On some low separation axioms in bitopological spaces

M. Caldas, S. Jafari, S. A. Ponmani and M. L. Thivagar

Abstract

Recently, in 2003, Caldas et al. 1 introduced the notions of $\Lambda_{\delta}-T_{i}$ and $\Lambda_{\delta}-R_{i}$ topological spaces for $i=1,2$ as a version of the known notions of T_{i} and $R_{i}(i=1,2)$ topological spaces [8] and [2]. In this paper, we extend $\Lambda_{\delta}-T_{i}$ and $\Lambda_{\delta}-R_{i}$ to bitopological spaces for $i=1,2$ and define the notions of pairwise $\Lambda_{\delta}-T_{i}$ and $\Lambda_{\delta}-R_{i}$ bitopological spaces for $i=1,2$. In this context, we study some of the fundamental properties of such spaces. Moreover, we investigate their relationship to some other known separation axioms.

Key Words: bitopological spaces, δ-open sets, δ-closure, pairwise Λ_{δ} - R_{0}, pairwise $\Lambda_{\delta}-R_{1}$.

Contents

1 Introduction

$2\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open sets and associated separation
axioms
3 Pairwise $\Lambda_{\delta}-R_{0}$ spaces

1. Introduction

The concept of bitopological spaces was introduced by Kelly [3] in 1963. In 1943, Shanin [8] introduced the separation axioms R_{0} and R_{1} in topological spaces. Murdeshwar and Naimpally [[5], Definition 6.9 and Definition 6.11] offered the notions pairwise R_{0} and pairwise R_{1} bitopological spaces. Recently, Caldas et al. [1] introduced the notions of $\Lambda_{\delta}-T_{0}, \Lambda_{\delta}-T_{1}, \Lambda_{\delta}-R_{0}$ and $\Lambda_{\delta}-R_{1}$ topological spaces as a version of the known notions of R_{0} and R_{1} topological spaces. In this paper, we offer the pairwise versions of $\Lambda_{\delta}-T_{0}, \Lambda_{\delta}-T_{1}, \Lambda_{\delta}-R_{0}$ and Λ_{δ} - R_{1} in bitopological spaces and investigate their fundamental properties.

Throughout the present paper, the space (X, τ_{1}, τ_{2}) always means a bitopological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right), \tau_{i}-C l(A)$ (resp. τ_{i}-Int $\left.(A)\right)$ denotes the closure (resp. interior) of A with respect to τ_{i} for $i=1,2$. The complement of A is denoted by $A^{c}(=X \backslash A)$.

2000 Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05
Date submission 15-Oct-2006.

2. $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open sets and associated separation axioms

Definition 1. A subset A of a space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be $\tau_{i}-\Lambda_{\delta}$-set if $A=\tau_{i}$ $\Lambda_{\delta}(A)$ where $\tau_{i}-\Lambda_{\delta}(A)=\cap\left\{G \in \delta\left(X, \tau_{i}\right) / A \subset G\right\}, i=1,2$.
In what follows, by a space we mean a bitopological space.
Definition 2. Let A be a subset of a space $\left(X, \tau_{1}, \tau_{2}\right)$.
(i) A is called $a\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set if $A=T \cap C$, where T is a $\tau_{i}-\Lambda_{\delta}$-set and C is a $\tau_{j}-\delta$-closed set where $i, j=1,2$ and $i \neq j$. The complement of a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set is called $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open. We denoted the collection of all $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open sets (resp. $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed sets) by $\Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ (resp. by $\left.\Lambda_{\delta} C\left(X, \tau_{i}, \tau_{j}\right)\right)$.
(ii) A point $x \in\left(X, \tau_{1}, \tau_{2}\right)$ is called $a\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-cluster point of A if for every $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U of $\left(X, \tau_{1}, \tau_{2}\right)$ containing $x, A \cap U \neq \emptyset$. The set of all $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-cluster points is called the $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closure of A and is denoted by $A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$.

Lemma 2.1. Let A and B be subsets of a space $\left(X, \tau_{1}, \tau_{2}\right)$. For the $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$ closure where $i, j=1,2$ and $i \neq j$, the following properties hold.
(1) $A \subset A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$.
(2) $A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}=\cap\left\{F / A \subset F\right.$ and F is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed $\}$.
(3) If $A \subset B$, then $A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset B^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$.
(4) A is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed if and only if $A=A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$.
(5) $A^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed.

