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Jordan α-centralizers in rings and some applications

Shakir Ali and Claus Haetinger

abstract: Let R be a ring, and α be an endomorphism of R. An additive
mapping H: R → R is called a left α-centralizer (resp. Jordan left α-centralizer) if
H(xy) = H(x)α(y) for all x, y ∈ R (resp. H(x2) = H(x)α(x) for all x ∈ R). The
purpose of this paper is to prove two results concerning Jordan α-centralizers and
one result related to generalized Jordan (α, β)-derivations. The result which we refer
state as follows: Let R be a 2-torsion-free semiprime ring, and α be an automorphism
of R. If H: R → R is an additive mapping such that H(x2) = H(x)α(x) for every
x ∈ R or H(xyx) = H(x)α(yx) for all x, y ∈ R, then H is a left α-centralizer on R.
Secondly, this result is used to prove that every generalized Jordan (α, β)-derivation
on a 2-torsion-free semiprime ring is a generalized (α, β)-derivation. Finally, some
examples are given to demonstrate that the restrictions imposed on the hypothesis
of the various theorems were not superfluous.

Key Words: Semiprime ring, 2-torsion-free ring, Jordan centralizer, Jordan
α-centralizer, generalized derivations, generalized Jordan (α, β)-derivations.
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1. Introduction

This research has been motivated by the works of E. Albas [1] and J. Vukman
[13]. Throughout, the present paper R will denote an associative ring with center
Z(R), not necessarily with an identity element. For any x, y ∈ R, as usual [x, y] =
xy − yx and x ◦ y = xy + yx will denote the well-known Lie and Jordan products,
respectively. We shall make extensive use of basic commutator identities: [xy, z] =
x[y, z] + [x, z]y, [x, yz] = y[x, z] + [x, y]z. A ring R is n-torsion-free, where n is an
integer in case nx = 0, for x ∈ R, implies x = 0. Recall that a ring R is prime if
for any a, b ∈ R, aRb = (0) implies that a = 0 or b = 0, and is called semiprime in
case aRa = (0) implies a = 0.

An additive mapping d: R → R is called a derivation (resp. Jordan derivation)
if d(ab) = d(a)b + ad(b) holds for all a, b ∈ R (resp. d(a2) = d(a)a + ad(a) holds
for all a ∈ R). For a fixed a ∈ R, define d: R → R by d(x) = [x, a] for all x ∈ R,
called an inner derivation (see [4] for a partial bibliography).
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Following B. Hvala [ [9], page 1447], an additive mapping F : R → R is called
a generalized derivation if there exists a derivation d: R → R such that F (xy) =
F (x)y + xd(y) holds for all x, y ∈ R. We call an additive mapping F : R → R

a generalized Jordan derivation if there exists a derivation d: R → R such that
F (x2) = F (x)x + xd(x) holds for all x ∈ R [ [5], page 7]. In [ [5], Theorem], M.
Ashraf and N. Rehman showed that in a 2-torsion-free ring R which has a com-
mutator nonzero divisor, every generalized Jordan derivation on R is a generalized
derivation. It is easy to see that F : R → R is a generalized derivation iff F is of
the form F = d + H, where d is a derivation and H a left centralizer on R.

According B. Zalar [17], an additive mapping H: R → R is called a left (resp.
right) centralizer of R if H(xy) = H(x)y (resp. H(xy) = xH(y)) holds for all
x, y ∈ R. If a ∈ R, then La(x) = ax is a left centralizer and Ra(x) = xa is a right
centralizer. If H is both left as well right centralizer, then H is a centralizer. In
case R has an identity element, H: R → R is a left (resp. right) centralizer iff H is
of the form La(x) (resp. Rax) for some fixed element a ∈ R. An additive mapping
H: R → R is called a left (resp. right) Jordan centralizer in case H(x2) = H(x)x
(resp. H(x2) = xH(x)) holds for x ∈ R.

It is well-known that Jordan derivations can be defined as d(x ◦ y) = d(x) ◦ y +
x ◦ d(y), for all x, y ∈ R. Therefore, we can define a Jordan centralizer to be an
additive mapping H which satisfies H(x◦y) = H(x)◦y = x◦H(y), for all x, y ∈ R.
Since the product ◦ is commutative, there is no difference between the Jordan left
and right centralizers. In [17], it was shown that a Jordan left centralizer of a
semiprime ring is a left centralizer, and each Jordan centralizer is a centralizer.

