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The role of an L2(Ω)-energy estimate in the theories of uniform
stabilization and exact controllability for Schrödinger equations with

Neumann boundary control ∗

R. Triggiani

abstract: The present paper deals with (linear) Schrödinger equations, of very
general form, which are defined on a bounded domain Ω ⊂ Rn. With focus on these
dynamics, we shall then discuss and analyze the specific and foundational topic of
a-priori energy identities, with the goal of deriving control-theoretic implications.
These will include the issue of optimal regularity, as well as the problems of exact
controllability (by open loop controls) and of uniform stabilization (by closed loop
feedback controls).
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0. Energy level estimates and their control-theoretic implications

The present paper deals with (linear) Schrödinger equations, of very general
form, which are defined on a bounded domain Ω ⊂ Rn. With focus on these dy-
namics, we shall then discuss and analyze the specific and foundational topic of
a-priori energy identities, with the goal of deriving control-theoretic implications.
These will include the issue of optimal regularity, as well as the problems of exact
controllability (by open loop controls) and of uniform stabilization (by closed loop
feedback controls). In all cases, results are not obtained directly, but rather by
duality following the strategy introduced in [L-L-T.1] in the case of optimal regu-
larity for second-order hyperbolic equations with Dirichlet boundary control and,
subsequently, by corresponding control-theoretic results for wave equation models
[Tr.1], [Tr.2], [L-T.1], [L-T.2], [H.1], [Lio.1]. See an account in [G-L-L-T.1].

Returning to Schrödinger equations, we shall note that, at first, energy identi-
ties/estimates are obtained for sufficiently smooth solutions of the equations with
no boundary conditions (B.C.) imposed: in this major step, they are the iden-
tities/estimates themselves that contain explicit boundary traces terms. Only in
a second phase, B.C. are imposed on the solutions: either homogeneous B.C. or
else B.C. of dissipative character. This way, one specializes the original identi-
ties/estimates to inequalities which—by duality—imply (i) either regularity results
of corresponding mixed problems (“direct inequalities”), or else exact controllabil-
ity or uniform stabilization with (open loop or, respectively, closed loop) boundary
controls (“inverse inequalities”). The topological level of the regularity/control-
theoretic results depends critically on the topological level of the a-priori iden-
tity/estimates; and these, in turn, depend critically on the technical tools employed
to achieve them.

H1(Ω)-level estimates. It has been known for well over a decade [L-T.3], [M.1]
that the ‘natural’ energy level of Schrödinger equations is H1(Ω): This means that
‘natural and effective’ energy methods produce an energy identity at the H1(Ω)-
topological level.

We reinforce once more the point made before, that the actual achievements of
topological energy identities for Schrödinger equations, as well as the subsequent
analysis thereof, were inspired by, and followed naturally, the prior development of
second-order hyperbolic equations in [L-L-T.1], where the natural energy level was
H1(Ω) × L2(Ω). It is useful to group the relevant identities/inequalities into two
categories: (i) pointwise Carleman-type inequalities and (ii) integral Carleman-type
inequalities.

(i) Pointwise inequalities (expressed originally pointwise, for each time instant
t and each value x of the space coordinate) lead, after integration, to integral-type
inequalities. However, they come with an additional, critical advantage in that
pointwise (Carleman-type) inequalities contain no lower-order term (`.o.t.). This
feature has a very helpful beneficial implication. This is that the same train of
arguments provides, in one shot, both control-theoretic estimates of exact control-
lability/uniform stabilization, as well as new global uniqueness results for appro-
priate over-determined problems. This advantage is no small feat, given the low
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regularity of the variable coefficients of the equations, which will make it difficult
to invoke results from the literature.

(ii) Integral-type inequalities are the results of using suitable ‘multipliers.’ These
have been much extended from the classical multipliers of the mid- to late-eighties:
h · (∇w) for canonical wave equations [L-L-T.1], h · (∇w) for canonical Schrödinger
equations [L-T.3], [M.1], etc., where h(x) is a suitable vector field, and w is the
wave solution, respectively the Schrödinger solution. See marked generalizations in
[G-L-L-T.1]. Unfortunately (save special cases where h(x) is a radial vector field
h(x) = (x − x0)), multipliers techniques do yield the required control-theoretic
estimates polluted, however, by lower-order terms. To remove these, one needs
to absorb them into the terms of the sought-after final estimate. This can be
done, for instance, by use of a compactness-uniqueness argument (first introduced
in [Lit.1] in the present control theory context). Compactness is typically no
problem; however, uniqueness is a serious issue beyond the case of analyticity of
the coefficients (Holmgren, Tataru [Ta.2], Hormander [Ho.1], . . .. Indeed, the
global uniqueness results via pointwise Carleman estimates as discussed before in
(i) are very handy here. A disadvantage of the strategy of absorbing `.o.t. by a
compactness–uniqueness proof is that the argument is generally indirect; that is,
by contradiction, so that—in this step—one loses control of the constants involved.
See also [K.1].

Henceforth, we shall focus on the L2(Ω)-level energy inequalities for Schrödinger
equations, the topic of the present paper.

1. An a-priori energy estimate for a general Schrödinger equation at
the L2(Ω)-level

Here below we shall consider smooth solutions of a general Schrödinger equation
with a forcing term. Let Ω ⊂ Rn be an open bounded domain with a sufficiently
smooth boundary ∂Ω = Γ, say of class C2. We shall focus on the case dim Ω =
n ≥ 2. We write Γ = Γ0 ∪ Γ1, where Γ0 will be the uncontrolled or unobserved
part of Γ, and Γ1 is the controlled or observed part of Γ, and Γ1 is the controlled or
observed part of Γ, both relatively open in Γ. We let ν be the outward unit normal
along Γ. In Ω, we consider the following Schrödinger equation [Tr.3], [T-Y.1]:

izt +Az = F (z) + f ; (1.1)

Az =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂z

∂xj

)
;

n∑

i,j=1

aij(x)ξiξj ≥ a

n∑

i=1

ξ2
i ; (1.2)

F (x) = ir(t, x) · ∇z + q0(t, x)z, (1.3)

satisfying, in addition:

either z|Σ0 ≡ 0, in which case ∇d · ν ≤ 0 on Γ0;

or else
∂z

∂ν

∣∣∣∣
Σ0

≡ 0, in which case ∇d · ν ≡ 0 on Γ0,

(1.4a)

(1.4b)
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where d(x) is a non-negative, real-valued, strictly convex function: Ω → R+. Thus,
the matrix

Hd(x) =
[

∂2d

∂xi∂xj

]n

i,j=1

satisfies Hdx · x̄ ≥ ρ|x|2, ρ > 0, x ∈ Rn, (1.5)

for some ρ > 0. The simplest example is d(x) = 1
2‖x − x0‖2, the square of the

distance from a suitable fixed point x0 ∈ Rn, whereby then ∇d = (x − x0) and
Hd = I, the n× n identity matrix, with ρ = 1. Regarding the coefficients r(t, x) ∈
Rn and q0(t, x) (scalar) in Eqn. (1.1), we assume the following hypotheses:

(A.1) q0 is a complex-valued function on [0, T ] × Ω, while r(t, x) is a real-
valued vector field on Rt×Ω (structural property [R-S.1] of “magnetic potential”)
satisfying the following regularity hypotheses:

q0 ∈ L∞(Q), |∇q0| ∈ L∞(Q), r ∈ L∞(0, T ;Rn), (1.6)

so that for the energy level term F , we have

|F (z)|2 ≤ CT {|∇z|2 + |z|2}, ∀ (t, x) ∈ Q a.e. (1.7)

The L2(Ω) energy level estimate is

Theorem 1.1. Assume hypothesis (A.1). Let z be a solution of Eqn. (1.1) satisfy-
ing, in addition, either the Dirichlet case (1.4a), or else the Neumann case (1.4b).
Let T > 0 be arbitrary. Finally, let f ∈ L2(0, T ; L2(Ω)). Then, the following
inequality holds true: There exists a constant CT > 0 such that

∫ T

0

[
‖z‖2L2(Ω) + ‖zt‖2H−2(Ω)

]
dt + ‖z(0)‖2L2(Ω) + ‖zt(0)‖2H−2(Ω)

≤ CT

{
‖z‖2L2(Σ1)

+

∥∥∥∥∥
∂z

∂ν

∣∣∣∣
Γ1

∥∥∥∥∥

2

H−1
a (Σ1)

+
∫ T

0

∫

Γ1

∣∣∣∣∣
∂z

∂ν

∣∣∣∣
Γ1

∣∣∣∣∣ |z|dΓ1dt + ‖z‖2H−1(Q) + ‖f‖2L2(Q)

}
, (1.8)

where H−1
a (Σ1) is the dual space to the anisotropic space H1

a(Σ1), with respect to
the pivot space L2(Σ1):

H−1
a (Σ1) = (H1

a(Σ1))′; H1
a(Σ1) ≡ H

1
2 (0, T ; L2(Γ1)) ∩ L2(0, T, H1(Γ1)). ¤

(1.9)

Remark 1.1. The natural energy level for the Schrödinger equation is the H1(Ω)-
level, not the L2(Ω)-level. Indeed, the proof of the energy estimate (1.8) at the
L2(Ω)-level for (1.1) requires a heavy use of pseudo-differential/micro-local anal-
ysis machinery [L-T-Z.2, Sect. 10], to shift the more natural H1(Ω)-level energy
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estimate to the L2(Ω)-level. The proof in [L-T-Z.2, Sect. 10] refers specifically to
an Euclidean domain Ω in Rn, ∂Ω = Γ0 ∪ Γ1. It is based on partition of unity of
Ω, flattening the boundary locally, and consequent analysis in the half-space, by
taking, as a starting point, the a-priori energy estimate at the H1(Ω)-level from
[Tr.3], in the Euclidean case. However, it was already noted in [L-T-Z.2, Remark
2.6.2], that by taking this time, as a starting point, the a-priori H1(Ω)-energy
level estimate in the Riemannian case from [T-Y.1], the same proof works also
in the case where Ω is an open, bounded, connected set Ω of an n-dimensional,
Riemannian manifold M , as in Remark 2.1 below. ¤

Here below, we shall review two critical recent consequences of estimate (1.8):
an exact controllability result in L2(Ω) with Neumann L2(Σ1)-boundary open-loop
control (Section 2); and uniform stabilization results in L2(Ω) with linear and non-
linear dissipative boundary terms (feedback controls) in the Neumann B.C.(Section
3). Section 2 is a review of paper [Tr.3]; Section 3 is a review of paper [L-T.9]. We
shall confine here to statements of results as well as to illustrative examples, while
referring to [Tr.3] and [L-T.9] for the full analysis.