Lemma 2.2. Let A be a subset of a space $\left(X, \tau_{1}, \tau_{2}\right)$. Then the following hold.
(1) If A_{k} is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed for each $k \in I$, then $\cap_{k \in I} A_{k}$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$ closed where $i, j=1,2$ and $i \neq j$.
(2) If A_{k} is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open for each $k \in I$, then $\cup_{k \in I} A_{k}$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$ open, where $i, j=1,2$ and $i \neq j$.

Definition 3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a space, $A \subset X$. Then the $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}$-kernel of A, denoted by $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)$, is defined to be the set $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)=\cap\left\{G \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right) / A \subset G\right\}$. where $i, j=1,2$ and $i \neq j$.
Lemma 2.3. For any two subsets A, B of a space $\left(X, \tau_{1}, \tau_{2}\right)$,
(1) $A \subset B$ implies $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A) \subset\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(B)$, where $i, j=1,2$ and $i \neq j$.
(2) $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}\left(\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)\right)=\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)$, where $i, j=1,2$ and $i \neq j$.

Lemma 2.4. For any two points x, y of a space $\left(X, \tau_{1}, \tau_{2}\right), y \in\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\})$ if and only if $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$, where $i, j=1,2$ and $i \neq j$.

Proof. Let $y \notin\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\})$. Then there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set V containing x such that $y \notin V$. Hence $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. The converse is similarly shown.

Proposition 2.5. If $\left(X, \tau_{1}, \tau_{2}\right)$ is a space and $A \subset X$, then $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)=$ $\left\{x \in X /\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap A \neq \emptyset\right\}$, where $i, j=1,2$ and $i \neq j$.

Proof. Let $x \in\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)$ and suppose that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap A=\emptyset$. Then $x \notin$ $X \backslash\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ which is a $\left(\tau_{i}, \tau_{j}\right)$ - (Λ, δ)-open set containing A. This is impossible, since $x \in\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)$. Consequently, $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap A \neq \emptyset$. Next, let $x \in X$ such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap A \neq \emptyset$ and suppose that $x \notin\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta} \operatorname{Ker}(A)$. Then there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U containing A and $x \notin U$. Let $y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap A$. Hence U is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-neigbourhood of y which does not contain x. By this contradiction $x \in\left(\tau_{i}, \tau_{j}\right) \Lambda_{\delta} \operatorname{Ker}(A)$.

Definition 4. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is called
(i) pairwise $\Lambda_{\delta}-T_{0}$ if for each pair of distinct points in X, there is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$ open set containing one of the points but not the other, where $i, j=1,2$ and $i \neq j$. (ii) pairwise $\Lambda_{\delta}-T_{1}$ if for each pair of distinct points x and y in X, there is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open U in X containing x but not y and $a\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V in X containing y but not x, where $i, j=1,2$ and $i \neq j$.
(iii) pairwise $\Lambda_{\delta}-T_{2}$ if for each pair of distinct points x and y in X, there exist a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U and $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V such that $x \in U, y \in V$ and $U \cap V=\emptyset$, where $i, j=1,2$ and $i \neq j$.

Remark 2.6. If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{i}$, then it is pairwise $\Lambda_{\delta}-T_{i-1}$, $i=1,2$.

Theorem 2.7. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{0}$ if and only if for each pair of distinct points x, y of $X,\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, where $i, j=1,2$ and $i \neq j$.

Proof. Sufficiency: Suppose that $x, y \in X, x \neq y$ and $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. Let z be a point of X such that $z \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ but $z \notin\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. We claim that $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. For it, if $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ then $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset$ $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, where $i, j=1,2$ and $i \neq j$. And this contradicts the fact that $z \notin$ $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. Consequently, x belongs to the $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set $\left[\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}\right]^{c}$ to which y does not belong.

Necessity: Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise $\Lambda_{\delta}-T_{0}$ space and x, y be any two distinct points of X. There exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set G containing x or y, say x but not y. Then G^{c} is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set which does not contain x but contains y. Since $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ is the smallest $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-closed set containing y (Lemma 2.1), $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset G^{c}$, and so $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. Consequently, $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, where $i, j=1,2$ and $i \neq j$.

Theorem 2.8. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{1}$ if and only if the singletons are $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed sets, where $i, j=1,2$ and $i \neq j$.

