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Uniformly bounded Riesz bases and equiconvergence theorems

Vilmos Komornik

abstract: We review some classical results on the convergence of classical trigono-
metric and polynomial Fourier series. Then we present a not well-known short proof
of the local uniform boundedness of many classical orthonormal systems. Finally,
we formulate a strong generalization of Haar’s classical equiconvergence theorem.
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1. Review of Fourier series

In this section we recall some classical results on the convergence of Fourier
series. See [6] and [11] for references.

Fourier series in Hilbert spaces. We recall that if (uk) is an orthonormal basis in
a Hilbert space H, then every function f ∈ H may be developed into a convergent
Fourier series

f =
∑

(f, uk)uk,

the convergence taking place in norm.

Convergence of trigonometric Fourier series in Lp norms. Consider the special
case of trigonometric Fourier series in the Hilbert space H = L2(−π, π). As a
special case of the above result, the trigonometric Fourier series of every f ∈
L2(−π, π) converges to f in L2(−π, π).

Since the trigonometric system is uniformly bounded, we may define the Fourier
series of every f ∈ L1(−π, π) and so we may investigate the norm convergence in
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the spaces Lp(−π, π), 1 ≤ p ≤ ∞. There are some surprises. We recall the following
results:

• If f ∈ L1, then its Fourier series may diverge in L1 norm (Hahn, 1916).

• Similarly, if f ∈ L∞, then its Fourier series does not converge necessarily in
L∞ norm. Both results may be proven conveniently today by estimating the
Lebesgue constants and applying the Banach–Steinhaus theorem.

• On the other hand, if f ∈ Lp for some 1 < p < ∞, then its Fourier series
converges to f in the Lp norm. This was proved by M. Riesz in 1927 using
conjugate Fourier series.

Pointwise convergence of trigonometric Fourier series. A famous example of Du
Bois Reymond (1873) showed that the trigonometric Fourier series of a continuous
function may diverge at some points. Lusin asked in 1913 whether the trigonometric
Fourier series of a continuous function converges at least almost everywhere. The
main results are as follows:

• if the trigonometric Fourier series of a function f ∈ L1 converges almost
everywhere to some function g, then f = g almost everywhere (Fejér, 1900,
and Lebesgue, 1905).

• the Fourier series of certain L1 functions diverges everywhere (Kolmogorov,
1926).

• the Fourier series of every Lp function with p > 1 converges almost everywhere
(Carleson, (1966) for p = 2, Hunt (1968) for the general case). Carleson’s
theorem answered affirmatively Lusin’s question.

Remark 1.1

• The fact that the trigonometric Fourier series of an L2 function can only
converge to f almost everywhere, remains valid for every orthonormal basis
in any L2 space. Indeed, the series converges in norm and then a suitable
subsequence of the partial sums converges to f almost everywhere by a lemma
of Riesz (what he used for a simple proof of the Riesz–Fischer theorem).

• Banach’s first publication (in collaboration with Steinhaus in 1919) points
out the subtlety of the relation between norm convergence and pointwise con-
vergence: they constructed a function f ∈ L1 whose Fourier series converges
almost everywhere but diverges in the L1 norm.

Pointwise convergence of non trigonometric Fourier series. Let us recall an
intriguing example of Banach (1923): there exist f, g ∈ L1(−π, π) and an or-
thonormal basis in H = L2(−π, π) formed by bounded functions such that f 6= g
everywhere but the Fourier series of f converges to g everywhere.
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This phenomenon does not occur for trigonometric Fourier series and for most
classical orthonormal expansions (Legendre, Jacobi, Laguerre, Hermite). As we
shall see, this is related to the fact these orthonormal bases are formed of eigen-
functions of special differential operators.

2. Uniform boundedness of eigenfunctions

Let (a, b) be a bounded open interval and q ∈ L1(a, b). The following theorem1

is due to V. A. Il’in and I. Joó (1979):

Theorem 2.1 If u ∈ W 2,1(Ω) and

−u′′ + qu = λu in (a, b)

for some λ ≥ 0, then
‖u‖∞ ≤ C‖u‖2

with C depending only on the length of (a, b) and on ‖q‖1.
We are going a somewhat simplified proof here. We need a mean-value formula:

Lemma 2.2 If x± t ∈ (a, b), then

u(x− t) + u(x + t)− 2u(x) cos
√

λt =
∫ x+t

x−t

q(s)u(s)
sin
√

λ(t− |x− s|)√
λ

ds.