2. Consequence #1: exact controllability in the state space L2(Ω) with
L2(0, T ; L2(Γ1))-Neumann control [Tr.3]

2.1. Model and main result. Let the triple {Ω,Γ0,Γ1} be as in Section 1. In
this section, we consider the following mixed Schrödinger problem in the (complex-
valued) unknown w(t, x) defined on Q,





iwt + ∆w = F (w) in Q ≡ (0, T ]× Ω;

w(0, · ) = w0 in Ω;

either w|Σ0 ≡ 0, or else
∂w

∂ν

∣∣∣∣
Σ0

≡ 0, in Σ0 = (0, T ]× Γ0;

∂w

∂ν

∣∣∣∣
Σ1

≡ u, in Σ1 ≡ (0, T ]× Γ1,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

with Neumann boundary control L2(0, T ; L2(Γ1)). In the case w|Σ0 ≡ 0, we also
assume Γ0 ∩ Γ1 = ∅. In (1.1a), we have set

F (w) = −ir(t, x) · ∇w + q0(t, x)w, (2.2)

as in (1.3), with r(t, x), q0(t, x) subject to assumption (A.1).
The following is an exact controllability result in the state space L2(Ω) within

the class of L2(0, T ;L2(Γ1))-Neumann controls, where T > 0 is preassigned arbi-
trarily small.

Theorem 2.1. With reference to the mixed problem (2.1a-b-c-d), assume that the
strictly convex function d(x) in (1.5) satisfies: ∇d · ν ≤ 0 on Γ0 in the case of the
Dirichlet B.C. w|Σ0 ≡ 0 in (2.1c); and ∇d ·ν ≡ 0 on Γ0 in the case of the Neumann
B.C. ∂w

∂ν |Σ0 ≡ 0 in (2.1c). Let the coefficients of F satisfy assumptions (A.1) =
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(1.6). Then, the w-problem (2.1a-b-c-d) is exactly controllable in the following
sense. Let T > 0 be arbitrary. Given w0 ∈ L2(Ω) [respectively, w1 ∈ L2(Ω)],
there exists a boundary control u ∈ L2(0, T ; L2(Γ1)) such that the corresponding
solution of the w-problem (2.1) due to the data {w0, u} [respectively, due to the
data {w0 = 0, u}] satisfies w(T ) = 0 [respectively, w(T ) = w1].

Remark 2.1. Theorem 2.1 holds true also in the following Riemannian setting
[Tr.4]. Let M be a complete n-dimensional, Riemannian manifold of class C3 with
C3-metric g( · , · ) = 〈 · , · 〉 and squared norm |X|2 = g(X, X). We shall denote it
by (M, g). Let Ω be an open, bounded, connected set of M with smooth boundary
(say, of class C2) ∂Ω ≡ Γ = Γ0 ∪ Γ1. Here, Γ0 is the uncontrolled or unobserved
part of Γ and Γ1 is the controlled or observed part of Γ, both relatively open in Γ.
We let ν denote the outward unit normal field along the boundary Γ. Further, we
denote by ∇ the gradient, by D the Levi-Civita connection, by D2 the Hessian, by
∆ = div(∇) the Laplace (Laplace-Beltrami) operator [Le.1, p. 55, p. 83, p. 141],
[Do.1, p. 28, pp. 43–44, p. 54, p. 68].

The normal derivative conditions ∂w
∂ν |Σ0 ≡ 0 and ∂w

∂ν |Σ1 ≡ u read now

〈Dw, ν〉|Σ0 ≡ 0 and 〈Dw, ν〉|Σ1 ≡ u, (2.3)

respectively. The function F (w) in (2.2) is now written as

F (w) = −i〈R(t, x), Dw〉+ q0(t, x)w, (2.4)

where the coefficients are subject to the following assumptions:

q0 ∈ L∞(Q), R ∈ L∞(0, T,X (M)) [He.1], (2.5a)

so that for the energy level term F , we have

|F (w)|2 ≤ CT {|Dw|2 + |w|2}, ∀ (t, x) ∈ Q a.e., (2.5b)

where Dw = ∇w for the scalar function w. Thus, Dw ∈ X (M) = the set of all
C2 complex-valued vector fields on M . Next, recall that the covariant differential
(a 2-0 tensor T 0

2 ) of R ∈ X (M) determines a bilinear form on TM × TM , for each
x ∈ M , defined by DR(X, Y ) = 〈DXR, Y 〉g. Then, we require that:

{ |DR(X, Y )| = |〈DXR, Y 〉| ≤ C|X| |Y |, 0 ≤ t ≤ T,

or DR ∈ L∞(0, T ; T 0
2 );

(2.5c)

and moreover,

|Dq0| ∈ L∞(Q). (2.5d)

¤
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2.2. The adjoint problem and the equivalent COI under the working
assumption 〈r · ν〉 ≡ 0 on Γ1 (resp. on Γ). As in the case for most of the exact
controllability results for hyperbolic and Petrowski-type evolution equations in the
literature, the proof of Theorem 2.1 is by duality: that is, it consists of estab-
lishing the equivalent continuous observability inequality [L-T.3], [Tr.4], [T-Y.1],
[G-L-L-T.1]. (An exception is the direct work of W. Littman [Lit.1], [Lit-Ta.1]). In
our present case, establishment of the continuous observability inequality in Section
3 relies critically on the L2(Ω)-energy level estimate (1.8).

The goal of the present subsection is two-fold. First, we shall seek to establish
the PDE system which is obtained by duality or transposition over the mixed con-
trol problem (2.1a–d). This is the ϕ-problem (2.12) below. To this end, we shall
make a temporary working assumption, (A.2) = (2.8) below, to be later removed in
Section 2.4. Second, we shall obtain the relevant Continuous Observability Inequal-
ity (COI) for the ϕ-problem (2.12) which is equivalent to the exact controllability
property of the w-problem in (2.1), as spelled out in the statement of Proposition
2.3. We begin by setting, for short

Aw ≡ i∆w − r(t, x) · ∇w − iq0(t, x)w, (2.6)

with r(t, x) the real-valued vector field on Rt × Ω, as in assumption (2.2), (A.1).
With reference to problem (2.1), define the operator A : L2(Ω ⊃ D(A) → L2(Ω)
(depending on t), by

Aw ≡ Aw, D(A) ≡
{

w ∈ H2(Ω) : w|Γ0 =
∂w

∂ν

∣∣∣∣
Γ1

≡ 0

}
, (2.7a)

or else

D(A) ≡
{

w ∈ H2(Ω) :
∂w

∂ν

∣∣∣∣
Γ

≡ 0
}

. (2.7b)

Throughout this section, we shall impose the following working assumption:
(A.2) 




either r(t, x) · ν ≡ 0 on Γ, if
∣∣∣∣
∂w

∂ν

∣∣∣∣
Γ0

≡ 0,

or else r(t, x) · ν ≡ 0 on Γ1, if |w|Γ0 ≡ 0.