Proof. Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{1}$ and x be any point of X. Let $y \in\{x\}^{c}$. Then $x \neq y$ and so there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U_{y} such that $y \in U_{y}$ but $\mathrm{x} \notin U_{y}$. Consequently, $y \in U_{y} \subset\{x\}^{c}$ i.e., $\{x\}^{c}=\bigcup\left\{U_{y} / y \in\{x\}^{c}\right\}$ which is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open.

Conversely, suppose that $\{p\}$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed for every $p \in X$, where $i, j=1,2$ and $i \neq j$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in\{x\}^{c}$. Hence $\{x\}^{c}$ is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set containing y but not containing x. Similarly $\{y\}^{c}$ is a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set containing x but not y. Therefore, X is a pairwise $\Lambda_{\delta}-T_{1}$ space.

Definition 5. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Λ_{δ}-symmetric if for x and y in X, $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ implies $y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$, where $i, j=1,2$ and $i \neq j$.

Definition 6. A subset A of a space $\left(X, \tau_{1}, \tau_{2}\right)$ is called a $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}$-generalized closed set (briefly $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}$-g-closed) if $A^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset U$ whenever $A \subset U$ and U is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open, where $i, j=1,2$ and $i \neq j$.

Lemma 2.9. Every $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set is $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}$ - g-closed, where $i, j=1,2$ and $i \neq j$.

Remark 2.10. The converse of Lemma 2.9 is not true as shown in the following example.

Example 2.11. Let $X=\{a, b, c, d\}, \tau_{1}=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\}, X\}$ and $\tau_{2}=\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$. Then $\{c\}$ is $\left(\tau_{1}, \tau_{2}\right)-\Lambda_{\delta}-g$-closed but not $\left(\tau_{1}, \tau_{2}\right)$ (Λ, δ)-closed.

Theorem 2.12. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Λ_{δ}-symmetric if and only if $\{x\}$ is $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}-g$-closed for each $x \in X$, where $i, j=1,2$ and $i \neq j$.
Proof. Assume that $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ but $y \notin\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. This implies that the complement of $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ contains y. Therefore, the set $\{y\}$ is a subset of the complement of $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. This implies that $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ is a subset of the complement of $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. Now the complement of $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subset D \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$, but $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ is not a subset of D. This means that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ and the complement of D are not disjoint. Let $y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap(X \backslash D)$. Now we have $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ which is a subset of the complement of D and $x \notin D$. But this is a contradiction.

Corollary 2.13. If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{1}$ space, then it is pairwise Λ_{δ}-symmetric.

Proof. In a pairwise $\Lambda_{\delta}-T_{1}$ space singleton sets are $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed by Theorem 2.8 , and therefore, $\left(\tau_{i}, \tau_{j}\right)-\Lambda_{\delta}$-g-closed by Lemma 2.9. By Theorem 2.12, the space is pairwise Λ_{δ}-symmetric.
Remark 2.14. The converse of Corollary 2.13 is not true as shown in the following example.

Example 2.15. Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a, b\}, X\}$ and $\tau_{2}=\{\emptyset,\{b, c\}, X\}$. Then X is pairwise Λ_{δ}-symmetric but not pairwise $\Lambda_{\delta}-T_{1}$ since X and \emptyset are the only $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open sets for $i, j=1,2$ and $i \neq j$.

Corollary 2.16. For a space $\left(X, \tau_{1}, \tau_{2}\right)$ the following are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise Λ_{δ}-symmetric and pairwise $\Lambda_{\delta}-T_{0}$;
(2) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{1}$.

Proof. By Corollary 2.13 and Remark 2.6, it suffices to prove only (1) \Rightarrow (2). Let $x \neq y$ and by pairwise $\Lambda_{\delta}-T_{0}$, we may assume that $x \in G_{1} \subset\{y\}^{c}$ for some $G_{1} \in$ $\Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$. Then $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. Therefore, we have $y \notin\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. There exists a $G_{2} \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ such that $y \in G_{2} \subset\{x\}^{c}$. Therefore, $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise $\Lambda_{\delta}-T_{1}$ space.

Theorem 2.17. For a pairwise Λ_{δ}-symmetric space $\left(X, \tau_{1}, \tau_{2}\right)$ the following are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{0}$;
(2) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-T_{1}$.

