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Quasilinear evolution equations of the third order ∗

Andrei V. Faminskii

Abstract: The present paper is a survey concerned with certain aspects of solv-
ability and well-posedness of initial and initial-boundary value problems for various
quasilinear evolution equations of the third order. This class includes, for example,
Korteweg – de Vries (KdV) and Zakharov – Kuznetsov (ZK) equations.
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1. Korteweg – de Vries equation. Initial value problem

The KdV equation
ut + uxxx + uux = 0 (1)

is a model equation describing one-dimensional nonlinear wave propagation in dis-
persive media, [60]. In fact, it became famous in the 60-es of the XX-th century
due to discovery of the so-called method of inverse scattering transform just for
this equation, [41].

The most typical physical situation, where KdV is used, is wave propagation
on a surface of shallow water in a narrow long channel. When this channel can be
considered as ”infinite”, an initial value problem with initial data

u(0, x) = u0(x) (2)

for x ∈ R appears in a natural way.
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The inverse scattering transform method, in particular, can be used to establish
existence results for the problem (1), (2) and it was realized, for example, in [69],
[71], [64], [59], [16], [15], [66], [46], [17], [47]. However, this method is beyond
the scope of the present paper.

In a parallel way this problem was investigated by methods more traditional for
the theory of partial differential equations. First results on global solvability and
well-posedness, that is in the strip ΠT = (0, T ) × R for an arbitrary T > 0, were
based on conservation laws for (1)
∫

R
u2 dx = const,

∫

R
(u2

x −
1
3
u3) dx = const,

∫

R
(u2

xx +
5
6
u2uxx +

5
36

u4) dx = const

(3)
(in fact, the amount of conservation laws is infinite), [45], [73], [70], [75], [78],
[1], [67], [2], [48] etc. In particular, for u0 ∈ Hs(R), s = 1 or s ≥ 2, existence of
global solutions in L∞(0, T ;Hs(R)) was proved. Uniqueness was obtained via the
following simple scheme. If u(t, x) and ũ(t, x) are two solutions of the problem (1),
(2) with the same initial function u0, then their difference w ≡ u − ũ satisfies the
equation

wt + wxxx + wũx + uwx = 0

and after multiplying this equality by 2w(t, x) and integrating with respect to x it
is very easy to derive the inequality

d

dt

∫

R
w2 dx ≤ sup

x
|2ũx − ux|

∫

R
w2 dx, (4)

whence u and ũ coincide provided ux, ũx ∈ L1(0, T ; L∞(R)). Thus the space
L∞(0, T ; Hs(R)) for s ≥ 2 was proved to be the class of global well-posedness.

For u0 ∈ L2(R) such an approach is not effective, because the only first con-
servation law (3) can be used here, and it is not sufficient to construct a desired
solution via certain passing to a limit, because only weak compactness in L2 is
provided.

The further progress in the study of the problem (1), (2) was obtained due to
discovery of an effect of local smoothing of solutions, [49], [61]. Multiplying (1)
by 2u(t, x)ρ(x) for certain smooth, nonnegative and nondecreasing function ρ one
can easily derive after integration, that

d

dt

∫

R
u2ρ dx + 3

∫

R
u2

xρ′ dx−
∫

R
u2ρ′′′ dx− 2

3

∫

R
u3ρ′ dx = 0, (5)

and by the appropriate choice of ρ establish the estimate

λ(u; T ) = sup
m∈R

∫ T

0

∫ m+1

m

u2
x dxdt ≤ c(T, ‖u0‖L2(R)). (6)

This estimate made it possible in [49], [61] to prove global existence for u0 ∈ L2(R)
in the class of functions

{u ∈ L∞(0, T ;L2(R)), λ(u;T ) < ∞}.
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In these papers results on global well-posedness (based on (5)) were also established
in weighted L2 spaces with weight functions increasing as x → +∞, namely, as
exp x in [49] and xβ for positive β in [61]. Moreover, it was shown, that in the
case of sufficiently rapid growth of these weight functions solutions became unique
in these classes. In particular, it was proved in [61], that the class of functions

{u ∈ L∞(0, T ; L2(R)), xβu ∈ L∞(0, T ;L2(R+)), β ≥ 3/4}
was a class of global well-posedness for the problem (1), (2). The approach to
establish uniqueness in such a class differed essentially from (4) and was based on
invertion of the linear part of the equation (1), that is a solution of (1), (2) was
considered as a solution of the linear initial value problem for the equation

ut + uxxx = f(t, x) (7)

for f ≡ −uux with the same initial data (2). The results of [49], [61] were improved
and generalized later in [25], [42], [43], [76].

