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On the asymptotic behavior for a nonlocal diffusion equation with an

absorption term on a lattice

Diabate Nabongo and Théodore K. Boni

abstract: In this paper, we consider the following initial value problem
{

U
′

i (t) =
∑

j∈B Ji−j(Uj(t) − Ui(t)) − U
p
i (t), t ≥ 0, i ∈ B,

Ui(0) = ϕi > 0, i ∈ B,

where B is a bounded subset of Z
d, p > 1, Jh = (Ji)i∈B is a kernel which is

nonnegative, symmetric, bounded and
∑

j∈Zd Jj = 1. We describe the asymptotic
behavior of the solution of the above problem.
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1. Introduction

Consider the following initial value problem

U
′

i (t) =
∑

j∈B

Ji−j(Uj(t) − Ui(t)) − U
p
i (t), t ≥ 0, i ∈ B, (1)

Ui(0) = ϕi > 0, i ∈ B, (2)

where B is a bounded subset of Z
d, p > 1, Jh = (Ji)i∈B is a kernel which is

nonnegative, symmetric, bounded and
∑

j∈Zd Jj = 1. Recently, nonlocal diffusion
problems have been the subject of investigations of many authors (see [1], [2], [4]–
[7], [13]–[18], [21], [22], [24], [31], [32] and the references cited therein). Nonlocal
evolution equations of the form

ut =

∫

RN

J(x − y)(u(y, t) − u(x, t))dy

and variations of it have been used by many authors to model diffusion processes
(see [4]–[6], [13], [21]) and neuronal activity (see [19], [23], [28], [29]). Let us notice
that certain nonlocal problems are described by discrete equations (see [5], [13])
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and it is also important to have informations about the asymptotic behavior of
continuous solutions if we have a continuous nonlocal problems or discrete solutions
if the problems are represented by discrete equations. The solution u(x, t) can be
interpreted as the density of a single population at the point x at time t and J(x−y)
as the probability distribution of jumping from location y to location x. Then the
convolution (J ∗u)(x, t) =

∫

RN J(y−x)u(y, t)dy is the rate at which individuals are
arriving to position x from all other places and −u(x, t) = −

∫

RN J(y − x)u(x, t)dy

is the rate at which they are leaving location x to travel to all other sites (see [21]).
For the discrete case

U
′

i (t) = (J ∗ U)i(t) − Ui(t), t ≥ 0, i ∈ Z
d,

where (J ∗U)i =
∑

j∈Zd Ji−jUj , the component of the solution Uh(t) = (Uj(t))j∈B

in i, namely Ui(t) can be interpreted as the density of a single population at the
point i at time t and Ji−j can be interpreted as the probability distribution of
jumping from location i to location j. Then the convolution (J ∗U)i(t) is the rate
at which individuals are arriving to position i from all other places and −Ui(t) is
the rate at which they are leaving location i to travel to all other sites (see [21]).
In this paper, we are interested in the asymptotic behavior of the solution of (1)–
(2). For local diffusion problems, the asymptotic behavior of solutions has been
the subject of investigations of several authors (see [3], [9]–[12], [26], [27] and the
references cited therein). For nonlocal problems, in the continuous case, the authors
in [14] and [31] have studied the asymptotic behavior of solutions. For our problem,
in the case where there is no absorption term, the authors in [25] have studied
the asymptotic behavior of the solution when B = Z

d. Our paper is written in
the following manner. In the next section, we prove the local existence and the
uniqueness of the solution. Finally in the last section, we show that the solution
Uh of (1)–(2) tends to zero as t approaches infinity and describe its asymptotic
behavior as t → +∞.

2. Local existence and uniqueness

In this section, we shall establish the existence and the uniqueness of the solu-
tion Uh(t) of (1)–(2) on (0, T ) for small T .
Let t0 > 0 be fixed and define the function space Yt0 = {Uh;Uh ∈ C([0, t0], Z

d)}
equipped with the norm defined by ‖Uh‖Yt0

= max0≤t≤t0 ‖Uh‖∞ for Uh ∈ Yt0

where ‖Uh(t)‖∞ = supi∈B |Ui(t)|. It is easy to see that Yt0 is a Banach space.
Introduce the set Xt0 = {Uh;Uh ∈ Yt0 , ‖u‖Yt0

≤ b0}, where b0 = 2‖ϕh‖∞ + 1. We
observe that Xt0 is a nonempty bounded closed convex subset of Yt0 . Define the
map R as follows

R : Xt0 −→ Xt0 ,

R(Vh)i = ϕi +

∫ t

0

(
∑

j∈B

Ji−j(Vj(s) − Vi(s)))ds −

∫ t

0

V
p
i (s)ds, i ∈ B.
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Theorem 2.1. Assume that ϕh ∈ Yt0 . Then R maps Xt0 into Xt0 and R is strictly
contractive if t0 is appropriately small relative to ‖ϕh‖∞.