(2.8a)

(2.8b)

This assumption will facilitate the analysis in establishing Theorem 2.1 at first.
Later on, in Section 2.4, we shall dispense with assumption (A.2) = (2.8), by
means of a natural change of variable, as in [L-T-Z.2, Appendix A, Proposition
A.4, Eqn. (A.18), p. 107], whereby the geometrical assumption (A.2) = (2.8) will be
satisfied by the new variable and exact controllability in the original variable will
be equivalent to exact controllability in the new variable. Thus, for w, ϕ ∈ H1(Ω),
under both assumptions (A.2) = (2.8a) and (A.2) = (2.8b), we have from the
divergence (Green) formula:

∫

Ω

r · ∇wϕdΩ = −
∫

Ω

w div(ϕr)dΩ. (2.9)
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The adjoint operator A∗ of A under (A.2) = (2.8). The L2(Ω)-adjoint of
the operator A in (2.7), subject to either (A.2) = (2.8a) or (A.2) = (2.8b), is:

A∗ϕ = −i∆ϕ + r(t, x) · ∇ϕ + iq̃0ϕ, q̃0 = q0 − div r ∈ L∞(Q), (2.10a)

and either

D(A∗) = D(A) =

{
ϕ ∈ H2(Ω) : ϕ|Γ0 =

∂ϕ

∂ν

∣∣∣∣
Γ1

≡ 0

}
, (2.10b)

in case (2.7a), or else

D(A∗) = D(A) =
{

ϕ ∈ H2(Ω) :
∂ϕ

∂ν

∣∣∣∣
Γ

≡ 0
}

, (2.10b′)

in case (2.7b). A direct computation using either assumption (A.2) = (2.8a), or
else (A.2) = (2.8b), hence identity (2.9) in both cases, yields in fact, starting from
(2.1):

(Aw, ϕ)L2(Ω) =
∫

Ω

(Aw)ϕdΩ =
∫

Ω

w(A∗ϕ)dΩ = (w, A∗ϕ)L2(Ω),

w, ϕ ∈ D(A) = D(A∗). (2.11)

The problem adjoint to (2.1a–d). On the basis of the operator A∗ in (2.10)
(under (A.2) = (2.8)), we consider the problem

ϕt = −A∗ϕ, ϕ(T ) = ϕ0;





ϕt = i∆ϕ− r · ∇ϕ− iq̃0ϕ, in Q;

ϕ|t=T = ϕ0, in Ω;

either ϕ|Σ0 ≡ 0, or
∂ϕ

∂ν

∣∣∣∣
Σ0

≡ 0, in Σ0;

∂ϕ

∂ν

∣∣∣∣
Σ1

≡ 0, in Σ1.

(2.12a)

(2.12b)

(2.12c)

(2.12d)

When the I.C. w0 = 0 in (2.1b), then the ϕ-problem (2.12a–d) is the adjoint to
the control w-problem (2.1a–d). More precisely, we have:

Proposition 2.2. With reference to problems (2.1) and (2.12), assume (A.1),
(A.2). The closed map

LT : {w0 = 0, u} → LT u = w(T ), from L2(Σ1) ⊃ D(LT ) to L2(Ω), (2.13)

and the map

L∗T : ϕ0 → L∗T ϕ0 = −iϕ( · ; ϕ0)|Σ1 from L2(Ω) ⊃ D(L∗T ) to L2(Σ1), (2.14)
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are adjoint of each other: for u ∈ D(LT ) and ϕ0 ∈ D(L∗T ),

(LT u, ϕ0)L2(Ω) = (w(T ), ϕ0)L2(Ω) =
∫

Ω

w(T )ϕ0dΩ

=
∫ T

0

∫

Γ1

u(−iϕ)dΣ1 = (u,−iϕ)L2(Σ1) = (u,L∗T ϕ0)L2(Σ1). (2.15)

Proof. Multiply Eqn. (2.1a) by ϕ and integrate by parts over Q, invoking w0 = 0
and the B.C. (2.1c–d) for w, and (2.12a–d) for ϕ. Details are straightforward using
(2.9).

Duality between exact controllability of the w-problem (2.1) with w0 = 0
and continuous observability of the ϕ-problem (2.12). Exact controllability
of problem (2.1a–d) with w0 = 0, as spelled out in the statement of Theorem 2.1,
over the interval [0, T ] on the state space L2(Ω), within the class of Neumann-
boundary controls L2(0, T ; L2(Γ1)) means precisely that the (closed) map LT in
(2.13) satisfies

LT : L2(0, T ;L2(Γ1)) ⊃ D(LT ) onto−→ L2(Ω). (2.16)

Equivalently then [Ta-La.1, p. 235], the adjoint operator L∗T in (2.14) is bounded
below: there exists a constant c′T > 0 such that

‖L∗T z‖L2(0,T ;L2(Γ1)) ≥ c′T ‖z‖L2(Ω), z ∈ D(L∗T ). (2.17)

Recalling (2.14) for L∗T , we obtain the Continuous Observability Inequality (COI)
in terms of the adjoint ϕ-problem (2.12), under the working assumption (A.2).

Proposition 2.3. Assume (A.1), (A.2). The exact controllability property of prob-
lem (2.1a–d) spelled out in the statement of Theorem 2.1 (in symbols: property
(2.16)) is equivalent to the following COI: There exists a constant cT > 0, inde-
pendent of ϕ0, such that the solution of problem (2.12) satisfies

‖ϕ0‖2L2(Ω) ≤ cT

∫ T

0

∫

Γ1

|ϕ( · ;ϕ0)|2dΣ1, ϕ0 ∈ L2(Ω), (2.18)

whenever the right-hand side of (2.18) is finite.

2.3. Proof of the COI (2.18) under (A.2). The goal of this section is to
establish the Continuous Observability Inequality (2.18) for the adjoint ϕ-problem
(2.12a-b-c-d), under the working assumption (A.2).

Regularity. First, however, we need to establish the regularity of problem (2.12).

Theorem 2.4. Let T > 0 be arbitrary. Assume (A.1), (A.2) (so that q̃0 ∈ L∞(Q),
see (2.10a)). With reference to the ϕ-problem (2.12a–d) with ϕ0 ∈ L2(Ω), we have
that the solution map

ϕ0 ∈ L2(Ω) → ϕ ∈ C([0, T ];L2(Ω)) (2.19)

is continuous.
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The proof is given in [Tr.4, Section 4].

Continuous Observability Inequality. We next establish inequality (2.18) at
first under the working assumption (A.2). This will be removed in Section 2.4.

Theorem 2.5. Let T > 0 be arbitrary. With reference to the ϕ-problem (2.12a–d)
with ϕ0 ∈ L2(Ω), assume (A.1) for the coefficients r and q̃0, so that q̃0 ∈ L∞(Q).
Further, assume that the strictly convex d(x) in (1.5) satisfies ∇d · ν ≤ 0 on Γ0 in
case of the Dirichlet B.C. ϕ|Σ0 ≡ 0 in (2.12c); and ∇d · ν ≡ 0 on Γ0 in case of
the Neumann B.C. ∂ϕ

∂ν |Σ0 ≡ 0 in (2.12c). Further, assume the working assumption
(A.2)= (2.8). Then, the following estimate holds true: There exists a constant
cT > 0, independent of ϕ0, such that

‖ϕ0‖2L2(Ω) ≤ cT

∫ T

0

∫

Γ1

|ϕ|2dΣ1, (2.20)

whenever the right-hand side of (2.20) is finite.

Proof. Step 1. One first shows the estimate
∫ T

0

∫

Γ1

|ϕ|2dΣ1 + ‖ϕ‖2H−1(Q) ≥ c̃T ‖ϕ0‖2L2(Ω), (2.21)

for c̃T > 0 independent of ϕ0, which is inequality (2.20) polluted by an interior
lower-order term. The key inequality (2.21) is readily seen to be a direct applica-
tion of estimate (1.8) (with f ≡ 0) of Theorem 1.1, after using the homogeneous
Neumann B.C. in (2.12c).

Step 2. Naturally, for cT > 0 independent of ϕ0, (2.21) implies a-fortiori

∫ T

0

∫

Γ1

|ϕ|2dΣ1 + ‖ϕ‖2L∞(0,T ;H−1(Ω) ≥ cT ‖ϕ0‖2L2(Ω), (2.22)

as the interior term in (2.22) dominates the interior term in (2.21).

Step 3. Next, we need to absorb the interior l.o.t. ϕ ∈ L∞(0, T ; H−1(Q)) by a
compactness/uniqueness argument, as usual. The uniqueness part is the delicate
point. Thus, one needs to establish the following result in order to complete the
proof of Theorem 2.5.

Lemma 2.6. Assume the hypotheses of Theorem 2.5, and let ϕ be a solution of
problem (2.12) satisfying inequality (2.22). Then, in fact,

‖ϕ‖2L∞(0,T ;H−1(Ω)) ≤ kT

∫ T

0

∫

Γ1

|ϕ|2dΣ1, (2.23)

for a constant kT > 0 independent of ϕ0.

The proof is given in [Tr.4, Section 3] in the more general Riemannian setting.
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2.4. Removal of assumption (A.2) = (2.8). In this section we complete the
proof of Theorem 2.1 in its full strength, by removing the working assumption (A.2)
= (2.8). To this end, we perform in the original w-problem a change of variable
as the one taken in [L-T-Z.2], [Tr.4, Eqn. (4.3)] for the dual ϕ-problem (2.12a–d);
that is, we set

y(t, x) = e−
i
2 p(t,x)w(t, x), (2.24)

for a smooth real function p(t, x). Then, the problem in y corresponding to the
w-problem (1.1a–d) is





yt = i∆y − [r(t, x) +∇p(t, x)] · ∇y − iq1(t, x)y in Q;

either y|Σ0 ≡ 0, or else
[
∂y

∂ν
+

(
i

2
∂p

∂ν

)
y

]

Σ0

≡ 0 in Σ0;

∂y

∂ν
+

(
i

2
∂p

∂ν

)
y = e−

i
2 p(t,x)u in Σ1,

(2.25a)

(2.25b)

(2.25c)

where r̃(t, x) = r(t, x) +∇p(t, x) is a real-valued vector field on Rt × Ω, satisfying
the same assumptions r̃ ∈ L∞(0, T ;Rn) in (A.1) = (1.6). Similarly, q1, which is
given by [Tr.1, Eqn. (4.5)]

q1 =
[
q0 +

1
2
pt − i

2
∆p− 1

4
|∇p|2 +

1
2
〈r +∇p,∇p〉

]
∈ L∞(Q), (2.26)

satisfies q1 ∈ L∞(Q), |∇q1| ∈ L∞(Q), as required by (1.6).
Moreover, the original real-valued vector field r(t, x) in (1.3), it is always pos-

sible to select, in infinite many ways, a smooth real function p such that

r̃ · ν|Σ = [r · ν +∇p · ν]Σ = 0.