Recently, E. Albaş [1] introduced the following definitions, which are general-
izations of the definitions of centralizer and Jordan centralizer. Let R be a ring, and
α be an endomorphism of R. A Jordan α-centralizer of R is an additive mapping
H: R → R satisfying H(xy+yx) = H(x)α(y)+α(y)H(x) = H(y)α(x)+α(x)H(y)
for all x, y ∈ R. An additive mapping H: R → R is called a left (resp. right) α-
centralizer of R if H(xy) = H(x)α(y) (resp. H(xy) = α(x)H(y)) for all x, y ∈ R.
If H is a left and right α-centralizer then it is natural to call H an α-centralizer. It
is clear that for an additive mapping H: R → R associated with a homomorphism
θ: R → R, if La(x) = aθ(x) and Ra(x) = θ(x)a for a fixed element a ∈ R and for
all x ∈ R, then La is a left θ−centralizer and Ra is a right θ−centralizer. Clearly
every centralizer is a special case of a θ-centralizer with θ = idR.

Let H: R → R be an additive mapping and α be an endomorphism of R.
We call H a Jordan left (resp. right) α-centralizer if H(x2) = H(x)α(x) (resp.
H(x2) = α(x)H(x)) holds for all x ∈ R. Note that for α = idR, identity map on R,
then we have the usual well-known definitions of Jordan left and right centralizer
mappings. Obviously every left (right) centralizer is a Jordan left (right) centralizer.
The converse is in general not true (see [1], Example 1). In [17], B. Zalar proved
that every Jordan left (right) centralizer on a 2-torsion-free semiprime ring is a
left (right) centralizer. Considerable work has been done on Jordan left (right)
centralizers in prime and semiprime rings during the last couple of decades (see for
example: [3], [7], [8], [12], [14], [15], [16], where further references can be found).

If H: R → R is a centralizer, where R is an arbitrary ring, then H satisfies the
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relation

H(xyx) = xH(y)x, for all x, y ∈ R. (1)

It seems natural to ask whether the converse is true. More precisely, asking for
whether an additive mapping H on a ring R satisfying relation (1) is a centralizer.
In [15], J. Vukman proved that the answer is affirmative in case R is a 2-torsion-free
semiprime ring. In [1], Albaş proved, under some conditions, that in a 2-torsion-free
semiprime ring R, every Jordan θ-centralizer is a θ-centralizer. In [7], W. Cortes
and C. Haetinger proved this question changing the semiprimality condition on R

by the existence of a commutator right (resp. left) nonzero divisor. And in [8],
M.N. Daif, M.S. Tammam El-Sayiad and C. Haetinger proved that in a 2-torsion-
free semiprime ring R, for an endomorphism θ of R and for an additive mapping
T :R → R such that T (xyx) = θ(x)T (y)θ(x) holds for all x, y ∈ R, then T is a
θ-centralizer of R.

In the year 1995, L. Molnar [12] proved that if R is a 2-torsion-free prime ring
and T : R → R is an additive function such that T (xyx) = T (x)yx for all x, y ∈ R,
then T is a left (right) centralizer.

In Section 2, we generalize the above mentioned result for semiprime rings.
Further, some related result have been discussed.

Let α, β be endomorphisms of a ring R. An additive mapping d: R → R is said
to be an (α, β)-derivation (resp. Jordan (α, β)-derivation) if d(xy) = d(x)α(y) +
β(x)d(y) holds for all x, y ∈ R (resp. d(x2) = d(x)α(x) + β(x)d(x) holds for all
x ∈ R). Following M. Ashraf, A. Ali and S. Ali [2], an additive mapping F :
R → R is called a generalized (α, β)-derivation (resp. generalized Jordan (α, β)-
derivation) on R if there exists an (α, β)-derivation d: R → R such that F (xy) =
F (x)α(y) + β(x)d(y) holds for all x, y ∈ R (resp. F (x2) = F (x)α(x) + β(x)d(x)
holds for all x ∈ R). More general, we call an additive mapping F : R → R is a
generalized Jordan (α, β)-derivation) on R if there exists a Jordan (α, β)-derivation
d: R → R such that F (x2) = F (x)α(x) + β(x)d(x) holds for all x ∈ R. Note that
for idR, the identity map on R, an generalized Jordan (idR, idR)-derivation is called
simply a generalized Jordan derivation. Clearly, every generalized derivation on a
ring is a generalized Jordan derivation. But the converse need not be true in general
(see [6], Example). A number of authors have studied this problem in the setting
of prime and semiprime rings (viz. [2], [6], [10] and [13], where further references
can be found). In the year 2007, J. Vukman [13] proved that every generalized
Jordan derivation on a 2-torsion-free semiprime ring is a generalized derivation.