In the papers [50], [51], [53] due to more careful study of the linear operator
∂t + ∂3

x classes of global well-posedness for the problem (1), (2) were constructed
when u0 ∈ Hs(R)), s ≥ 1. In particular, a sharp version of the local smoothing
effect was obtained. Let S(t, x; u0) be a solution of the problem (7), (2) for f ≡ 0,
given by the formula

S(t, x;u0) = F−1
x

[
eitξ3

û0(ξ)
]
(x). (8)

Obviously, for all t ∈ R
‖S(t, ·; u0)‖Hs(R) = ‖u0‖Hs(R), s ∈ R. (9)

Moreover, changing variables λ = ξ3 one can derive, that

S(t, x; u0) =
1
3
F−1

t

[
eiλ1/3xλ−2/3û0(λ1/3)

]
(t), (10)

and then with the use of the Parseval equality, that for all x ∈ R
‖Sx(·, x; u0)‖L2(R) = c‖λ−1/3û0(λ1/3)‖L2(R) = c1‖u0‖L2(R). (11)

On the base of both these properties, Strichartz type estimates (obtained in
[42]) and maximal function type estimates for the function S, the following class of
global well-posedness for (1), (2) was introduced in [51] (for simplicity we consider
the case s = 1):

Z1(ΠT ) = {u ∈ C([0, T ]; H1(R)), uxx ∈ Cb(R; L2(0, T )),
ux ∈ L4(0, T ;L∞(R)), u ∈ L2(R;L∞(0, T ))}.

The proof of local existence was based on the corresponding estimate on a solution
of the linear problem (7), (2)

‖u‖Z1(ΠT ) ≤ c
(‖u0‖H1(R) + ‖f‖L1(0,T ;H1(R))

)
(12)
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and on the estimate of the nonlinear term

‖uux‖L2(0,T ;H1(R)) ≤ c‖u‖2Z1(ΠT ). (13)

Note, that in [53] the contraction principle based on (12), (13) was used to construct
a solution of (1), (2) in Z1(ΠT ) for small T as a fixed point of the map u = Λv, where
u is a solution of the linear problem (7), (2) for f ≡ −vvx. Therefore, uniqueness
of such a solution was automatic. Global well-posedness succeeded from the first
two conservation laws (3) (and the third one was not used even for s > 1).

In the paper [9] special functional spaces, associated with the linear operator
∂t + ∂3

x were introduced, namely, Xs for s ≥ 0 was a space of functions such, that

(1 + |ξ|)s
[
(1 + |λ− ξ3|)1/2 + χ(ξ)(1 + |λ|)α

]
û(λ, ξ) ∈ L2(R) (14)

for some α > 1/2, where χ was the characteristic function of the interval (−1, 1),
Ys was a space of functions such, that

(1 + |ξ|)s
[
(1 + |λ− ξ3|)−1/2 + χ(ξ)(1 + |λ|)α−1

]
û(λ, ξ) ∈ L2(R), (15)

(1 + |ξ|)s(1 + |λ− ξ3|)−1û(λ, ξ) ∈ L2(Rξ; L1(Rλ)). (16)

It was proved, that for a solution of the linear problem (7), (2) and for an arbitrary
function θ from C∞0 (R)

‖θ(t)u‖Xs ≤ c(θ)
(‖u0‖Hs(R) + ‖f‖Ys

)
(17)

and for the nonlinear term
‖uux‖Ys ≤ c‖u‖2Xs

(18)

and so first local well-posedness was established via the contraction principle and
then with the use of the first conservation law (3) – the global one in Xs(ΠT ) for
u0 ∈ Hs(R), s ≥ 0 (here and further Xs(Ω) for a domain Ω ⊂ R2 is interpreted in
the restriction sense).

Later this result was generalized in [54], [55], [19] for spaces of negative indices.
Finally, in [20] global well–posedness in the Bourgain-type spaces was established
for u0 ∈ Hs(R), s > −3/4, but this theory is beyond the scope of the present
survey.

Also beyond the scope of the survey are periodic solutions and KdV-type equa-
tions with more general nonlinearity g(u)ux (see, for example, [75], [67], [1], [49],
[25], [43], [53], [20], [10]).