Thus, to the y-problem (2.25), we can apply the same duality argument used
in subsection 2.3 with respect to the original w-problem in (2.1) (except for the
noncritical fact that the B.C. (2.25) for y is of Robin-type, while the B.C. (2.1c)
for w is of Neumann-type. Accordingly, by Section 2.3, Theorem 2.5 is applied to
the dual of the y-problem (2.25). We conclude that the y-problem (2.25) is exactly
controllable on the state space L2(Ω) by means of L2(0, T ; L2(Γ1)) controllers of
the type e−

i
2 p(t,x)u(t, x). But then by (2.24), the w-problem (2.1a-b-c) is likewise

exactly controllable on the state space L2(Ω), by means of controllers of the type
u in L2(0, T ; L2(Γ1). Theorem 2.1 is proved.

3. Consequence #2: sharp uniform decay rates at the L2(Ω)-level with
nonlinear boundary dissipation in the Neumann B.C. [L-T.9]

The goal of the present section is to provide a uniform boundary stabilization
result at the L2(Ω)-energy level (Theorems 3.1 and 3.3) for a multi-dimensional
Schrödinger equation model in feedback form, with nonlinear dissipation in the
Neumann-boundary conditions. The model is given in Eqns. (3.3a–c) in subsection
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3.2 below. The aforementioned boundary feedback energy decay result with non-
linear boundary dissipation is, in turn, motivated by, and a generalization of, the
corresponding linear problem, which was recently obtained in [L-T-Z.2, Sect. 11].
Accordingly, we need to review briefly such linear result first.

3.1. Linear case: conservative open-loop and dissipative closed-loop
Schrödinger problems in L2(Ω) [L-T-Z.2]. Recently the following problem
was considered in [L-T-Z.2, Sect. 11]. Let Ω ⊂ Rn, n ≥ 1, be an open bounded
domain with sufficiently smooth boundary ∂Ω = Γ of class C2, Γ = Γ0 ∪ Γ1,
Γ0 ∩ Γ1 = ∅, Γ0 6= ∅. In Ω, we consider the following two Schrödinger problems





iyt + ∆y = 0;

y(0, · ) = y0;

y|Γ0 ≡ 0, ∂y
∂ν

∣∣∣∣
Γ1

≡ u;





ivt + ∆v = 0 in Q = (0, T ]× Ω;
v(0, · ) = v0 in Ω;

v|Γ0 ≡ 0, ∂v
∂ν

∣∣∣∣
Γ1

≡ iv in Σk= (0, T ]× Γk, k = 0, 1,

(3.1a)

(3.1b)

(3.1c)

ν(x) = outward unit (real) normal at x ∈ Γ1, where the v-problem can be viewed
as a closed-loop version of the y-Neumann problem, with boundary control u on
Γ1 in the feedback form u = iv. For u ≡ 0, the y-problem is conservative (‘energy’
preserving), with skew-adjoint generator A = −A∗. Instead, in contrast, the v-
problem is dissipative, as quantitatively stated in Theorem 3.1 below. The solution
y or v is complex-valued. A comparison with [L-T.3], [M.1] is given below at the
end of Section 3.3.

Remark 3.1. In (3.1c), with cosmetic changes, we could also allow Γ0 = ∅ and
Γ ≡ Γ1. More importantly, in (3.1c) we could also include the case where the
homogeneous Dirichlet B.C. y|Γ0 ≡ 0, v|Γ0 ≡ 0 on Γ0 are replaced by the corre-
sponding homogeneous Neumann B.C. ∂y

∂ν |Γ0 ≡ 0, ∂v
∂ν |Γ0 ≡ 0, respectively, in which

case the condition Γ0 ∩ Γ1 = ∅ is dispensed with. However, in this latter ‘purely’
Neumann case, more stringent geometrical conditions are called for: there exists a
smooth strictly convex function d : Ω → R such that the vector field `(x) = ∇d(x)
satisfies: ` · ν ≡ 0 on Γ0 (instead of the more relaxing condition ` · ν ≤ 0 on Γ0 in
the Dirichlet case, as assumed in Theorem 3.1 and (H.3) = (3.6) below). Various
classes of {Ω, Γ0, Γ1} where such strictly convex function d may be constructed are
given in [L-T-Z.1, Appx. A, pp. 287–307]. In particular, a sufficient condition is
that Γ0 be convex or concave [L-T-Z.1, Thm. A.4.1, p. 301] and [T-Y.2, Appx. B]
(in a Riemannian setting). Same considerations apply to the nonlinear problem
(3.3) below. ¤
Well-posedness and stabilization. See [L-T-Z.2, Sect. 11] and [L-T-Z.3, Sect. 11].

Theorem 3.1. (Well-posedness and strong stabilization in L2(Ω) [L-T-Z.2,
Thm. 11.1.1]) With reference to the v-problem in (3.1), we have: (i) the map v0 →
v(t) defines a s.c. contraction semigroup on L2(Ω): v(t) = eLF tv0 ∈ C([0, T ];L2(Ω)),
where LF is a maximal dissipative operator, explicitly defined in [L-T-Z.2], [L-T.9];
(ii) for v0 ∈ L2(Ω), we have eLF tv0 → 0 in L2(Ω), as t →∞.
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(Uniform stabilization [L-T-Z.2, Thm. 11.1.2]) Assume that there exists a (i) co-
ercive real-valued vector field `(x) ∈ (C2(Ω))n [that is, with Jacobian matrix J
satisfying Re{Jv · v̄} ≥ ρ|v|2, ρ > 0; in particular, `(x) = ∇d(x), for a real strictly
convex function d(x) on Ω, the radial case `(x) = x− x0, for some x0 ∈ Rn, being
the canonical case], such that (ii) ` · ν ≤ 0 on Γ0. Then, there exist constants
M ≥ 1, δ > 0, such that

‖eLF t‖L(L2(Ω)) ≤ Me−δt, t ≥ 0; equivalently, Ev(t) ≤ Me−δtEv(0), t ≥ 0. (3.2)

The proof of generation and strong stability is by “soft” methods: Lumer-
Phillips Theorem for generation and a combination of Stone’s and Nagy-Foias-
Foguel’s results in contraction semigroups [Lev.1] for strong stability, following
an established procedure [L-T.2], [L-T.3], [Tr.2], etc. This avenue requires that
the resolvent of the generator be compact, a property presently satisfied [L-T-Z.2,
Sect. 11]. An alternative avenue consists of invoking the characterization of strong
stability in [A-B.1], [L-P.1], which does not require that the generator has compact
resolvent. In sharp contrast the uniform stabilization result relies on the non-trivial,
general, a-priori energy estimate (1.8) of Theorem 1.1, a much harder avenue.

Remark 3.2. Via a well-known result of [Ru.1], Theorem 3.1 implies exact con-
trollability in the state space L2(Ω) in the sense of Theorem 2.1, at least for the
y-problem on the LHS of (3.1) with Neumann boundary control u. Thus, Theorem
2.1 refers to a more general model (ultimately in the Riemannian setting of Remark
2.1 [Tr.3]).

3.2. Nonlinear boundary dissipation. Assumptions; main results. Non-
linear boundary dissipation model. Let Ω be an open bounded domain of Rn,
n ≥ 1, as in Section 3.1, with sufficiently smooth boundary ∂Ω = Γ = Γ0 ∪ Γ1,
Γ0 ∩ Γ1 = ∅, Γ0 6= ∅. Prompted by the dissipative linear v-problem in (3.1a–c)
reported in Section 3.1, we now consider the corresponding problem with nonlinear
boundary dissipation:





iwt + ∆w = 0 in Q = (0, T ]× Ω;

w(0, · ) = w0 in Ω;

w|Γ0 ≡ 0,
∂w

∂ν
= ig(w) in Σk = (0, T ]× Γk, k = 0, 1.

(3.3a)

(3.3b)

(3.3c)

We have already noted in Remark 3.1 that we could take Γ0 = ∅, and, moreover,
we could take ∂w

∂ν |Γ0 ≡ 0 instead of w|Γ0 ≡ 0 in (3.2c), in which case the condition
Γ0 ∩ Γ1 = ∅ is dispensed with. However, stronger geometrical conditions, noted in
Remark 3.1, are then called for.
Assumptions on the nonlinearity g. First, for purposes of the well-posedness
result, Theorem 3.2 below, we impose on the complex-valued function g the follow-
ing assumptions:

(H.1): g is a continuous complex, single-valued function of the complex variable
z ∈ C, g(z), with g(0) = 0; moreover, g(z) is the sub-differential, g(z) = ∂j(z), of
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a lower semicontinuous, convex, proper function j : C → R = ]−∞,+∞], so that
it satisfies

Im{g(z)z̄} ≡ 0; Re{(g(z)− g(v))(z̄ − v̄)} ≥ 0, ∀ z, v ∈ C. (3.4a)

Thus, in particular, for v = 0 we obtain Re{g(z)z̄} ≥ 0, so that

Re{g(z)z̄} = g(z)z̄ = |g(z)z̄| ≥ 0, ∀ z ∈ C. (3.4b)

Property (3.4a) is the present counterpart of the monotonicity assumption in the
case g is real-valued function of a real variable. We may view g : C → C with
the range space C being an inner-product space under the inner product (z, v)C =
Re{zv̄}, ∀z, v ∈ C. In the linear case of Section 3.1, we have g(z) = z. If the
functions gj(z) satisfy (H.1), so does

∑J
j=1 djgj(z) for dj ≥ 0. Typical examples

for g(z) are: g(z) = |z|rz, r > 0; or g(z) = 1
|z|r z, 0 < r < 1. See Lemma 3.4;

Examples #1–#4; [L-T.9, Appendix A] in Section 3.5.
Second, for purposes of the main result, the uniform stabilization Theorem 3.3

below, we require—besides (H.1)—additional growth conditions:
(H.2): There exist positive constants m > 0, M > 0, such that
(a)

m|z|2 ≤ g(z)z̄ (recall (3.4b)), for |z| ≥ 1, ∀ z ∈ C; (3.5a)

(b) 



|g(z)| ≤ M |z|p, for |z| ≥ 1, ∀ z ∈ C;

where: p = 5 for n = dim Ω = 2,
p = 3 for n = dim Ω = 3.