Proof. (1) $\Rightarrow(2)$: Follows from Corollary 2.16.
$(2) \Rightarrow(1)$: Follows from Remark 2.6.

3. Pairwise $\Lambda_{\delta}-R_{0}$ spaces

Definition 7. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise R_{0} [5] if for each τ_{i}-open set G, $x \in G$ implies $\tau_{j}-C l(\{x\}) \subset G$, where $i, j=1,2$ and $i \neq j$.

Definition 8. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise $\Lambda_{\delta}-R_{0}$ if for each $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set $G, x \in G$ implies $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset G$, where $i, j=1,2$ and $i \neq j$.

Proposition 3.1. In a space $\left(X, \tau_{1}, \tau_{2}\right)$ the following statements are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$;
(2) for any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set F and a point $x \notin F$, there exists $U \in$ $\Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ such that $x \notin U$ and $F \subset U$ for $i, j=1,2$ and $i \neq j$;
(3) for any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set F and $x \notin F$, then $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \cap F=\emptyset$, for $i, j=1,2$ and $i \neq j$.

Proof. (1) $\Rightarrow(2)$: Let F be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set and $x \notin F$. Then by (1), $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset X \backslash F$, where $i, j=1,2$ and $i \neq j$. Let $U=X \backslash\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, then $U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ and also $F \subset U$ and $x \notin U$.
$(2) \Rightarrow(3)$: Let F be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set and a point $x \notin F$. Then by (2), there exists $U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ such that $F \subset U$ and $x \notin U$, where $i, j=1,2$ and $i \neq j$. Since $U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right), U \cap\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}=\emptyset$. Then $F \cap\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}=\emptyset$, where $i, j=1,2$ and $i \neq j$.
$(3) \Rightarrow(1)$: Let $G \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ and $x \in G$. Now $X \backslash G$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed and $x \notin X \backslash G$. By (3), $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \cap(X \backslash G)=\emptyset$ and hence $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset G$, where $i, j=1,2$ and $i \neq j$. Therefore, the space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$.

Proposition 3.2. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$ if and only if for each pair x, y of distinct points in $X,\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}=\emptyset$ or $\{x, y\} \subset$ $\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be pairwise $\Lambda_{\delta}-R_{0}$. Suppose that $\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ $\neq \emptyset$ and $\{x, y\}$ is not a subset of $\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$. Let $s \in\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap$ $\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ and $x \notin\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$. Then $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ and $x \in X \backslash\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)} \in \Lambda_{\delta} O\left(X, \tau_{2}, \tau_{1}\right)$. But $\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)}$ is not a subset of $X \backslash$ $\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ since this is a contradiction. Hence for each pair x, y of distinct points in $X,\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}=\emptyset$ or $\{x, y\} \subset\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$. Conversely, let U be a $\left(\tau_{1}, \tau_{2}\right)-(\Lambda, \delta)$-open set and $x \in U$. Suppose that $\{x\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ is not a subset of U. So there is a point $y \in\{x\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ such that $y \notin U$ and $\{y\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap U=\emptyset$. Since $X \backslash U$ is $\left(\tau_{1}, \tau_{2}\right)$-($\left.\Lambda, \delta\right)$-closed and $y \in X \backslash U$. Hence $\{x, y\}$ is not a subset of $\{y\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{x\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ and thus $\{y\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap$ $\{x\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)} \neq \emptyset$.

Theorem 3.3. In a space $\left(X, \tau_{1}, \tau_{2}\right)$, the following statements are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$;
(2) For any $x \in X,\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}=\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}$, for $i, j=1,2$ and $i \neq j$;
(3) For any $x \in X,\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}$, for $i, j=1,2$ and $i \neq j$;
(4) For any $x, y \in X, y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ if and only if $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, for $i, j=1,2$ and $i \neq j$;
(5) For any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set $F, F=\cap\left\{G / \operatorname{Gisa}\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)\right.$-open set and $F \subset G\}$, for $i, j=1,2$ and $i \neq j$;
(6) For any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set $G, G=\cup\left\{F / F\right.$ is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set and $F \subset G\}$, for $i, j=1,2$ and $i \neq j$;
(7) For every $A \neq \emptyset$ and each $G \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ such that $A \cap G \neq \emptyset$, there exists $a\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-closed set F such that $F \subset G$ and $A \cap F \neq \emptyset$.