2. Korteweg – de Vries equation. Initial-boundary value problems

When a domain of wave propagation, for example, a narrow channel, is consid-
ered as bounded (from only one or both sides) the initial value problem for KdV
must be substituted by initial-boundary value ones. The most simple and typical
domains for such problems are the right half-strip Π+

T = (0, T )×R+, the left half-
strip Π−T = (0, T ) × R− and the bounded rectangle QT = (0, T ) × (0, 1). Besides
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the initial profile (2) boundary conditions must be set and they are different for
different domains. We consider here the following boundary data:
1) for the problem in Π+

T one condition on the left boundary

u(t, 0) = u1(t), (19)

2) for the problem in Π−T two conditions on the right boundary

u(t, 0) = u2(t), ux(t, 0) = u3(t), (20)

3) for the problem in QT one condition on the left boundary and two conditions
on the right boundary

u(t, 0) = u1(t), u(t, 1) = u2(t), ux(t, 1) = u3(t). (21)

Such a difference between conditions on the left and the right boundaries originates
from different properties of the linear operator ∂t + ∂3

x at +∞ and at −∞.
The study of initial-boundary value problems for the KdV equation was per-

formed in a parallel way (with certain delay) to the study of the initial value prob-
lem and used the same ideas. However, the presence of boundaries and boundary
conditions produced new items and difficulties.

Consider, for example, an estimate in L2. Let I be either R, R+, R− or (0, 1)
and let ∂I denotes the finite part of its boundary. Let u(t, x) be a solution of the
equation (1) in (0, T )× I, sufficiently smooth and decaying at infinity. Multiplying
(1) by 2u and integrating over I one obtains the equality

d

dt

∫

I

u2 dx +
(
2uuxx − u2

x +
2
3
u3

)∣∣
∂I

= 0. (22)

For I = R (22) coincides with the first conservation law (3). For the considered
initial-boundary value problems in the case u|∂I = 0 the estimate on the solution
u in L2(I) uniform with respect to t succeeds from (22). Just in the case of the
homogeneous boundary conditions first global existence results were established
in [74], [56], [57] (see also [62]). But in the case of non-homogeneous boundary
conditions the presence of the term uuxx|∂I makes it impossible to derive such
an estimate directly from (22). Then it is quite natural to introduce an auxiliary
function ϕ(t, x) such, that ϕ|∂I = u|∂I , and define a new function U(t, x) ≡ u(t, x)−
ϕ(t, x). The function U satisfies the equation

Ut + Uxxx + UUx + (ϕU)x = F ≡ −(ϕt + ϕxxx + ϕϕx), (23)

so multiplying (23) by 2U and integrating over I we find, that

d

dt

∫

I

U2 dx− U2
x

∣∣
∂I

+
∫

I

ϕxU2 dx = 2
∫

I

FU dx. (24)

This approach implies, that the function ϕ, which is an extension of the values of
the solution itself at the boundary into the corresponding domain, can be chosen
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such, that its properties ensure a possibility of derivation of a relevant estimate on
the solution in L2(I) from (24). In particular, it seems natural, that ϕ must satisfy
the following condition

ϕx ∈ L1(0, T ;L∞(I)). (25)

Thus, two combined questions naturally arise: 1) what properties of the boundary
data can provide such properties of the function ϕ, 2) what is the optimal method
to construct such an extension?

In fact, in any theory of well-posedness the problem of optimality of conditions
on initial and boundary data is very important. In order to try to answer somehow
such a question for the considered problems let us consider the function S, defined
by the formula (8). Similarly to (11) it can be easily shown, that for all x ∈ R and
s ∈ R

‖D1/3
t S(·, x;u0)‖Hs/3(R) = ‖Sx(·, x; u0)‖Hs/3(R) ∼ ‖u0‖Hs(R). (26)

Therefore, one can assume, that conditions of the type u0 ∈ Hs, u1, u2 ∈ H(s+1)/3,
u3 ∈ Hs/3 are natural here. Of course, the problem is to establish existence and
well-posedness results under such conditions.