Proof. A straightforward computation reveals that

|R(Vh)i(t) − ϕi| ≤ 2‖Vh‖Yt0
t + ‖Vh‖

p
Yt0

t,

which implies that ‖R(Vh)‖Yt0
≤ ‖ϕh‖∞ + 2t0 + b

p
0t0. If

t0 ≤
b0 − ‖ϕh‖∞

2b0 + b
p
0

, (3)

then

‖R(Vh)‖Yt0
≤ b0.

Therefore if (3) holds, then R maps Xt0 into Xt0 .
Now, we are going to prove that the map R is strictly contractive. Let Vh, Zh ∈ Xt0 .
Setting αh = Vh − Zh, we discover that

|(R(Vh)i(t) − R(Zh)i(t)| ≤ |

∫ t

0

(
∑

j∈B

Ji−j(αj(s) − αi(s)))ds|

+|

∫ t

0

(V p
i (s) − Z

p
i (s))ds|.

Use Taylor’s expansion to obtain

|(R(Vh)i(t) − R(Zh)i(t)| ≤ 2‖αh‖Yt0
t + t‖Vh − Zh‖Yt0

p‖βh‖
p−1
Yt0

,

where βi is an intermediate value between Vi and Zi. We deduce that

‖R(Vh) − R(Zh)‖Yt0
≤ 2‖αh‖Yt0

t0 + t0‖Vh − Zh‖Yt0
p‖βh‖

p−1
Yt0

,

which implies that

‖R(Vh) − R(Zh)‖Yt0
≤ (2t0 + t0pb

p−1
0 )‖Vh − Zh‖Yt0

.

If t0 ≤ 1

4+2pb
p−1

0

, then ‖R(Vh) − R(Zh)‖Yt0
≤ 1

2‖Vh − Zh‖Yt0
.

Hence, we see that R(Vh) is a strict contraction in Yt0 and the proof is complete.
2

It follows from the contraction mapping principle that for appropriately chosen
t0 ∈ (0, 1), R has a unique fixed point Uh(t) ∈ Yt0 which is a solution of (1)–(2).
To extend the solution to [0,∞), we may take as initial data Uh(t0) ∈ Z

d and
obtain a solution in [0, 2t0]. Iterating this procedure, we get a solution defined in
[0,∞).



22 Diabate Nabongo and Théodore K. Boni

3. Asymptotic behavior of solutions

In this section, we show that the solution Uh(t) of (1)-(2) tends to zero as t

approaches infinity. We also give its asymptotic behavior as t → ∞.

Before starting, let us prove the following lemma which is a version of the maximum
principle for discrete nonlocal problems.

Lemma 3.1. Let bh ∈ C0([0,∞), Zd) and let Uh ∈ C1([0,∞), Zd) satisfying the
following inequalities

U
′

i (t) −
∑

j∈B

Ji−j(Uj(t) − Ui(t)) + bi(t)Ui(t) ≥ 0, i ∈ B, t > 0,

Ui(0) ≥ 0, i ∈ B.

Then, we have Ui(t) ≥ 0, i ∈ B, t > 0.

Proof. Let T0 < ∞ and let λ be such that bi(t) − λ > 0 for t ∈ [0, T0], i ∈ B.
Introduce the vector Zh(t) = eλtUh(t) and let m = mint∈[0,T0] ‖Zh(t)‖inf where
‖Zh(t)‖inf = min0≤i≤I Zi(t). Then, there exists t0 ∈ [0, T0] such that m = Zi0(t0)
for a certain i0 ∈ B. We get Zi0(t0) ≤ Zi0(t) for t ≤ t0 and Zi0(t0) ≤ Zj(t0) for
j ∈ B, which implies that

Z
′

i0
(t0) = lim

k→0

Zi0(t0) − Zi0(t0 − k)

k
≤ 0, (4)

and
∑

j∈B

Ji0−j(Zj(t0) − Zi0(t0)) ≥ 0. (5)

Using the first inequality of the lemma, it is not hard to see that

Z
′

i0
(t0) −

∑

j∈B

Ji0−j(Zj(t0) − Zi0(t0)) + (bi0(t0) − λ)Zi0(t0) ≥ 0. (6)

It follows from (4)–(6) that (bi0(t0)−λ)Zi0(t0) ≥ 0, which implies that Zi0(t0) ≥ 0
because bi0(t0) − λ > 0. We deduce that Uh(t) ≥ 0 for t ∈ [0, T0], which leads us
to the result. 2

Another version of the maximum principle for discrete nonlocal problems is the
following comparison lemma.