Proof. (1) $\Rightarrow(2):$ Let $x, y \in X$. Then by Lemma 2.4 and Proposition 3.2, $y \in$ $\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}) \Leftrightarrow x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \Leftrightarrow y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. Hence $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ $=\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\})$, where $i, j=1,2$ and $i \neq j$.
$(2) \Rightarrow(3):$ Straightforward.
$(3) \Rightarrow(4)$: For any $x, y \in X$, if $y \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$, then $y \in\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\})$ by
(3). Then by Lemma 2.4, $x \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, for $i, j=1,2$ and $i \neq j$. The converse follows by the same token.
$(4) \Rightarrow(5)$: Let F be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set and $H=\cap\left\{G / G\right.$ is a $\left(\tau_{j}, \tau_{i}\right)$ (Λ, δ)-open set and $F \subset G\}$. Clearly $F \subset H$. Let $x \notin F$. Then for any $y \in F$, we have that $\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset F$. Hence follows that $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. Now by (4), $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ implies $y \notin\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. There exists a $\left(\tau_{j}, \tau_{i}\right)$-($\left.\Lambda, \delta\right)$-open set G_{y} such that $y \in G_{y}$ and $x \notin G_{y}$. Let $G=\bigcup_{y \in F}\left\{G_{y} / G_{y}\right.$ is $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$ open, $y \in G_{y}$ and $\left.x \notin G_{y}\right\}$. Thus, there exists a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set G such that $x \notin G$ and $F \subset G$. Hence, $x \notin H$. Therefore, $F=H$.
(5) \Rightarrow (6): Straightforward.
(6) $\Rightarrow(7)$: Let $A \neq \emptyset$ and G be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set and $x \in A \cap G$. By (6), $G=\bigcup\left\{F /\right.$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed and $\left.F \subset G\right\}$. It follows that there is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set F such that $x \in F \subset G$. Hence $A \cap F \neq \emptyset$.
(7) $\Rightarrow(1)$: Let G be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set and $x \in G$, then $\{x\} \cap G \neq \emptyset$. Therefore by (7), there exists a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-closed F such that $x \in F \subset G$ and $\{x\} \cap F \neq \emptyset$, which implies $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset G$, where $i, j=1,2$ and $i \neq j$. Therefore, $\left(X, \tau_{1}, \tau_{2}\right)$
is pairwise $\Lambda_{\delta}-R_{0}$.
Remark 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a space. Then for each $x \in X$, let bi- $\{x\}^{(\Lambda, \delta)}$ $=\{x\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{x\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$ and bi- $\Lambda_{\delta} \operatorname{Ker}(\{x\})=\left(\tau_{1}, \tau_{2}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}) \cap\left(\tau_{2}, \tau_{1}\right)-$ $\Lambda_{\delta} \operatorname{Ker}(\{x\})$.

Proposition 3.5. If a space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$ then for each pair of distinct points $x, y \in X$, either $b i-\{x\}^{(\Lambda, \delta)}=b i-\{y\}^{(\Lambda, \delta)}$ or $b i-\{x\}^{(\Lambda, \delta)} \cap b i-\{y\}^{(\Lambda, \delta)}=\emptyset$.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a pairwise $\Lambda_{\delta}-R_{0}$ space. Suppose that $b i-\{x\}^{(\Lambda, \delta)} \neq b i$ $\{y\}^{(\Lambda, \delta)}$ and $b i-\{x\}^{(\Lambda, \delta)} \cap b i-\{y\}^{(\Lambda, \delta)} \neq \emptyset$. Let $s \in b i-\{x\}^{(\Lambda, \delta)} \cap b i-\{y\}^{(\Lambda, \delta)}$ and $x \notin b i-\{y\}^{(\Lambda, \delta)}=\{y\}^{(\Lambda, \delta)\left(\tau_{1}, \tau_{2}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{2}, \tau_{1}\right)}$. Then $x \notin\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ where $i, j=1,2$ and $i \neq j$. and $x \in X \backslash\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$, where $i, j=1,2$ and $i \neq j$. But $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ is not a subset of $X \backslash\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ since $s \in b i$ $\{x\}^{(\Lambda, \delta)} \cap b i-\{y\}^{(\Lambda, \delta)}$. Thus $\left(X, \tau_{1}, \tau_{2}\right)$ is not a pairwise $\Lambda_{\delta}-R_{0}$ space which is a contradiction to our assumption. Hence we have either $b i-\{x\}^{(\Lambda, \delta)}=\operatorname{bi}-\{y\}^{(\Lambda, \delta)}$ or $b i-\{x\}^{(\Lambda, \delta)} \cap b i-\{y\}^{(\Lambda, \delta)}=\emptyset$.