Another problem is to obtain a priori estimates on solutions of the considered
problems in more smooth spaces, for example, analogous to the last two conserva-
tion laws (3). The difficulties on this way can be shown even for the linear equation
(7) in the case f ≡ 0 and for the zero boundary data (19)–(21). Multiplying (7)
by −2uxx(t, x) and integrating over I we derive the equality

d

dt

∫

I

u2
x dx− u2

xx

∣∣
∂I

= 0 (27)

and so the desired estimate on ux in L2(I) can be obtained only for the problem
in Π+

T . Next, multiplying (7) by 2uxxxx(t, x) and integrating over I we derive the
equality

d

dt

∫

I

u2
xx dx− 2utxuxx

∣∣
∂I

= 0 (28)

and here the estimate on uxx in L2(I) can be obtained only for the problem in Π−T .
The problems of global solvability and well-posedness for the considered initial-

boundary value problems under non-homogeneous boundary data were considered
in [3], [26], [4], [29], [30], [31], [32], [33], [6], [21], [7], [36], [37], [44], [8],
[39]. These papers consequently developed the theory and improved results of the
preceding ones.

The Bourgain-type spaces for initial-boundary value problems for KdV were
first introduced in [21] in the following way. Instead of (14) the spaces Xs were
defined by the property

(1 + |λ|1/3 + |ξ|)s
[
(1 + |λ− ξ3|)b + χ(ξ)(1 + |λ|)α

]
û(λ, ξ) ∈ L2(R) (29)

for some b ∈ (0, 1/2), α > 1/2, while instead of (15), (16) the spaces Ys were defined
by

(1 + |λ|1/3 + |ξ|)s
[
(1 + |λ− ξ3|)−b + χ(ξ)(1 + |λ|α−1

]
û(λ, ξ) ∈ L2(R) (30)
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(in fact, in [21] the Sobolev spatial weight (1 + |ξ|)s was used as for the initial
value problem, but in [37] and [39] it was proposed to use the joint spatial and
temporal weight (1 + |λ|1/3 + |ξ|)s for more convenience). It was shown in [21],
that the inequality (18) was valid for such modified spaces if b ≥ 7/16.

Now we want to describe the modern state of the theory. In [37], [39] the
following results were established.

The problem (1), (2), (19) is globally well-posed in Xs(Π+
T ) (where 7/16 ≤ b <

1/2) for s ≥ 0, s 6= 3m+1/2, m = 0, 1, . . . , if u0 ∈ Hs(R+), u1 ∈ H(s+1)/3+ε(0, T ),
where ε > 0 is arbitrary small for s = 0 and ε = 0 for s > 0, and certain compati-
bility conditions are satisfied in the point (0, 0).

The problem (1), (2), (20) is globally well-posed in Xs(Π−T ) (where 7/16 ≤ b <
1/2) for s ≥ 0, s 6= 3m + 1/2, s 6= 3m + 3/2, m = 0, 1, . . . , if u0 ∈ Hs(R−),
u2 ∈ H(s+1)/3+ε(0, T ), u3 ∈ Hs/3(0, T ), where ε > 0 is arbitrary small for s = 0
and ε = 0 for s > 0, and certain compatibility conditions are satisfied in the point
(0, 0).

The same result is valid for the problem in QT (1), (2), (21) (where also u1 ∈
H(s+1)/3+ε(0, T )).

So global well-posedness is established under natural assumptions on the bound-
ary data for s > 0 and ε-close to natural for s = 0. Note, that in [44] local
well–posedness was proved for all three problems under natural assumptions for
−3/4 < s ≤ 0. Note also, that certain results under these natural assumptions for
the first time appeared in [6], [21].

As for the initial value problem the proof of global well-posedness in [37], [39]
is based on local well-posedness, which is established via the contraction principle,
and global a priory estimates. Such an approach requires, first of all, the study
of the corresponding initial-boundary value problems for the linear equation (7).
Consider, for example, the problem in the right half-strip Π+

T . Then a solution is
constructed in the form

u(t, x) = w(t, x) + J(t, x; u1 − w|x=0), (31)

where w is a solution of the initial value problem (7), (2) and J(t, x; µ) is a solution
of the problem (7), (2), (19) for f ≡ 0, u0 ≡ 0, u1 ≡ µ. Such a function can be
referred as a ”boundary potential” for the homogeneous equation (7).