Proof: Since qu = u′′ + λu, integrating by parts we obtain
∫ x

x−t

q(s)u(s)
sin
√

λ(t− |x− s|)√
λ

ds = u′(x)
sin
√

λt√
λ

− u(x) cos
√

λt + u(x− t)

and
∫ x+t

x

q(s)u(s)
sin
√

λ(t− |x− s|)√
λ

ds = −u′(x)
sin
√

λt√
λ

− u(x) cos
√

λt + u(x + t);

adding them we obtain the required formula. ¤

Proof of Theorem 2.1: Fix R > 0 such that 4R ≤ b − a and R‖q‖1 ≤ 1. If
x belongs to the left half of (a, b), then we infer from the lemma the following
inequality:

|u(x)| ≤ |u(x + 2t)|+ 2|u(x + t)|+ |t| · ‖q‖1‖u‖∞.

Integrating this inequality for 0 < t < R we get

R|u(x)| ≤
∫ R

0

|u(x + 2t)| dt + 2
∫ R

0

|u(x + t)| dt +
R2

2
‖q‖1‖u‖∞

≤ 3
√

R‖u‖2 +
R

2
‖u‖∞.

1 Here and in the sequel we denote by ‖·‖p the norm of Lp(a, b).
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The same estimate holds for the right half of (a, b), too, so that

R‖u‖∞ ≤ 3
√

R‖u‖2 +
R

2
‖u‖∞

and
‖u‖∞ ≤ 6√

R
‖u‖2.

¤

Corollary 2.3 If (uk) is a bounded sequence in L2(a, b) and

−u′′k + quk = λkuk in (a, b), k = 1, 2, . . .

with some λk ≥ 0 where q ∈ L1(a, b), then (uk) is uniformly bounded.

Example 2.4 The trigonometric system is uniformly bounded.

We apply the corollary to the Jacobi, Laguerre and Hermite polynomials.

Proposition 2.5
(a) The orthonormal Jacobi polynomials P

(α,β)
k are uniformly bounded on the

compact subintervals of (−1, 1).

(b) The orthonormal Laguerre polynomials L
(α)
k are uniformly bounded on the

compact subintervals of (0,∞).
(c) The orthonormal Hermite polynomials Hk are uniformly bounded on the

compact subintervals of R.

Proof: 2

(a) Writing

1 =
∫ 1

−1

(1− x)α(1 + x)β |P (α,β)
k (x)|2 dx

= 2α+β+1

∫ π

0

(
sin

θ

2

)2α+1 (
cos

θ

2

)2β+1

|P (α,β)
k (cos θ)|2 dθ

=: 2α+β+1

∫ π

0

|uk(θ)|2 dθ

and

q(θ) :=
4α2 − 1
16 sin2 θ

2

+
4β2 − 1
16 cos2 θ

2

we have (see [10], p. 67)

−u′′k + quk =
(

k +
α + β + 1

2

)2

uk.

2 The usual proofs, based on complex analysis, are substantially longer.
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We conclude by applying the corollary for any interval (a, b) satisfying [a, b] ⊂
(−1, 1).

(b) Putting
uk(x) := e−x2/2xα+ 1

2 L
(α)
k (x2)

and

q(x) := x2 +
4α2 − 1

4x2

we have (see [10], p. 100)

−u′′k + quk = (4k + 2α + 2)uk.

We conclude by applying the corollary for any interval (a, b) satisfying [a, b] ⊂
(0,∞).

(c) Putting
uk(x) := e−x2/2Hk(x)

and
q(x) := x2

we have (see [10], p. 106)

−u′′k + quk = (2k + 1)uk.

We conclude by applying the corollary for any bounded interval (a, b). ¤

We end this section with two remarks. First, Theorem 2.1 may be generalized
to complex eigenvalues and the resulting estimates are optimal (see [4] and [7]):

Theorem 2.6 Let (a, b) be an open interval and q ∈ L1(a, b). If u ∈ W 2,1(a, b)
and

−u′′ + qu = λu in (a, b)

for some λ ∈ C, then

c1(1 + |=
√

λ|) 1
p− 1

q ≤ ‖u‖q

‖u‖p
≤ c2(1 + |=

√
λ|) 1

p− 1
q

for all p, q ∈ [1,∞] with c1, c2 depending only on the length of (a, b) and on ‖q‖1.
On the other hand, the situation is different in higher dimension:

Example 2.7 Consider an orthonormal basis (uk) of eigenfunctions of −∆ in a
three-dimensional ball Ω of radius π with homogeneous Dirichlet boundary condi-
tions. Then (uk) is not uniformly bounded.3 Indeed, the formula

uk(x) :=
sin k|x|√

2π|x| , k = 1, 2, . . .

