nifty.com