(3.5b)

We remark that no growth assumptions on g(z) are made near the origin,
though the decay asserted by Theorem 3.3 does depend on such behavior. More-
over, g( · ) is allowed to be superlinear at infinity, unlike the corresponding case of
the wave equation [La-Ta.1]. Finally, in contrast with most of the literature on
uniform stabilization of nonlinear dynamics, g need not be differentiable. Classes
of functions satisfying assumptions (H.1), (H.2) are discussed below in Lemma 3.4;
[L-T.9, Appendix A], and Examples #1–#4 in Section 3.5.

Geometrical assumption. Finally, for purposes of the uniform stabilization
Theorem 3.3, we need a geometrical condition imposed on the triple {Ω, Γ0, Γ1},
Γ0 6= ∅, the same as in Theorem 3.1 and Theorem 2.1 of Section 2.1: there exists
a real coercive vector field `(x) ∈ (C2(Ω))n, such that

(H.3))
`(x) · ν(x) ≤ 0 on Γ0. (3.6)

Main results. Well-posedness and regularity.

Theorem 3.2. Let n = 1, 2, . . .. Assume hypothesis (H.1) = (3.4) on g. Then,
the following results hold true for the w-problem (3.3):
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(a) (well-posedness) For any initial condition w0 ∈ L2(Ω), problem (3.3) defines
a unique (non-linear contraction semigroup) mild solution w(t; w0) [B.1, p. 202,
204, 230] satisfying

w0 ∈ L2(Ω) ⇒ w( · ; w0) ∈ C([0,∞); L2(Ω)) (3.7)

continuously. The generator AF of the corresponding nonlinear semigroup is given
explicitly in [L-T.9, Eqn. (4.2)]: it is maximal dissipative, hence closed; moreover,
D(AF ) = L2(Ω).
(b) (regularity) Let, in particular, w0 ∈ H2(Ω) subject to compatibility conditions:

w0 ∈ H2(Ω) : w0|Γ0 = 0;
∂w0

∂ν

∣∣∣∣
Γ1

= ig(w0), so that w0 ∈ D(AF ), (3.8a)

the domain of the generator AF defined in [L-T.9, Eqn. (4.2)]. Then, the corre-
sponding unique solution w(t; w0) guaranteed by part (a), satisfies [B.1, Thm. 1.2,
p. 220] (w+

t = right-derivative)
{

w( · ; w0) ∈ C([0,∞);D(AF )),D(AF ) ⊂ D(A
1
2 ) ≡ H1

Γ0
(Ω), w+

t ∈ C([0,∞); L2(Ω));

w( · ; w0)|Γ1 ∈ C([0,∞); H
1
2 (Γ1)).

(3.8b)
(c) (higher regularity) Assume (3.8a) on w0 and, moreover,

(c1) if dim Ω = 2, assume that g(z) is of polynomial growth:

|g(z)| ≤ C|z|k, |z| ≥ 1, for some positive integer k, (3.9a)

or, more generally, that g : H
1
2 (Γ) → L2(Γ), in particular, g : Lp(Γ) → L2(Γ), p ≥

1;
(c2) if dim Ω = 3, assume that

|g(z)| ≤ C|z|r, z ∈ C, for some r < 3 (3.9b)

(r = 3− ε, ε > 0 arbitrary). Then, in both cases (c1) and (c2), we have that

D(AF ) ⊂ H
3
2 (Ω), so that w( · ; w0) ∈ C([0,∞); H

3
2 (Ω)), (3.10a)

for w0 as in (3.8a). In particular (from (3.8b) and (3.9a–b)):

∂w

∂ν

∣∣∣∣
Γ1

= ig(w( · ;w0)|Γ1) ∈ L2(0, T ; L2(Γ1)). (3.10b)

Additionally, higher regularity requires differentiability of g( · ). We shall not
include this result. Of course, Theorem 3.2 is a generalization of the linear well-
posedness Theorem 3.1(i) to which it reduces for g(z) = z. Theorem 3.2 follows
from monotone operator theory. Its proof is given in [L-T.9, Appendix C].

The main focus of the present section is an asymptotic energy decay rates of
solutions, as t →∞. To this end, assumptions (H.2) on g and (H.3) on geometrical
conditions are invoked.
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Uniform stabilization (or uniform decay rates). Orientation. Before stat-
ing our main result, Theorem 3.3, we need to introduce some concepts and relative
notation. The proof, given in [L-T.9, Section 5], needs to establish some a-priori es-
timates, after which one is able to fall into the general setting for “hyperbolic-like”
linear PDE-dynamics (wave, Schrödinger, plates, shells equations) with nonlinear
(interior and) boundary dissipation, first introduced in [La-Ta.1] in the specific case
of wave equations with nonlinear boundary dissipation in the Neumann-boundary
conditions. This approach is, however, fully general. It has been used in several
other settings, including the following cases: von Karman plates [H-L.1]; full von
Karman model [Las.1]; Maxwell equations [E-L-N.1]; equations of shells (coupled
system of two hyperbolic PDEs defined on a 2-dimensional surface) [L-T.4]; wave
equations with interior localized dissipation [La-To.1]. It will be invoked and ap-
plied also in the present setting of the Schrödinger problem (3.3). We need to recall
such strategy.
Step (i): The concave function h(x). Following [La-Ta.1], we let h : R+ → R+

be a real-valued continuous, concave, strictly increasing function, with h(0) = 0,
satisfying

h(g(z)z̄) ≥ |z|2 + |g(z)|2, for |z| ≤ δ, for some δ > 0, z ∈ C (3.11)

(recall that g(z)z̄ ≥ 0 by (3.4b)). Such function h(s), s ≥ 0, can always be
constructed on the strength of assumptions (H.1), (H.2). Thus, (3.11) is a property,
not an assumption.

Having constructed the required function h( · ), we rescale it by letting

h̃(x) = h

(
x

meas(Σ1)

)
, x ≥ 0, (3.12)

where Σ1 = (0, T ]×Γ1, with T > 0 arbitrary, and “meas” is the cylinder Q’s surface
measure. Of course, h̃(0) = 0 and h̃(x) is strictly increasing, so that the operator
CI + h̃ is invertible for any constant C ≥ 0, where I is the identity operator.
Step (ii): The convex function p(x). For any positive constant C, whereby the
concave function (C + h̃) is invertible, and for any positive constant K, we define
the convex function p(x) by setting

p(x) = (CI+h̃)−1(Kx) : positive for x > 0, p(0) = 0, continuous, strictly increasing.
(3.13)

Thus, the function (I + p)(x) is invertible. [The present function p(x) should not
be confused with the parameter p in (3.5b).]
Step (iii): The function q(x). Finally, we define the function q(x) by

q(x) = x− (I + p)−1(x) = p(I + p)−1(x) = (I + p)−1p(x)
: positive for x > 0, q(0) = 0, continuous, strictly increasing. (3.14)

[Differentiating q(x) + p(q(x)) = p(x) yields q′(x) = p′(x)/[1 + p′(q(x))] > 0, since
p(x) is strictly increasing. Also, [I + p]q(0) = p(0) = 0 ⇒ q(0) = 0.] We note that
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the above procedure—step (i) through step (iii) is both constructive and explicit,
given the data of the problem: the nonlinear function g satisfying assumption (H.1);
the part Γ1 of the boundary, and the constant T > 0. See [L-T.9, Section 3].

We can now state our main uniform decay rate result for problem (3.3).