Theorem 3.6. In a space $\left(X, \tau_{1}, \tau_{2}\right)$, the following properties are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$;
(2) For any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set $F \subset X, F=\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(F)$, where $i, j=$ 1,2 and $i \neq j$;
(3) For any $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set $F \subset X$ and $x \in F,\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}) \subset F$, where $i, j=1,2$ and $i \neq j$;
(4) For any $x \in X,\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}) \subset\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$, where $i, j=1,2$ and $i \neq j$.

Proof. (1) \Rightarrow (2): Let F be $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed and $x \notin F$. Then $X \backslash F$ is $\left(\tau_{i}, \tau_{j}\right)$ (Λ, δ)-open containing x. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0},\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset X \backslash F$, where $i, j=1,2$ and $i \neq j$. Therefore, $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \cap F=\emptyset$ and by Proposition 2.5, $x \notin\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(F)$. Hence $F=\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(F)$, where $i, j=1,2$ and $i \neq j$.
$(2) \Rightarrow(3)$: Let F be a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set containing x. Then $\{x\} \subset F$ and $\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(\{x\}) \subset\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(F)$. From (2), it follows that $\left(\tau_{j}, \tau_{i}\right)$ $\Lambda_{\delta} \operatorname{Ker}(\{x\}) \subset F$, where $i, j=1,2$ and $i \neq j$.
$(3) \Rightarrow(4)$: Since $x \in\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ and $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$ is $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed in X, by (3) it follows that $\left(\tau_{j}, \tau_{i}\right)-\Lambda_{\delta} \operatorname{Ker}(F) \subset\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$, where $i, j=1,2$ and $i \neq j$. $(4) \Rightarrow(1)$: It follows from Theorem 3.3.

4. Pairwise $\Lambda_{\delta}-R_{1}$ spaces

Definition 9. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise $\Lambda_{\delta}-R_{1}$ if for each $x, y \in X$, $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, there exist disjoint sets $U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ and $V \in$ $\Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset U$ and $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset V$, where $i, j=1,2$ and $i \neq j$.

Proposition 4.1. If $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$, then it is pairwise $\Lambda_{\delta}-R_{0}$.

Proof. Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$. Let U be a $\left(\tau_{i}, \tau_{j}\right)$-($\left.\Lambda, \delta\right)$-open set and $x \in U$. Then for each point $y \in X \backslash U,\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)}$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$, there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U_{y} and a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V_{y} such that $\{x\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset U_{y},\{y\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset V_{y}$ and $U_{y} \cap V_{y}=\emptyset$, where $i, j=1,2$ and $i \neq j$. Let $A=\bigcup\left\{V_{y} \mid y \in X \backslash U\right\}$. Then $X \backslash U \subset A, x \notin A$ and A is a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set. Therefore, $\{x\}^{\left.(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)\right)} \subset$ $X \backslash A \subset U$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$.
Proposition 4.2. A space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$ if and only if for every pair of points x and y of X such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U and $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V such that $x \in V, y \in U$ and $U \cap V=\emptyset$, where $i, j=1,2$ and $i \neq j$.
Proof. Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$. Let x, y be points of X such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, where $i, j=1,2$ and $i \neq j$. Then there exist a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U and a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V such that $x \in$ $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset V$ and $y \in\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset U$. On the other hand, suppose that there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-open set U and $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-open set V such that $x \in V, y \in U$ and $U \cap V=\emptyset$, where $i, j=1,2$ and $i \neq j$. Since every pairwise $\Lambda_{\delta}-R_{1}$ space is pairwise $\Lambda_{\delta}-R_{0},\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset V$ and $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset U$. Hence the claim.