Lemma 3.2. Let Uh, Vh ∈ C1([0,∞), Zd) such that

U
′

i (t) −
∑

j∈B

Ji−j(Uj(t) − Ui(t)) + U
p
i (t)

> V
′

i (t) −
∑

j∈B

Ji−j(Vj(t) − Vi(t)) + V
p
i (t), i ∈ B, t > 0,

Ui(0) > Vi(0), i ∈ B.

Then, we have Ui(t) > Vi(t), i ∈ B, t > 0.
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Proof. Let Wh(t) = Uh(t) − Vh(t) and let t0 be the first t ∈ (0,∞) such that
Wh(t) > 0 for t ∈ [0, t0) but Wi0(t0) = 0 for a certain i0 ∈ B. We have

∑

j∈B

Ji0−j(Wj(t0) − Wi0(t0)) =
∑

j∈B

Ji0−jWj(t0) > 0

because Wj(t0) ≥ 0 for j ∈ B and Wh(t0) 6= 0. Obviously

W
′

i0
(t0) = lim

k→0

Wi0(t0) − Wi0(t0 − k)

k
≤ 0.

It follows that

W
′

i0
(t0) −

∑

j∈B

Ji0−j(Wj(t0) − Wi0(t0)) + U
p
i0

(t0) − V
p
i0

(t0) ≤ 0.

But, this contradicts the first strict differential inequality of the lemma and the
proof is complete. 2

Remark 3.1. If we modify slightly the proof of Lemma 3.2, it is not hard to see
that Uh(t) > 0 for t ≥ 0 where Uh(t) is the solution of (1)–(2).

Introduce the function

µ(x) = (C0 + x)p − λ(C0 + x),

where C0 = ( 1
p−1 )

1

p−1 and λ = 1
p−1 , which is crucial for the asymptotic behavior

of solutions. We have µ(0) = 0 and µ′(0) = 1. We deduce that µ(ε) > 0 and
µ(−ε) < 0 for ε small enough.
The lemma below shows that the solution Uh of the problem (1)-(2) tends to zero
as t approaches infinity.

Lemma 3.3. Let Uh(t) be the solution of (1)–(2). Then, we have

lim
t→∞

Ui(t) = 0, i ∈ B.

Proof. Since ϕi ≥ 0, i ∈ B, Lemma 3.1 implies that Ui(t) ≥ 0, i ∈ B, t > 0.
Introduce the vector Zh(t) defined as follows Zi(t) = C0t

−λ, i ∈ B, t ≥ 1, where

λ = 1
p−1 and C0 = ( 1

p−1 )
1

p−1 . A straightforward computation reveals that

Z
′

i(t) −
∑

j∈B

Ji−j(Zj(t) − Zi(t)) + Z
p
i (t) = 0, t ≥ 1,

Zi(1) = C0, i ∈ B.

Let k > 1 be so large that

kZi(1) = kC0 > Ui(1), i ∈ B.
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Obviously kZ
p
i < (kZi)

p which implies that

kZ
′

i −
∑

j∈B

Ji−j(kZj(t) − kZi(t)) + (kZi)
p > 0, i ∈ B, t ≥ 1,

kZi(1) = kC0 > Ui(1), i ∈ B.

Lemma 3.2 implies that

0 ≤ Ui(t) < kZi(t), i ∈ B, t ≥ 1.

Hence, we have

0 ≤ Ui(t) ≤ kC0t
−λ, i ∈ B, t ≥ 1.

We deduce that

lim
t→+∞

Ui(t) = 0, i ∈ B,

and the proof is complete. 2

Now, let us give the asymptotic behavior of the solution Uh. We have the following
result.

Theorem 3.1. Let Uh(t) be the solution of (1)-(2). Then, we have

Ui(t) = C0t
−λ(1 + o(1)), i ∈ B as t → ∞,

where C0 = ( 1
p−1 )

1

p−1 and λ = 1
p−1 .

The proof of the above theorem is based on the following lemmas.

Lemma 3.4. Let Uh(t) be the solution of (1)-(2). Then, for any ε > 0 small
enough, there exist two times τ ≥ T ≥ 1 such that

Ui(t + τ) ≤ (C0 + ε)(t + T )−λ + (t + T )−λ−1, i ∈ B, t ≥ 0.

Proof. Introduce the vector Wh defined as follows

Wi(t) = (C0 + ε)t−λ + t−λ−1, i ∈ B, t ≥ 1.

A direct calculation yields

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t)

= t−λ−1
(

−λ(C0 + ε) − (λ + 1)t−1
)

+ t−λp(C0 + ε + t−1)p.