Theorem 3.3. Let n = dim Ω = 2, 3. With reference to the w-problem (3.3),
we assume hypotheses (H.1) = (3.4), (H.2) = (3.5) for g and (H.3) = (3.6) for
{Ω, Γ0, Γ1}. Then, the energy

E(t) ≡ ‖w(t, w0)‖2L2(Ω), w0 ∈ L2(Ω) (3.15)

of the solution w of problem (3.3), guaranteed by Theorem 3.2, satisfies the follow-
ing decay rate

E(t) ≤ S

(
t

T0
− 1

)
(E(0)) ↘ 0 for all t ≥ T0, t →∞, (3.16)

for some T0 > 0, where the scalar function S(t) (nonlinear contraction) is the
solution of the following nonlinear ODE:

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0) ≡ ‖w0‖2L2(Ω), (3.17)

where the function q is defined by (3.14), via (3.13), where the positive constants
C and K there are defined by

C =
1
m + 1 + C̃p(E(0))

p−1
p+1

meas(Σ1)
; K =

1
2CT meas(Σ1)

. (3.18)

where p = 5 for dim Ω = 2, p = 3 for dim Ω = 3, see (3.5b); m is defined in
(3.5a); C̃p is given explicitly in [L-T.9, Proposition 5.2.1]; and CT is the constant
in [L-T.9, (5.1.3)]. Thus, from (3.16) it follows that

E(t) → 0 as t →∞, with rates specified by S(t). (3.19)

Theorem 3.3 generalizes the linear Theorem 3.1. We remark that the function q
(like p) depends on the constants C and K. In the stabilization result of Theorem
3.3 above, C depends, in turn, on the data as well as on E(0), the initial energy.
Thus, the decay provided by Theorem 3.3 is uniform with respect to all initial
conditions within a same ball of L2(Ω), centered at the origin. Several illustrations
on the application of Theorem 3.3, for various functions g and corresponding rates
are given in [L-T.9, Section 3]; and a few more are given in Section 3.3 below.
Preliminary dissipation energy identity. Once the well-posedness result [L-T.9,
Theorem 3.2(b)] has been established—in particular (3.8b) for wt, ∇w ∈ L2(Ω)
a.e., and ∂w

∂ν |Γ1 ∈ L2(Γ1) a.e. for strong solutions—the following standard energy
method is justified. We multiply Eqn. (3.3a), rewritten equivalently as wt = i∆w
in Q, by w̄, take real parts of the resulting identity and integrate by parts in time
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and space over
∫ t

s

∫
Ω

dΩ dτ . We use ∂
∂t |w|2 = 2 Re{wtw̄} in the integration in t

on the left side, and Green first theorem in the space integration on the right side
with boundary conditions given by (3.3c). In the process, we get the cancelation
Re(i|∇w|2) = 0, and finally obtain the identity

∫

Ω

|w(t)|2dΩ + 2
∫ t

s

∫

Γ1

Re{g(w)w̄}dΓ1dτ =
∫

Ω

|w(s)|2dΩ, t ≥ s ≥ 0. (3.20a)

Invoking property (3.4b) on g, Re{g(w)w̄} = g(w)w̄ ≥ 0, as well as the energy
E( · ) in (3.15), we can rewrite identity (3.20a) as follows, so that the energy is
monotonically decreasing, as desired:

E(t)+2
∫ t

s

∫

Γ1

g(w)w̄ dΓ1dτ = E(s), where then E(t) ≤ E(s), t ≥ s ≥ 0, (3.20b)

Remark 3.3. The energy method leading to identity (3.20a) gives Re{g(w)w̄} in
the boundary integral. On the other hand, the boundary integral in the critical
estimate (1.8) of Section 1, when applied with z = w, the solution of problem (3.3),
gives the integrand |g(w)| |w|: see [L-T.9, (5.1.1)]. It is the need to match these two
integrands: Re{g(w)w̄} = |g(w)w̄|, that forces (part of) assumption (H.4) = (3.4a-
b). As a result, it is precisely in the form (3.20b) that one invokes the dissipativity
identity (3.20a). See e.g., [L-T.9, (5.2.29) via (5.2.1)]. ¤
A first direct construction of continuous functions g(z) satisfying (3.4a)
near the origin.

Lemma 3.4. With s0 > 0, let

γ : [0, s0] → R+ be a continuous function of a real variable, γ(0) = lims↓0 γ(s) ≥ 0,
γ(s) > 0 for s > 0, such that s → sγ(s) is monotone increasing,

(3.21)
the case γ(0) = +∞ being included. Define the continuous function g(z) by

g(z) = γ(|z|)z, z ∈ C and assume that g(0) = 0, (3.22)

so that g(s) is increasing on [0, s0]. Then g(z) in (3.22) satisfies assumption (3.4a).
(b) As a partial converse, let g(z) be a continuous function of z ∈ C. Then, with
reference to (3.4a) (LHS), we have

Im{g(z)z̄} ≡ 0, ∀ z ∈ C ⇒ g(z) = f(x, y)z, (3.23)

where f(x, y) is a continuous, real-valued function of the real variables x = Re z,
y = Im z, z = x + iy. Moreover, with reference to (3.4b) we have

Re{g(z)z̄} ≥ 0, ∀ z ∈ C ⇒ f(x, y) ≥ 0, ∀ x, y ∈ R. (3.24)

Proof of Lemma 3.4. (a) Property (3.4b) is obvious: g(z)z̄ = γ(|z|)|z|2 ≥ 0, z ∈ C,
while g(0) = 0. As to property (3.4a), we compute from (3.4b), for z, v ∈ C, via
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(3.21), (3.22):

Re{(g(z)− g(v))(z̄ − v̄)} = Re{[γ(|z|)z − γ(|v|)v](z̄ − v̄)}
= γ(|z|)|z|2 + γ(|v|)|v|2 − γ(|z|) Re{zv̄} − γ(|v|) Re{vz̄}
= γ(|z|)|z|2 + γ(|v|)|v|2 − [γ(|z|) + γ(|v|)] Re{zv̄} (3.25)

≥ γ(|z|)|z|2 + γ(|v|)|v|2 − [γ(|z|) + γ(|v|)]|z| |v|
= γ(|z|)|z|2 + γ(|v|)|v|2 − γ(|z|)|z| |v| − γ(|v|)|z| |v|
= γ(|z|)|z|[|z| − |v|] + γ(|v|)|v|[|v| − |z|]
= (γ(|z|)|z| − γ(|v|)|v|)(|z| − |v|)
= (γ(r)r − γ(ρ)ρ)(r − ρ) = (g(r)− g(ρ))(r − ρ) ≥ 0, ∀ r, ρ > 0, (3.26)

where we have set |z| = r, |v| = ρ, and where non-negativity follows since the
function r → rγ(r) is increasing. Thus, (3.26) proves (3.4a), as desired.
(b) Let z = x + iy, x, y ∈ R and write g(z) = u(x, y) + iµ(x, y), u, µ ∈ R. We have
g(z)z̄ = (ux + µy) + i(xµ − uy). The condition Im{g(z)z̄} ≡ 0 in (3.23) (LHS)
implies: xµ = uy, or u = f(x, y)x, µ = f(x, y)y, for some continuous, real-valued
function f(x, y). Hence, g(z) must be of the form g(z) = f(x, y)(x+ iy) = f(x, y)z,
and property (3.23) (RHS) is established. Property (3.24) is then obvious.

The above proof is then integrated in the general abstract setting given in
[L-T.9, Appendix A, point (5)], to obtain further that g(z) = ∂j(z), as required by
the full assumption (H.1). A canonical distinctive class of functions γ(s) covered
by Lemma 3.4 is given by

γ(s) = sr, hence g(z) = |z|rz, for all real r > 0, (3.27)

since sγ(s) = sr+1 is monotone increasing, s > 0. This class is also noted in [Lio.2,
p. 133].

The canonical cases to distinguish are three:
Case 1 (fast decay to zero: superlinear):

γ(s) = s; g(s) = s2, 0 ≤ s ≤ s0; g(z) = |z|z, 0 ≤ |z| ≤ s0. (3.28)

Case 2 (linear case):

γ(s) ≡ 1, g(s) = s, 0 ≤ s ≤ s0; g(z) = z, 0 < |z| ≤ s0. (3.29)

Case 3 (slow decay to zero: sublinear):

γ(s) =
1√
s
, g(s) =

√
s, 0 < s ≤ s0; g(z) =

1√
|z| z, 0 < |z| ≤ s0. (3.30)

The two corollaries in Section 3.3 below deal with general classes of which Case
1 and Case 3 are, respectively, canonical representatives. Further illustrations are
given in Section 3.3 below, complementing those given in [L-T.9, Section 3].
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Case 1 and Case 3 correspond to slow energy decay rates (polynomial type
or worse). Case 2 corresponds to exponential energy decay rate. See Examples
#1–#4 at the end of Section 3.5.

Literature on boundary feedback stabilization of Schrödinger equations.
Linear case. This is reviewed in [L-T-Z.2, Section 11]. In a nutshell: [L-T.3] for
uniform decay in the space of optimal regularity H−1(Ω) with Dirichlet (non-local)
dissipativity and [M.1] for uniform decay in the (excessively smooth) space H1(Ω)
with Neumann dissipation involving vt ∼ ∆v both in the linear case. Compare with
Theorem 3.1 in the more desirable space L2(Ω) with the more desirable Neumann
dissipation involving vi in the linear case; and also with Theorem 3.3, the nonlinear
case.

Nonlinear case. Contributions of the paper [L-T.9], here reviewed. In
short, the main novel features of our paper include the following points:

Well-posedness. (i) A new abstract well-posedness result— [L-T.9, Theorem
C.1.1 in Appendix C], specialized next to the case of the Schrödinger equation with
nonlinear monotone interior and boundary damping in [L-T.9, Theorem C.2.1] and,
further, in [L-T.9, Theorem 3.2]. Such result requires a special proof within the
theory of maximal monotone operators, which is definitely more challenging than
in the corresponding case of the wave equation (see [L-T.9, Remark C.1.1]), as to
necessitate the approximation argument of [L-T.9, Section C.1].

Uniform stabilization. (ii) sharp (optimal) energy decay rates, under a non-
linear, attractive boundary dissipation in the Neumann B.C., are obtained in the
desirable L2(Ω)-norm in Theorem 3.3 with four illustrative computed examples,
see below.