Proposition 4.3. A pairwise $\Lambda_{\delta}-R_{0}$ space $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$ if for each pair of points x and y of X such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}=\emptyset$, there exist disjoint sets $U \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ and $V \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ such that $x \in U$ and $y \in V$, where $i, j=1,2$ and $i \neq j$.
Proof. It follows directly from Definition 8 and Proposition 3.5.
Theorem 4.4. In a space $\left(X, \tau_{1}, \tau_{2}\right)$, the following statements are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$;
(2) For any two distinct points $x, y \in X,\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$ implies that there exist a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set F_{1} and a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-closed set F_{2} such that $x \in F_{1}, y \in F_{2}, x \notin F_{2}, y \notin F_{1}$ and $X=F_{1} \cup F_{2}$, where $i, j=1,2$ and $i \neq j$.
Proof. (1) $\Rightarrow(2)$: Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{1}$. Let $x, y \in X$ such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$. By Proposition 4.2, there exist disjoint sets $V \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ and $U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ such that $x \in U$ and $y \in V$, where $i, j=1,2$ and $i \neq j$. Then $F_{1}=X \backslash V$ is a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set and $F_{2}=X \backslash U$ is a $\left(\tau_{j}, \tau_{i}\right)-(\Lambda, \delta)$-closed set such that $x \in F_{1}, x \notin F_{2}, y \notin F_{1}, y \in F_{2}$ and $X=F_{1} \cup F_{2}$, where $i, j=1,2$ and $i \neq j$.
$(2) \Rightarrow(1):$ Let $x, y \in X$ such that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \neq\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}$, where $i, j=$ 1,2 and $i \neq j$. Hence for any two distinct points x, y of $X,\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \cap$ $\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)}=\emptyset$, where $i, j=1,2$ and $i \neq j$. Then by Proposition 3.2, $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$. By (2), there exists a $\left(\tau_{i}, \tau_{j}\right)-(\Lambda, \delta)$-closed set F_{1} and a $\left(\tau_{j}, \tau_{i}\right)$ (Λ, δ)-closed set F_{2} such that $X=F_{1} \cup F_{2}, x \in F_{1}, y \in F_{2}, x \notin F_{2}$ and $y \notin F_{1}$. Therefore, $x \in X \backslash F_{2}=U \in \Lambda_{\delta} O\left(X, \tau_{j}, \tau_{i}\right)$ and $y \in X \backslash F_{1}=V \in \Lambda_{\delta} O\left(X, \tau_{i}, \tau_{j}\right)$ which implies that $\{x\}^{(\Lambda, \delta)\left(\tau_{i}, \tau_{j}\right)} \subset U,\{y\}^{(\Lambda, \delta)\left(\tau_{j}, \tau_{i}\right)} \subset V$ and $U \cap V=\emptyset$, where $i, j=1,2$ and $i \neq j$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise $\Lambda_{\delta}-R_{0}$.

References

1. M. Caldas and S. Jafari, On some low separation axioms in topological space, Houston Journal of Math. 29(2003), 93-104.
2. A. S. Davis, Indexed systems of neighbourhoods for general topological spaces, Amer. Math. Monthly 68(1961), 886-893.
3. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3)(13)(1963),71-89.
4. A. S. Mashhour, F. H. Khedr and S. N. El-Deeb, Five separation axioms in bitopological spaces, Bull. Fac. Sci. Assiut. Univ. 11(1) (1982), 53-67.
5. M. G. Murdeshwar and S. A. Naimpally, R_{1}-topological spaces, Canad. Math. Bull. 9(1966), 521-523.
6. S. A. Naimpally, On R_{0}-topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10(1967), 53-54.
7. T. M. Nour, A note on five separation axioms in bitopological spaces, Indian J. Pure and Appl. Math. 26(7) (1995), 669-674.
8. N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110-113.
[^0]
[^0]: M. Caldas

 Departamento de Matemática Aplicada
 Universidade Federal Fluminense
 Rua Mário Santos Braga, s/n
 24020-140, Niterói, RJ- BRAZIL
 gmamccs@vm.uff.br
 S. Jafari

 College of Vestsjaelland South Herrestraede 11
 4200 Slagelse - DENMARK
 jafari@stofanet.dk
 S. A. Ponmani

 Department of Mathematics,
 Jayaraj Annapackiam College for Women,
 Periyakulam, Theni (Dt.)-625601,
 Tamilnadu, INDIA.
 athisayaponmani@yahoo.co.in
 M. L. Thivagar

 Department of Mathematics
 Arul Anandar College
 Karumathur, Madurai (Dt.)-625514
 Tamilnadu, INDIA.
 mlthivagar@yahoo.co.in