In Section 3, we discuss the applications of the theory of α-centralizers (mul-
tipliers) and extend Vukman’s result in the setting of generalized Jordan (α, β)-
derivation.

We shall restrict our attention on left centralizers since all results presented in
this paper are true also for right centralizers because of left and right symmetry.
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2. Jordan α-centralizers

The main goal of this section is to prove the following theorem which
generalizes Theorem 2 in [12]:

Theorem 2.1 Let R be a 2-torsion-free semiprime ring and α be an automorphism
of R. If H: R → R is an additive mapping such that H(xyx) = H(x)α(yx) (resp.
H(xyx) = α(xy)H(x)) for all x, y ∈ R, then H is a left (resp. right) α-centralizer
on R.

Now, we begin with the following known result:

Lemma 2.1 [ [11], Theorem 2] Let R be a 2-torsion-free semiprime ring and d

a Jordan (θ, φ)-derivation of R with θ or φ an automorphism of R. Then d is a
(θ, φ)-derivation of R.

In [1], E. Albaş have proved the following result: Let R be a 2-torsion-free
semiprime ring, and α be an automorphism of R. If α(Z(R)) = Z(R), then each
Jordan left α-centralizer of R is a left α-centralizer. We now generalize Albas’s
result as follows:

Theorem 2.2 Let R be a 2-torsion-free semiprime ring and α be an automorphism
of R. If H: R → R is an additive mapping such that H(x2) = H(x)α(x) for all
x ∈ R, then H is a left α-centralizer.

Proof: The proof runs on same parallel lines as of Theorem 2 of [11] under the
case when φ is the trivial map, i.e., φ = 0. 2

As a corollary we obtain [ [17], Proposition 1.4].

Corollary 2.2A Let R be a 2-torsion-free semiprime ring. If H: R → R is an ad-
ditive mapping such that H(x2) = H(x)x for all x ∈ R, then H is a left centralizer
on R.

Now we will prove our main theorem of this section:

Proof: [Proof of Theorem 2.1] By the hypothesis, we have

H(xyx) = H(x)α(yx), ∀ x, y ∈ R. (2)

Replacing x by x + z in (2), we find, for every x, y ∈ R,

H((x + z)y(x + z)) = H(x)α(yx) + H(x)α(yz) + H(z)α(yx) + H(z)α(yz). (3)

On the other hand, we obtain, for all x, y ∈ R,

H((x + z)y(x + z)) = H(xyz + zyx + xyx + zyz)
= H(xyz + zyx) + H(x)α(yx) + H(z)α(yz).

(4)
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Combining (3) and (4), we get

H(xyz + zyx) = H(x)α(yz) + H(z)α(yx), ∀ x, y, z ∈ R. (5)

Put z = x2 in (5), to get

H(xyx2 + x2yx) = H(x)α(yx2) + H(x2)α(yx), ∀ x, y ∈ R. (6)

Further, taking y = xy + yx in (2) and using (2), we get

H(xyx2 + x2yx) = H(x)α(xyx) + H(x)α(yx2), ∀ x, y ∈ R. (7)

On combining last two equations, we obtain

H(x2)α(yx) − H(x)α(x)α(yx) = 0, ∀ x, y ∈ R. (8)

Now, we set A(x) = H(x2) − H(x)α(x) for every x ∈ R. Then, (8) reduces to

A(x)α(yx) = 0, ∀ x, y ∈ R. (9)

Since α is onto, (9) implies that

A(x)y1α(x) = 0, ∀ x, y1 ∈ R. (10)

Replacing y1 by α(x)zA(x) in (10), then (10) gives that

A(x)α(x)zA(x)α(x) = 0, i.e., A(x)α(x)RA(x)α(x) = (0), ∀ x ∈ R. (11)

Semiprimeness of R yields that

A(x)α(x) = 0, ∀ x ∈ R. (12)

Linearizing (12), we get

A(x + y)α(x) + A(x + y)α(y) = 0, ∀ x, y ∈ R. (13)