3 The same result holds for all balls in all dimensions ≥ 2 and also for other types of boundary
conditions.
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defines a subsequence of the orthonormal basis of eigenfunctions, and we have

uk(0) =
k√
2π

→∞.

3. Distribution of eigenvalues

The above mean-value formula also allows us to prove in an elementary way that
the eigenvalues of many classical orthonormal systems have no finite accumulation
points. In this section we consider a bounded interval (a, b), an integrable function
q ∈ L1(a, b) and an orthonormal basis (uk) in L2(a, b) such that each uk belongs
to W 2,1(a, b) and satisfies the differential equation

−u′′k + quk = λkuk in (a, b)

with a suitable real number λk. The following result was obtained in [8].

Theorem 3.1 We have λk →∞.

Remark 3.2

• Usually results of this type are obtained for special orthonormal systems whose
elements satisfy specific boundary conditions. Let us emphasize that no bound-
ary conditions are imposed here.

• The result and its proof remains valid if (uk) is not an orthonormal basis but
only a Bessel system, i.e.,

∑
|(f, uk)|2 < ∞

for every f ∈ L2(a, b).

Sketch of proof: Fix µ ∈ C arbitrarily and consider u = uk and λ = λk with
|µ−√λk| ≤ 1. For x in the left half of (a, b) we integrate for 0 < t < R the mean
value formula in the form

u(x) = 2u(x + t) cos µt− u(x + 2t)

+ 2u(x + t)(cos
√

λt− cosµt)

+
∫ x+2t

x

q(s)u(s)
sin
√

λ(t− |x + t− s|)√
λ

ds.

We get

R|u(x)| ≤
∫ b

a

fxu ds + c1

∫ R

0

t|u(x + t)| dt + R2‖q‖1‖u‖∞

≤
∫ b

a

fxu ds + c2R
2‖u‖∞

≤
∫ b

a

fxu ds + c3R
2‖u‖2.
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Hence
R2|u(x)|2 ≤ 2(fx, u)2 + 2c2

3R
4‖u‖22

and by Bessel’s inequality,

R2
∑

|µ−√λk|≤1

|uk(x)|2 ≤ 2‖fx‖22 + c4R
4

∑

|µ−√λk|≤1

‖uk‖22.

A similar estimate holds in the right half of (a, b). Integrating we get

R2
∑

|µ−√λk|≤1

1 ≤ 2
∫ b

a

‖fx‖22 dx + c4(b− a)R4
∑

|µ−√λk|≤1

1.

Choosing a small R > 0 we conclude that

∑

|µ−√λk|≤1

1 ≤ 4
R2

∫ b

a

‖fx‖22 dx < ∞.

¤

4. Equiconvergence

If we develop a function into Fourier series with respect to two different or-
thonormal bases, it is natural to ask how different the resulting series can be. The
case of Sturm–Liouville type orthonormal bases was investigated by Haar in 1910
and 1918. The boundary conditions played an important role. Much more general
theorems can be obtained by eigenfunction considerations.

As before, let (a, b) be a bounded interval, q ∈ L1(a, b) and (uk) an orthonormal
basis in L2(a, b) such that each uk belongs to W 2,1(a, b) and satisfies

−u′′k + quk = λkuk in (a, b)

with a suitable complex number λk.
For f ∈ L2(a, b) and µ > 0 we set

σµ(f) :=
∑

|<√λk|<µ

(f, uk)uk

and

Sµ(f, x) :=
∫ x+R

x−R

sin µ(x− y)
π(x− y)

f(y) dy whenever x±R ∈ (a, b).

Then the following results holds:

Theorem 4.1 Given [a′, b′] ⊂ (a, b) fix R > 0 such that (a′ − R, b′ + R) ⊂ (a, b).
Then

σµf − Sµf → 0 uniformly in (a′, b′) if µ →∞
for every f ∈ L2(a, b).
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Example 4.2 Carleson’s theorem also holds for Jacobi polynomial expansions.

To end this review we note that the above theorems remains valid

• for Riesz bases instead of orthonormal bases;

• for higher-order eigenfunctions;

• for more general differential operators

Lu := u(n) + q2u
(n−2) + · · ·+ qnu, qs ∈ Hn−s

loc (a, b).

We refer to [9] and its references for details.
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Université Louis Pasteur
7 rue René Descartes
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