For the first time this potential was introduced in [14], where via the Laplace
transform it was shown, that for x > 0

J(t, x;µ) =
∫ t

0

3
t− τ

A′′
(

x

(t− τ)1/3

)
µ(τ) dτ, (32)

where
A(ϑ) =

1
2π

∫

R
ei(ξ3+ϑξ) dξ ≡ F−1

[
eiξ3

]
(ϑ) (33)

was the well-known Airy function. The alternative representation for the function
J is the following:

J(t, x; µ) = F−1
t

[
er(λ)xµ̂(λ)

]
(t), (34)
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where
r(λ) = −1

2
(
√

3|λ|1/3 + iλ1/3)

is the unique root of the algebraic equation

r3 + iλ = 0, λ ∈ R \ {0}, (35)

with the negative real part and a function µ is extended by zero for t < 0, [36].
It was shown in [37], that for b < 1/2 and an arbitrary function θ from C∞0 (R)

‖θ(t)J(·, ·;µ)‖Xs(Rt×Rx
+) ≤ c(θ)‖µ‖H(s+1)/3 (36)

and, therefore, similarly to (17) on the base of the representation (31)

‖u‖Xs(Π+
T ) ≤ c

(
‖u0‖Hs(R+) + ‖f‖Ys(Π+

T ) + ‖u1‖H(s+1)/3(0,T )

)
. (37)

This estimate combined with (18) provided an opportunity to establish local well-
posedness of the problem (1), (2), (19) under natural assumptions on the boundary
data by a standard argument.

Note, that the estimate of the (11), (26) type easily follows for the boundary
potential J from the formula (34), namely, for x ≥ 0, s ≥ 0

‖∂j
xJ(·, x;µ)‖Hs(R) ≤ c‖µ‖Hj/3+s(R). (38)

Moreover, the following analogue of (9) for the positive half-line is valid for the
function J : for t ∈ R, s ≥ 0

‖J(t, ·; µ)‖Hs(R+) ≤ c‖µ‖H(s+1)/3(R). (39)

The estimate (39) easily follows from the following fundamental inequality, estab-
lished in [6]: if a certain continuous function γ(ξ) satisfies an inequality <γ(ξ) ≤
−ε|ξ| for some ε > 0 and all ξ ∈ R, then

∥∥
∫

R
eγ(ξ)xf(ξ) dξ

∥∥
L2(Rx

+)
≤ c(ε)‖f‖L2(R), (40)

by the simple change of variables λ = ξ3 in (34).
Similar boundary potentials Q and R for the homogeneous linear equation (7)

were constructed with the use of the rest roots of the equation (35) in [39] for the
problem in Π−T (Q(·, 0−0; µ) = Rx(·, 0−0;µ) = µ, Qx(·, 0−0; µ) = R(·, 0−0; µ) =
0), and local well-posedness for the problem (1), (2), (20) was proved under natural
assumptions on the boundary data.

Moreover, the potentials J , Q, R were used in [39] to construct a suitable
solution of the linear problem in QT (7), (2), (21) (the idea of such an approach
appeared first in [44]) and similar result on local well-posedness of the problem
(1), (2), (21) was established under natural assumptions on the boundary data.
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The boundary potential J was also used in [37], [39] to construct the auxiliary
function ϕ and use it in (23), (24) to obtain a global estimate in L2. More precisely,

ϕ(t, x) ≡




J(t, x;u1) for Π+
T ,

J(−t,−x; ũ2) for Π−T ,
J(t, x; u1)η(1− x) + J(−t, 1− x; ũ2)η(x) for QT ,

(41)

where ũ2(t) ≡ u2(−t) and η is a certain ”cut-off” function, η(0) = 0, η(1) = 1.
The properties (38), (39) for s = 0 were used there and besides them one more,

which had no analogue for the potential Q, namely,

‖J(·, ·;µ)‖L2(0,T ;Hs(R+)) ≤ c(T )‖µ‖H(2s−1)/6(R), (42)

(this estimate can be derived from (34) via the Parseval equality). The well-known
embedding theorem yields from (42), that

‖Jx(·, ·; µ)‖L2(0,T ;L∞(R+)) ≤ c(T, ε)‖µ‖H1/3+ε(R) (43)

and so the condition (25) is satisfied for u1, u2 ∈ H1/3+ε(0, T ). Just the necessity of
realization of (25) caused ε-worsening of the assumptions on the boundary data (in
comparison with the natural ones) in the case s = 0. The idea to use the property
(42) to provide (25) for the problem in Π+

T goes back to [8].
Global a prori estimates (and consequently, global well-posedness) in more

smooth spaces were obtained in [37], [39] with regard to (27), (28), that is first
in H1 for the problem in Π+

T , in H2 for the problem in Π−T (these estimates were
analogues to the last two conservation laws (3)) and then via differentiation with
respect to t in H3k, H3k+1 for the first problem, in H3k, H3k+2 for the second
problem and in H3k for the problem in the bounded rectangle, k – natural. Global
well-posedness for intermediate values of s was established via nonlinear interpola-
tion theory from [72] (for the first time for KdV-like problems this ides was used
in [2]).