Now, we compute

A(x + y) = (H(xy + yx) − H(x)α(y) − H(y)α(x))
+

(

H(x2) − H(x)α(x)
)

+
(

H(y2) − H(y)α(y)
)

= B(x, y) + A(x) + A(y), ∀ x, y ∈ R,

(14)

where B(x, y) = H(xy + yx) − H(x)α(y) − H(y)α(x), for every x, y ∈ R.
Thus, in view of (14), expression (13) implies that

A(x)α(y) + B(x, y)α(x) + A(y)α(x) + B(x, y)α(y) = 0, ∀ x, y ∈ R. (15)

Again, replace x by −x in the last equation, to get

A(x)α(y) + B(x, y)α(x) − A(y)α(x) − B(x, y)α(y) = 0, ∀ x, y ∈ R. (16)
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Adding (15) with (16) and using the fact that R is a 2-torsion-free semiprime
ring, we find that

A(x)α(y) + B(x, y)α(x) = 0, ∀ x, y ∈ R. (17)

On right multiplication of equation (17) by A(x), we obtain

A(x)α(y)A(x) + B(x, y)α(x)A(x) = 0, ∀ x, y ∈ R. (18)

From equation (10), we find that

α(x)A(x)y1α(x)A(x) = 0, i.e., α(x)A(x)Rα(x)A(x) = (0), ∀ x ∈ R. (19)

The last expression forces that

α(x)A(x) = 0, ∀ x ∈ R. (20)

On combining (18) and (20), we have

A(x)α(y)A(x) = 0, i.e., A(x)RA(x) = (0), ∀ x ∈ R. (21)

Thus our hypothesis yields that A(x) = 0, i.e., H(x2) − H(x)α(x) = 0, for
each x ∈ R. Therefore, H is a Jordan left α-centralizer and hence, H is a left
α-centralizer on R by Theorem 2.2. This completes the proof of our theorem. 2

In Theorem 2.1, putting y = x, then we obtain the following:

Theorem 2.3 Let R be a 2-torsion-free semiprime ring and α be an automorphism
of R. If H: R → R is an additive mapping such that H(x3) = H(x)α(x2) (resp.
H(x3) = α(x2)H(x)) for all x ∈ R, then H is a left (resp. right) α-centralizer on
R.

Following are the immediate consequences of Theorem 2.1:

Corollary 2.3B [ [12], Theorem 2] Let R be a 2-torsion-free prime ring. If H:
R → R is an additive mapping such that H(xyx) = H(x)yx for all x, y ∈ R, then
H is a left centralizer on R.

Corollary 2.3C Let R be a 2-torsion-free semiprime ring. If H: R → R is an
additive mapping such that H(xyx) = H(x)yx (resp. H(xyx) = xyH(x)) for all
x, y ∈ R, then H is a left (resp. right) centralizer on R.

The following example demonstrates that Theorems 2.1 and 2.2 are not true in
the case of arbitrary rings:
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Example 2.1 Let R′ be a ring such that the square of each element in R′ is zero,
but the product of some elements in R′ is nonzero.

Next, let R =

{

r =

(

x y

0 0

)

| ∀ x, y ∈ R′

}

. We define the mappings

H: R → R and α: R → R as H(r) =

(

0 x

0 0

)

and α(r) =

(

x −y

0 0

)

, for

all r ∈ R. Then, H is a Jordan left α-centralizer but not a left α-centralizer on
R. Also, it is easy to verify that H(aba) 6= H(a)α(ba) for some nonzero elements
a, b ∈ R.

We conclude this section with the following conjecture in view of Theorem 2.3:

Conjecture 1 Let R be a semiprime ring with suitable torsion restrictions, and
α be an automorphism of R. If H : R → R is an additive mapping such that
H(xn) = H(x)α(xn−1) holds for all x ∈ R and n ≥ 1, then H is a left α-centralizer
on R.