Due to the fact that pλ = λ + 1, we arrive at

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t)

= t−λ−1
(

−λ(C0 + ε) − (λ + 1)t−1 + (C0 + ε + t−1)p
)

.
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Applying Taylor’s expansion, we get (C0 + ε + t−1)p = (C0 + ε)p + M(t)t−1, where
M(t) is a bounded function for t ≥ 1. Hence, for t ≥ 1, we find that

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t)

= t−λ−1(µ(ε) − (λ + 1)t−1 + M(t)t−1).

Since ε > 0, we discover that µ(ε) > 0. Therefore, there exists a positive time
T ≥ 1 such that

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t) > 0, i ∈ B, t ≥ T.

Since Ui(t) goes to zero as t approaches infinity for i ∈ B, owing to Lemma 3.3,
there exists τ ≥ T such that

Ui(τ) < Wi(T ), i ∈ B.

Setting Zi(t) = Ui(t + τ − T ), we easily see that

Z
′

i(t) −
∑

j∈B

Ji−j(Zj(t) − Zi(t)) + Z
p
i (t) = 0, i ∈ B, t ≥ T,

Zi(T ) = Ui(τ) < Wi(T ), i ∈ B.

Comparison Lemma 3.2 implies that

Zi(t) ≤ Wi(t), i ∈ B, t ≥ T.

Hence

Ui(t + τ − T ) ≤ (C0 + ε)t−λ + t−λ−1, i ∈ B, t ≥ T.

We deduce that

Ui(t + τ) ≤ (C0 + ε)(t + T )−λ + (t + T )−λ−1, i ∈ B, t ≥ 0,

and the proof is complete. 2

Lemma 3.5. Let Uh(t) be the solution of (1)-(2). Then, for any ε > 0 small
enough, there exists a time τ ≥ 1 such that

Ui(t + 1) ≥ (C0 + ε)(t + τ)−λ + (t + τ)−λ−1, i ∈ B, t ≥ 0.

Proof. From Remark 3.1, we know that Uh(t) > 0 for t ≥ 0. Introduce the vector
Wh(t) such that

Wi(t + 1) = (C0 − ε)t−λ + t−λ−1, i ∈ B, t ≥ 1.
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As in the proof of Lemma 3.4, we find that

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t)

= t−λ−1(µ(−ε) − (λ + 1)t−1 + M(t)t−1)

where M(t) is a bounded function for t ≥ 1. Since −ε < 0, we discover that
µ(−ε) < 0. Consequently, there exists a positive time T ≥ 1 such that

W
′

i (t) −
∑

j∈B

Ji−j(Wj(t) − Wi(t)) + W
p
i (t) < 0, i ∈ B, t ≥ T.

Since limt→∞ Wi(t) = 0, i ∈ B, there exists a time τ ≥ T such that

Wi(τ) < Ui(1), i ∈ B.

Setting Zi(t) = Wi(t + τ − 1), i ∈ B, it is not difficult to see that

Z
′

i(t) −
∑

j∈B

Ji−j(Zj(t) − Zi(t)) + Z
p
i (t) < 0, i ∈ B, t ≥ 1,

Zi(1) = Wi(τ) < Ui(1), i ∈ B.

It follows from Comparison Lemma 3.2 that

Zi(t) < Ui(t), i ∈ B, t ≥ 1,

which implies that

Ui(t) ≥ (C0 − ε)(t + τ − 1)−λ + (t + τ − 1)−λ−1, i ∈ B, t ≥ 1.

We deduce that

Ui(t + 1) ≥ (C0 − ε)(t + τ)−λ + (t + τ)−λ−1, i ∈ B, t ≥ 0

and the proof is complete. 2

Now, we are in a position to prove the main result of this section.
Proof of Theorem 3.1. It follows from Lemmas 3.4 and 3.5 that

C0 − ε ≤ lim
t→∞

inf(
Ui(t)

t−λ
) ≤ lim

t→∞
sup(

Ui(t)

t−λ
) ≤ C0 + ε,

which gives the desired result. 2
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17. C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, Boundary fluxes for non-local diffusion,
J. Differential Equations, 234 (2007), 360-390.

18. C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation
with Neumann boundary conditions by nonlocal diffusion problems, Arch. Ration. Mech.
Anal., 187(1) (2008), 137-156.

19. R. Curtu and B. Ermentrout. Pattern formation in a network of excitatory and inhibitory
cells with adaptation, SIAM J. Appl. Dyn. Syst., 3 (2004), 191-231.
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21. P. Fife. Some nonclassical trends in parabolic and parabolic-like evolution, Trends in nonlin-
ear analysis, 153-191, Springer, Berlin, (2003).

22. P. Fife and X. Wang. A convolution model for interfacial motion: the generation and propa-
gation of internal layers in higher space dimensions, Adv. Differential Equations, 3(1) (1998),
85-110.



28 Diabate Nabongo and Théodore K. Boni
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