Note, that the rate of growth of the nonlinearity in KdV, which does not exceed
quadratic, is essential for a global estimate in L2 in the case of non-homogeneous
boundary data (see (24)). Certain global results for the considered problems in the
case of the greater rate of growth can be found in [58], [5], [34], [21], [11], but
they are beyond the scope of this survey.

Intial-boundary value problems for the KdV equation with different from (19)–
(21) boundary conditions or in other domains (for example, with moving bound-
aries) are considered in [12], [13], [18], [80], [24].

3. Zakharov – Kuznetsov equation

The ZK equation
ut + uxxx + uxyy + uux = 0 (44)

is one on the variants of a multidimensional generalization of the KdV equation. It
describes nonlinear wave processes in dispersive media, when waves propagate in
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the x-direction and can be deformated in the transverse y-direction. In particular,
it is a model equation for ion-acoustic waves in magnetized plasma, [79].

The study of initial and initial-boundary value problems for ZK in comparison
with KdV, besides traditional difficulties originating from the transfer from the line
to the plane, has some additional obstacles. First of all, in contrast to (3) only two
conservation laws are known for (44):

∫∫

R2
u2 dxdy = const,

∫∫

R2
(u2

x + u2
y −

1
3
u3) dxdy = const. (45)

Next, Bourgain-type spaces for the ZK equation, for which certain analogues of
(17) and (18) are valid, are not found yet.

On the other hand, the local smoothing effect is also valid for this equation as
for KdV. In particular, similarly to (6) it can be shown, that

λ2(u; T ) = sup
m∈R

∫ T

0

∫ m+1

m

∫

R
(u2

x + u2
y) dydxdt ≤ c(T, ‖u0‖L2(R2)), (46)

if a smooth and decaying at infinity solution u(t, x, y) of the initial value problem
in Π2

T = (0, T )× R2 with the initial profile

u(0, x, y) = u0(x, y) (47)

is considered.
By virtue of the first conservation law (45) and the estimate (46) global existence

(without uniqueness) of weak solutions of the problem (44), (47) for u0 ∈ L2(R2)
can be established by the methods similar to [49], [61], [25] for KdV. Such results
were proved in [27] for more general multidimentional generalizations of the KdV
equation and in more details are described in the next section of this survey.

Global well-posedness of the problem (44), (47) was established in [28] in more
smooth classes by the method similar to the one from [51], [53]. First the linear
equation

ut + uxxx + uxyy = f(t, x, y) (48)

was considered in [28] and estimates similar to (9), (11) and other ones from [51],
[53] were obtained. In particular, for a solution of the problem (48), (47) when
f ≡ 0

S2(t, x, y; u0) = F−1
x,y

[
eit(ξ3+ξη2)û0(ξ, η)

]
(x, y) (49)

for all t ∈ R
‖S2(t, ·, ·; u0)‖Hs(R2) = ‖u0‖Hs(R2) (50)

and for all x ∈ R
‖S2x(·, x, ·; u0)‖2L2(R2) + ‖S2y(·, x, ·;u0)‖2L2(R2) ∼ ‖u0‖2L2(R2). (51)

A functional space (for simplicity we consider here only the case s = 1)

Z1(Π2
T ) = {u ∈ C([0, T ];H1(R2)), uxx, uxy, uyy ∈ Cb(Rx; L2((0, T )× R)),

ux, uy ∈ L2(0, T ;L∞(R2)), u ∈ L2(Rx; L∞((0, T )× R))}
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was introduced and estimates similar to (12), (13) were established. On the base of
these estimates first local well-posedness and then with the help of the conservation
laws (45) global well-posedness of the problem (44), (47) in Z1(Π2

T ) for u0 ∈ H1(R2)
was proved . Similar results were obtained in [28] for u0 ∈ Hk(R2), k ≥ 2 – natural.