3. Applications

In this section, we present some applications of the theory of α-centralizes in
rings. Very recently, J. Vukman in [13] proved a result concerning generalized
Jordan derivations on semiprime rings. More, explicitly, he showed that every
generalized Jordan derivation on a 2-torsion-free semiprime ring is a generalized
derivation. Further in the year 2007, C. Lanski [11] obtained the following result:
For n ≥ 2, let R be a n-torsion-free semiprime ring with identity 1 and F, d:
R → R be additive mappings. Let β be an endomorphism of R with β(1) = 1, and
let α be an automorphism of R. Assume for all x ∈ R, F (xn) = F (x)α(xn−1) +
n−1
∑

j=1

β(xj)d(x)α(xn−j−1), where α(x0) = 1 = β(x0). Then d is an (α, β)-derivation

of R and F is a generalized (α, β)-derivation of R with respect to d. Further, if d

is assumed to be an (α, β)-derivation of R, then one need assume only that α is an
unital endomorphism of R. If F : R → R is a generalized Jordan (α, β)-derivation
of R associated with Jordan (α, β)-derivation d: R → R, then it is easy to see that
F is a generalized Jordan (α, β)-derivation of R iff F is of the form F = d + H,
where d is a Jordan (α, β)-derivation and H is a Jordan left α-centralizer of R.
Thus, we can write H = F − d.

In the proof of Theorem 3.1 below, we use this technique which can be regarded
as a contribution to the theory of α-centralizers in rings. It is also to remark that
our approach differs from those used by C. Lanski in [11]. Here, our main intention
is to prove Lanski’s result mentioned above for arbitrary semiprime rings (without
assuming R has an identity element) in the case n = 2 which includes the result of
J. Vukman [ [13], Theorem 1]. In fact, we obtain the following result:
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Theorem 3.1 Let R be a 2-torsion-free semiprime ring. Suppose that α, β are
endomorphisms of R such that α is an automorphism and d is a Jordan (α, β)-
derivation of R. If F : R → R is a generalized Jordan (α, β)-derivation on R, then
F is a generalized (α, β)-derivation on R.

Proof: We are given that F is a generalized Jordan (α, β)-derivation. Therefore,
we have

F (x2) = F (x)α(x) + β(x)d(x), for all x ∈ R. (22)

In equation (22), we take d as a Jordan (α, β)-derivation on R. Since R is a
2-torsion-free semiprime ring, so in view of Lemma 2.1, d is an (α, β)-derivation on
R. Now we write H = F − d. Then, find that

H(x2) = (F − d)(x2) = F (x2) − d(x2)
= F (x)α(x) + β(x)d(x) − d(x)α(x) − β(x)d(x)
= F (x)α(x) − d(x)α(x)
= (F (x) − d(x))α(x)
= H(x)α(x), for all x ∈ R.

(23)

This implies that H(x2) = H(x)α(x), for all x ∈ R. That is, H is a Jordan
left α-centralizer. Thus, by Theorem 2.2, one can conclude that H is a left α-
centralizer. Therefore, we prove that F can be written as F = H + d, where d is
an (α, β)-derivation and H is a left α-centralizer on R. Hence, F is a generalized
(α, β)-derivation on R. This completes the proof. 2

As an immediate consequences of above theorem, we have the following:

Corollary 3.1A [ [13], Theorem 1] Let R be a 2-torsion-free semiprime ring and let
F : R → R be a generalized Jordan derivation. Then F is a generalized derivation.

Corollary 3.1B Let R be a 2-torsion-free prime ring. Suppose that α, β are endo-
morphisms of R such that α is an automorphism and d is a Jordan (α, β)-derivation
of R. If F : R → R is a generalized Jordan (α, β)-derivation on R, then F is a
generalized (α, β)-derivation on R.

Corollary 3.1C [ [10], Theorem 2.5] Let R be a 2-torsion-free prime ring and let
F : R → R be a generalized Jordan derivation. Then F is a generalized derivation.

We end our discussion with the following example which shows that the men-
tioned condition in the hypotheses of Theorem 3.1 is crucial:

Example 3.1 Consider the ring R′, as in Example 2.1.

Next, let R =







r =





0 a b

0 0 a

0 0 0



 | ∀a, b ∈ R′







. Define maps F, d: R → R

and α, β: R → R, for every r ∈ R as follows:
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F (r) =





0 0 b

0 0 0
0 0 0



, δ(r) =





0 a 0
0 0 0
0 0 0



, α(r) =





0 −a b

0 0 −a

0 0 0



, β(r) =





0 −a −b

0 0 −a

0 0 0



.

Then, it is straightforward to check that F is a generalized Jordan (α, β)-
derivation but not a generalized (α, β)-derivation on R.

Acknowledgments

The authors thank the referee for the careful reading of the paper. Alos, the au-
thors would like to thank Professors C. Lanski and M. Ashraf for useful suggestions
and many valuable conversations.

References
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