(iii) The non-dissipative (homogeneous or unobserved) part Γ0 of the boundary
is allowed also to be of Neumann-type (case where the Lopatinski Condition is
not satisfied), as noted in Remark 3.1: in this case, the price to pay is a stronger
geometrical condition (after [L-T-Z.1, Appx. A] in the wave equation case, e.g., Γ0

convex or concave); at any rate, Γ0 and Γ1 need not be disjoint.
(iv) Superlinear growth of the boundary dissipation is allowed at infinity: up to

polynomial growth of order 5, for dim Ω = 2; and of order 3, for dim Ω = 3. By con-
trast, in the case of the wave equation, [La-Ta.1] allowed only linear growth at infin-
ity for the boundary monotone damping. Superlinear growth in the Schrödinger’s
case is the result of Carleman’s estimates penalizing normal derivatives on the
boundary in negative anisotropic norms (Theorem 1.1 of Section 1).

(v) No growth assumption on the (monotone) nonlinearity is required at the
origin, which therefore may be arbitrary. However, the decay rates that correspond-
ingly are obtained via a constructive algorithm (a refinement of [La-Ta.1]) and are
entirely determined by the behavior of the (monotone) nonlinearity at the origin
(see the numerous examples in Section 3.3). In particular, in contrast with most of
the literature on uniform stabilization of nonlinear dynamics, no differentiability
of the dissipation is assumed.

Regarding (iv), a recent analysis of the wave equation with nonlinear localized
interior damping and source terms and no growth restrictions at infinity is carried
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out in [La-To.1]. In both the linear and nonlinear Schrödinger cases, the underlying
supporting pillar for obtaining decay rates in the L2(Ω)-topology is a Carleman-
type energy estimate at the L2(Ω)-level (Theorem 1.1). It is obtained by use of
a pseudo-differential shift of topology, and related micro-local analysis [L-T-Z.2,
Sect. 10] (see also [L-T-Z.2]) to go from the natural H1(Ω)-level to the desired
L2(Ω)-level. We also refer to [Ta.1] in the Dirichlet case.

3.3. Corollaries and illustrations: computation of optimal decay rates.
In this section, in order to illustrate Theorem 3.3, we refer to two general corol-
laries [L-T.9, Section 3]. They refer to the ‘end cases’ where the function g(s), in
the real positive variable s, has either a fast decay as in Case 1, (3.28), ( [L-T.9,
Corollary 3.5]) or else a slow decay as in Case 3, (3.30) [L-T.9, Corollary 3.6] to
zero near s = 0, where we recall that g(0) = 0. Next, we present a few signifi-
cant illustrations of these two corollaries. In each of them, we compute explicitly
the rates of decay through the function q in (3.14)) which are, in fact, optimal.
These are obtained through the explicit sequential algorithmic procedure that was
introduced in [La-Ta.1] and is reproduced here—as adapted to the present class of
complex-valued boundary terms g(z) in (3.22). It consists in the successive con-
struction of the following array of functions: g → h → p → q, starting from the
given boundary term g(z) = γ(|z|)z, as in (3.22).

Corollary 3.5. (fast decay to zero of g(s) as s ↓ 0) Assume (H.1) = (3.4), (H.2)
= (3.5), (H.3) = (3.6).

(a) Let γ(s) be the function: [0, s0] → R+ defined by (3.21), and let then g(s) =
sγ(s) monotone increasing, g(0) = 0, g(z) = γ(|z|)z as in (3.22). Assume further
that

(a1) 0 ≤ γ(0) < 1;
(a2) the function sγ(

√
s) =

√
s g(

√
s) is convex near s = 0, say for 0 < s < s2

0,
for some s0.

Then, the procedure described in Step (i), Eqn. (3.11), to construct the required
continuous, concave, strictly increasing function h(x) : R+ → R+, with h(0) = 0,
can be arranged as to yield the following choice

h−1(x) =
x

2
γ

(√
x

2

)
=

√
x

2
g

(√
x

2

)
, near x = 0, say, 0 ≤ x ≤ x0 = 2s2

0. (3.31)

(b) Let C > 0 be the constant in the definition of the sought-after continuous,
strictly increasing function p(x), p(0) = 0, of Step (ii) in (3.13). For illustration
purposes, assume that meas(Σ1) = 1, so that h̃ ≡ h, see (3.12). Assume further
that

γ(s) is C1 for s ↓ 0, and that
1
4
[γ(0) + g′(0)] <

1
C

, (3.32)

where g′(0) must then be g′(0) ≥ 0. Then, we can arrange to take the function p(x)
as to satisfy

h−1
(x

2

)
≤ p(x) ≤ h−1(x) =

x

2
γ

(√
x

2

)
=

√
x

2
g

(√
x

2

)
<

x

2
, 0 < x ≤ x1, x1 small.

(3.33)
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Also, under assumptions (a), (b), we can always arrange to have the function
q(x) in (3.14) satisfy for x near x = 0:

q̃(x) ≡ 2
3
h−1

(x

2

)
≤ 2

3
p(x) ≤ q(x) ≤ p(x) ≤ h−1(x) <

x

2
; 0 ≤ x ≤ x2;

h−1
(

x
2

)
=

x

4
γ

(√
x

4

)
=

√
x

4
g

(√
x

4

)
, 0 < x ≤ x3 =small.

(3.34a)

(3.34b)

The function q̃(x) defined in (3.34) satisfies: q̃(0) = 0, q̃(x) > 0 for 0 < x ≤ x3,
and q̃(x) is strictly increasing and convex. Consider the new ODE

S̃t(t) + q̃(S̃(t)) ≡ 0, (3.35a)

or

S̃t(t)+
2
3

S̃(t)
4

γ




√
S̃(t)
4


= S̃t(t)+

2
3

√
S̃(t)
4

g




√
S̃(t)
4


=0, S̃(T ) = S(T ), (3.35b)

where T is sufficiently large, so that the solution S(t) of the ODE (3.17) evaluated
at t = T satisfies S(T ) < x3 (this is possible by (3.16)). Then, the solutions
of the corresponding w-problem (3.3) with such g(z) = γ(|z|)z, for |z| small [and
otherwise subject to (H.1) = (3.4) and (H.2) = (3.5)] satisfy

E(t) ≤ C(E(0))S(t) ≤ C(E(0))S̃(t), t > T and S̃(t) ↘ 0 as t →∞, (3.36)

( [L-T.9, (B.4)]) where S̃(t) is obtained from integrating

8
∫ √

S̃(t)
4

√
S̃(T )

4

du

g(u)
=

2
3

(T − t), u =

√
S̃

4
. (3.37)

Corollary 3.6. (slow decay to zero of g(s) as s ↓ 0) Assume (H.1) = (3.4), (H.2)
= (3.5), (H.3) = (3.6).

(a) Let γ(s) be the function: (0, s0] → R+ defined by (3.21), and let then
g(s) = sγ(s) monotone increasing, g(0) = 0, g(z) = γ(|z|)z as in (3.22). Assume
further that

(a1) γ(0) > 1; thus, lims↘0
s

g(s) = lims↘0
1

γ(s) = 1
γ(0) ≤ 1; where the case

γ(0) = lims↓0 γ(s) = +∞ is included (and is typical of Case 3, (3.30)).
(a2) the function g(s), in the real positive variable s, is (not only increasing, as

contained in (3.4a) via Lemma 3.4 for z and v restricted to real positive variables,
but also) strictly increasing near s = 0, with inverse g−1( · ). Moreover, the function√

s g−1(
√

s) is convex near s = 0.
Then, the procedure described in Step (i), Eqn. (3.11), to construct the required

continuous, concave, strictly increasing function h(x) : R+ → R+, with h(0) = 0,
can be arranged as to yield the following choice

h−1(x) =
√

x

2
g−1

(
(
√

x

2

)
<

x

2
, near x = 0, say, 0 ≤ x ≤ x0 small. (3.38)
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(b) Let C > 0 be the constant in the definition of the sought-after continuous,
strictly increasing function p(x), p(0) = 0, of Step (ii) in (3.13). For illustration
purposes, assume that meas(Σ1) = 1, so that h̃ = h, see (3.12). Assume further
that

γ(s) is C1 for s ↓ 0 and
[

1
g′(0)

+
1

γ(0)

]−1

>
C

4
(3.39)

[where the cases g′(0) = γ(0) = +∞ are included and indeed typical of Case 2,
(3.29)]. Then, we can arrange to take the function p(x) as to satisfy

h−1
(x

2

)
≤ p(x) ≤ h−1(x) =

√
x

2
g−1

(√
x

2

)
<

x

2
, (3.40)

near x = 0, say 0 < x ≤ x1, x1 small. Also, under assumptions (a), (b), we can
always arrange to have the function q(x) in (3.13) satisfy

q̃(x)≡ 2
3
h−1

(x

2

)
≤ 2

3
p(x)≤q(x)≤p(x)≤h−1(x)=

√
x

2
g−1

(√
x

2

)
<

x

2
,

0 ≤ x ≤ x3 = small, (3.41a)

h−1
(x

2

)
=

√
x

4
g−1

(√
x

4

)
, x small, (3.41b)

so that the ODE (3.35a): S̃t(t) + q̃(S̃(t)) ≡ 0 now takes the form via (3.41)

S̃t(t) +
2
3

√
S̃(t)
4

g−1




√
S̃(t)
4


 = 0, S̃(T ) = S(T ), (3.42)

where T is sufficiently large, so that the solution S(t) of the ODE (3.17) evaluated
at t = T satisfies S(T ) < x3 (this is possible by [L-T.9, (A.3)] or (3.17)). Thus,
the solutions of the corresponding w-problem (3.3) with such g(z) = γ(|z|)z for |z|
small [and otherwise subject to (H.1) = (3.4) and (H.2) = (3.5)], satisfy