Initial-boundary value problems for the ZK equation up to today have been
considered only in domains, which were generalizations of the domains Π+

T , Π−T ,
QT for the case y ∈ R, namely, Π2+

T = Π+
T × Ry, Π2−

T = Π−T × Ry, Q2
T = QT × Ry

(with the only exception in [65], which is described in the next section). Boundary
conditions were similar to (19)–(21):
for the problem in Π2+

T

u(t, 0, y) = u1(t, y), (52)

for the problem in Π2−
T

u(t, 0, y) = u2(t, y), ux(t, 0, y) = u3(t, y), (53)

for the problem in Q2
T

u(t, 0, y) = u1(t, y), u(t, 1, y) = u2(t, y), ux(t, 1, y) = u3(t, y). (54)

Of course, difficulties related to nonzero boundary data for L2 estimates similar
to (22)–(25) also appear for these problems. Moreover, similarly to (26) it can be
shown, that conditions of the type u0 ∈ Hs, u1, u2 ∈ H

(s+1)/3,s+1
t,y , u3 ∈ H

s/3,s
t,y are

natural here (see also (51)).
As for KdV boundary potentials for the homogeneous linearized ZK equation

turned out to be very important for the theory of initial-boundary value problems.
In [38] such a boundary potential for the problem in Π2+

T was constructed in a
form

J2(t, x, y;µ) ≡ F−1
t,y

[
er(λ,η)xµ̂(λ, η)

]
(t, y), x > 0, (55)

where r(λ, η) is the unique root of the algebraic equation

r3 − rη2 + iλ = 0, (λ, η) ∈ R2 \ {(0, 0)}, (56)

with the negative real part. The estimates, similar to (38), (39) were established
for the function J2 and, moreover, it was proved, that

‖J2x(·, ·, ·; µ)‖L2(0,T ;L∞(R2
+)) ≤ c(T )‖µ‖

H
2/3,2
t,y (R2)

. (57)

With the use of the boundary potential J2 a solution of the linear problem (48),
(47), (52) in a form similar to (31) was constructed and the following estimate was
proved:

‖u‖Z1(Π
2+
T ) ≤ c

(‖u0‖H1(R2
+) + ‖u1‖H

2/3,2
t,y ((0,T )×R)

+ T 1/6‖f‖L2(0,T ;H1(R2
+))

)
, (58)

where Z1(Π2+
T ) was a space analogous to Z1(Π2

T ) with the addition

u ∈ Cb(R
x

+;H2/3,2
t,y ((0, T )× R)), ux ∈ Cb(R

x

+; H1/3,1
t,y ((0, T )× R)).
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Local well-posedness for the problem (44), (47), (52) was proved via the contraction
principle on the basis of the estimate (58) and then also global well-posedness in
Z1(Π2+

T ) was established under natural assumptions on initial and boundary data
for s = 1 with the use the boundary potential J2 as an auxiliary function to make
boundary data zero (the estimate (57) was essential here). This result can be
generalized for all natural s ≥ 2.

For other domains Π2−
T and Q2

T local well-posedness under natural assumptions
can be obtained by similar arguments with the help of corresponding boundary
potentials. But the absence of an analogue for ZK of the third conservation law (3)
has not allowed yet to establish global well-posedness for the problem (44), (47),
(53). The only known global result here is existence of a weak solution in the class

{u ∈ L∞(0, T ; L2(R2
−)), λ−2 (u;T ) = sup

m≥0

∫ T

0

∫ −m

−m−1

∫

R
(u2

x + u2
y) dydxdt < ∞}

for u0 ∈ L2(R2
−), u2 ∈ H

s/3,s
t,y ((0, T ) × R), s > 3/2, u3 ∈ L2((0, T ) × R), proved

in [40]. This result is based on the first conservation law (45), the local smoothing
effect of the (46) type and certain properties of the boundary potential J2. For the
problem (44), (47), (54) global well-posedness can be established for natural s ≥ 3.