E(t) ≤ C(E(0))S(t) ≤ C(E(0))S̃(t), ∀ t ≥ T ; and S̃(t) ↘ 0 as t →∞, (3.43)

( [L-T.9, (A.4)]) where S̃(t) is obtained from integrating

∫ S̃(t)

S̃(T )

dS̃√
S̃
4 g−1

(√
S̃
4

) = 8
∫ √

S̃(t)
4

√
S̃(T )

4

du

g−1(u)
=

2
3
(T − t); u =

√
S̃

4
. (3.44)

Example #1. In this illustration, we take the superlinear case for g(s) as in
(3.22):

γ(s) = sr or g(s) = sr+1, r > 0; near the origin, 0 ≤ s ≤ s0; g(z) = γ(|z|)z = |z|rz.
(3.45)
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Application of Corollary 3.5. We have

γ(0) = 0; sγ(
√

s) = s
r+2
2 convex near s = 0, s > 0; g′(0) = 0, (3.46)

and thus assumptions (a1), (a2), (b) = (3.32) of Corollary 3.5 are fulfilled for any
constant C > 0. By [L-T.9, (3.13) and (3.46)], we have h′(0) = ∞, and by [L-T.9,
(3.18)], we have p′(0) = 0. Recalling the definition of q̃(x) in (3.34a)

q̃(x) =
2
3

h−1
(x

2

)
=

2
3

√
x

4
g

(√
x

4

)
=

2
3

(√
x

4

)r+1

, near x = 0, (3.47)

via (3.45). Then we need to integrate Eqn. (3.37) with S̃(T ) = S(T ) to get via
(3.45),

2
3

(T − t)=8
∫ √

S̃(t)
4

√
S(T )

4

du

g(u)
= 8

∫ √
S̃(t)
4

√
S(T )

4

u−(r+1)du =
8
r




(
S(T )

4

)− r
2

−
(

S̃(t)
4

)− r
2

 ;

(3.48)
(

S̃(t)
4

)− r
2

=
(

S(T )
4

)− r
2

+
2
3

r(t−T ), or
S̃(t)
4

=


 1(

S(T )
4

)− r
2

+ 2
3 r(t− T )




2
r

, ∀ t ≥ T.

(3.49)
By (3.36) of Corollary 3.5, since S(0) = E(0) > S(T ) = S̃(T ), as S(t) ↘ 0

by (3.16) or [L-T.9, (B.3)], we conclude via (3.49) that: with g(z) = γ(|z|)z =
|z|rz, r > 0 by (3.45), for |z| small, and otherwise subject to assumption (H.2), the
solutions of the corresponding w-problem (3.3) satisfy the following energy decay

E(t) ≤ C(E(0))

[(
E(0)

4

)− r
2

+
2
3

r(t− T )

]− 2
r

, t ≥ T. (3.50)

Example #2. In this illustration, we take

γ(s) = se−
1
s , or g(s) = s2e−

1
s near s = 0, 0 ≤ s ≤ s0; g(z) = γ(|z|)z = |z|e− 1

|z| z.
(3.51)

Application of Corollary 3.5. We have

γ(0) = 0; sγ(
√

s) = s
3
2 e
− 1√

s convex near s = 0, g′(0) = 0, (3.52)

and thus assumptions (a1), (a2), (b) = (3.32) of Corollary 3.5 are fulfilled, again
with any constant C > 0. By [L-T.9, (3.13) and (3.52)], we have h′(0) = ∞, and
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hence by [L-T.9, (3.18)], we have p′(0) = 0. The definitions of q̃(x) in (3.34) near
x = 0 is, via (3.51):

q̃(x) =
2
3

h−1
(x

2

)
=

2
3

√
x

2
g

(√
x

2

)
=

2
3

(x

2

) 3
2

exp

(
− 1√

x
2

)
. (3.53)

Then we need to integrate Eqn. (3.37) with S̃(T ) = S(T ) to get

2(T − t)
3

=
∫ √

S̃(t)
4

√
S(T )

4

du

g(u)
=

∫ √
S̃(t)
4

√
S(T )

4

e
1
u

u2
du=−

∫ √
4

S̃(t)

√
4

S(T )

eτdτ =e
2√

S(T ) −e
2√
S̃(t) , t ≥ T

(3.54)
[setting τ = u−1, dτ = −u−2du]. We obtain from (3.54)

e
2√
S̃(t) = e

√
4

S(T ) +
2(t− T )

3
,

or
S̃(t) =

4

ln2

[
e

√
4

S(T ) + 2(t−T )
3

] ≤ 4

ln2

[
e

√
4

E(0) + 2(t−T )
3

] , t ≥ T, (3.55)

since S(0) = E(0) > S(T ) = S̃(T ), as S(t) ↘ 0 by [L-T.9, (B.3)] or (3.16).
By (3.36) of Corollary 3.5, we conclude that: with g(z) = γ(|z|)z = z|z|e− 1

|z| ,
for |z| small, and otherwise subject to assumption (H.2), the solutions of the cor-
responding w-problem (3.3) satisfy the following energy decay rates

E(t)≤C(E(0))S(t)≤C(E(0)S̃(t)=C(E(0))
{

ln2

[
e

√
4

E(0) +
2(t− T )

3

]}−1

, (3.56)

t ≥ T.

Example #3. In this illustration, we take the linear case near the origin:

γ(s) ≡ 1, or g(s) = s near s = 0, say 0 ≤ s ≤ s0; g(z) = z; x = g−1(x). (3.57)

In this case, all the relevant quantities in the algorithm: h( · ), p( · ), q( · ) are
directly computable.
Computation of h( · ). By (3.11) we define h( · ) by imposing for |z| small, or s
small

h(g(z)z̄) = |z|2 + |g(z)|2 = 2|z|2; h(g(s)s) = h(s2) = 2s2; h(y) = 2y, h−1(x) =
x

2
,

(3.58)
near x = 0.
Computation of p(x). By (3.13) with h̃ = h and K = 1, we have via (3.57):

Cp(x) + h(p(x)) = x, or Cp(x) + 2p(x) = x, or p(x) =
x

2 + C
near x = 0. (3.59)
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Computation of q(x). By (3.14), we have by (3.59),

q(x) + p(q(x)) = p(x), or q(x) +
q(x)

2 + C
=

x

2 + C
, or q(x) =

x

3 + C
near x = 0.

(3.60)
ODE (3.17). With q( · ) given by (3.60), the ODE (3.17) is

St(t) +
1

3 + C
S(t) ≡ 0, S(0) = E(0), or S(t) = E(0)e−

t
3+C , t > 0. (3.61)

We apply Theorem 3.3, Eqn. (3.16), and we conclude that: with g(z) = γ(|z|)z =
z, for |z| small, and otherwise subject to assumption (H.2), the solutions of the
corresponding w-problem (3.3) satisfy the following energy decay rates

E(t) ≤ C(E(0))S(t) = C(E(0))e−
t

3+C , t > 0. (3.62)

Example #4. In this illustration we take near the origin:

γ(s) =
1
sr

or g(s) = s1−r, 0 < r < 1, 0 < s ≤ s0; g(z) =
1
|z|r z, |z| small, (3.63)

g−1(y) = y
1

1−r .
Application of Corollary 3.6. By (3.63), [L-T.9, (3.28), (3.18)], we have

γ(0) = ∞; g′(0) = ∞; h′(0) = ∞; p′(0) =
1

C + h′(0)
= 0. (3.64)

Thus, the definition of q̃(x) in (3.41) is, by (3.63), near x = 0:

q̃(x) =
2
3

h−1
(x

2

)
=

2
3

√
x

4
g−1

(√
x

4

)
=

2
3

(x

4

)m

, 1 < m =
1
2

(
1 +

1
1− r

)
< ∞.

(3.65)
Then, we need to integrate Eqn. (3.42),

S̃t(t) + q̃(S̃(t)) ≡ 0 or S̃t(t) +
2
3

(
S̃(t)
4

)m

= 0, S̃(T ) = S(T ), (3.66)

for T sufficiently large. We obtain by separation ((3.44))

2
3
(t− T ) = −4

∫ S̃(t)

S(T )

(
S̃

4

)−m

d

(
S̃

4

)
=

4
m− 1




(
S̃(t)
4

)1−m

−
(

S(T )
4

)1−m

 ;

(3.67)

S̃(t) =
4

[(
4

S(T )

)m−1

+ m−1
6 (t− T )

] 1
m−1

, ∀ t ≥ T (3.68)

≤ 4
[(

4
E(0)

)m−1

+ m−1
6 (t− T )

] 1
m−1

, ∀ t ≥ T, (3.69)
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since S(0) = E(0) > S(T ) = S̃(T ) as S(t) ↘ 0 as t →∞ by (3.16) or [L-T.9, (B.3)].
By (3.43) of Corollary 3.6 we conclude that: with g(z) = 1

|z|r z, 0 < r < 1, |z| small,
and otherwise subject to assumption (H.2), the solutions of the corresponding w-
problem (3.3) satisfy the following energy decay rates

E(t) ≤ C(E(0))S(t) ≤ C(E(0))S̃(t)

≤ C(E(0))

[(
4

E(0)

)m−1

+
m− 1

4
(t− T )

]1−m

, ∀ t ≥ T. ¤ (3.70)
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