4. General equations

We consider here equations of such a form

ut − Pu + divx g(u) = 0, (59)

where in this section x = (x1, . . . , xn), g = (g1, . . . , gn) for n ≥ 2,

P =
∑

|α|=3

aα∂α
x ,

α = (α1, . . . , αn) – multiindex, αj ≥ 0, |α| = α1 + · · ·+ αn, ∂α
x = ∂α1

x1
. . . ∂αn

xn
, aα –

real constants.
First consider the initial value problem in the domain Πn

T = (0, T ) × Rn with
the initial condition (2) for x ∈ Rn. The first conservation law for this problem is
obvious: ∫

Rn

u2 dx = const. (60)

The problem is to generate additional assumptions on the equation, which can
provide other global estimates on solutions. In [68] it was assumed, that

P =
n∑

j=1

∂

∂xj
L, g1 = g2 = · · · = gn,

where L was an elliptic operator. Then multiplying (59) by 2(Lu − g(u)) and
integrating over Rn one can derive the following analogue of the second conservation
law (3) ∫

Rn

(Lu · u− 2g∗(u)) dx = const, (61)
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where g∗ is the primitive to g such, that g∗(0) = 0. So if g satisfies the following
restriction on its growth:

|g′(u)| ≤ c(|u|b + 1), 0 ≤ b < 4/n, (62)

then an estimate in H1(Rn) for a solution is provided and as a result existence of
a global solution in L∞(0, T ; H1(Rn)) for u0 ∈ H1(Rn) can be proved, [68].

In [27] another condition on the operator P was proposed: there existed a
vector e = (e1, . . . , en) such, that

Qe(ξ) = (gradξ P (ξ), e) < 0 ∀ξ 6= 0, (63)

where
P (ξ) =

∑

|α|=3

aαξα, ξ = (ξ1, . . . , ξn), ξα = ξα1
1 . . . ξαn

n ,

was the symbol of the operator P . Of course, the operator Qe with the symbol
Qe(ξ) is elliptic. If ρ(ϑ) is a smooth, positive and increasing function such, that
0 < ρ′(ϑ) ≤ cρ(ϑ), |ρ(j)(ϑ)| ≤ c(j)ρ′(ϑ), j ≥ 2, for all ϑ ∈ R, ρe(x) ≡ ρ(x1e1 +
· · ·+ xnen), then

−
∫

Rn

Pu · uρe dx ≥ c1

∫

Rn

| gradx u|2ρ′e dx− c2

∫

Rn

u2ρe dx (64)

for certain positive constants c1 and c2. The inequality (64) provides a local
smoothing effect of the (6) type and thus in [27] a result on existence of a global
solution in

L∞(0, T ;L2(Rn)) ∩ L2(0, T ; H1,loc(Rn))

of the problem (59), (2) was established if u0 ∈ L2(Rn) and the functions gj satisfied
the inequality (62). In particular, this result is valid for the ZK equation. Some
results on uniqueness of the constructed solutions in weighted spaces under more
restrictive assumptions on the functions gj were also obtained in [27], but they
excluded ZK. Other conditions, that provide local smoothing effect for dispersive
equations can be found in [22], [52], [63].

Note, that in the case n = 2 the condition (63) is necessary and sufficient
to reduce the operator P to the form −∂3

x1
− ∂x1∂

2
x2

by certain linear change of
variables, [23].

Note also, that in [68] and [27] more general, than (59) equations were consid-
ered (in particular, of an arbitrary high odd order).

In [35] one initial-boundary value problem for the equation (59) was considered
in the domain Πn+

T = (0, T )×Rn
+, where Rn

+ = {x ∈ Rn : x1 > 0}, with a boundary
condition

u(t, 0, x′) = u1(t, x′), x′ = (x2, . . . , xn). (65)

The operator P was assumed to satisfy the condition (63) for e = (1, 0, . . . , 0).
For u0 ∈ L2(Rn

+), restrictions on the functions gj of the (62) type, where, in
addition, b ≤ 1, and certain assumptions on the function u1 global existence of
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weak solutions of the problem (59), (2), (65) was proved similarly to the results
from [27]. Uniqueness of the constructed solutions in certain weighted spaces was
also established under more restrictive assumptions on nonlinearity, but unlike the
initial value problem this result included the ZK equation. A boundary potential
for the corresponding linear equation in a form similar to (32) was constructed,
studied and used in [38].

Certain initial-boundary value problem in a bounded domain for an equation
of the (59) type in the case of two spatial variables was studied in [65]. By some
linear change of variables this equation can be reduced to the ZK equation.

Well-posedness of various initial-boundary value problems for linear evolution
equations of an arbitrary high odd order was studied in [77]. Assumptions on the
considered equations there were of the (63) type.
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