Bol. Soc. Paran. Mat. (3s.) **v. 24** 1-2 (2006): 69–78.

_

©SPM –ISNN-00378712

On some low separation axioms in bitopological spaces

M. Caldas, S. Jafari, S. A. Ponmani and M. L. Thivagar

ABSTRACT: Recently, in 2003, Caldas et al. [1] introduced the notions of Λ_{δ} - T_i and Λ_{δ} - R_i topological spaces for i = 1, 2 as a version of the known notions of T_i and R_i (i = 1, 2) topological spaces [8] and [2]. In this paper, we extend Λ_{δ} - T_i and Λ_{δ} - R_i to bitopological spaces for i = 1, 2 and define the notions of pairwise Λ_{δ} - T_i and Λ_{δ} - R_i bitopological spaces for i = 1, 2. In this context, we study some of the fundamental properties of such spaces. Moreover, we investigate their relationship to some other known separation axioms.

Key Words: bitopological spaces, δ -open sets, δ -closure, pairwise Λ_{δ} - R_0 , pairwise Λ_{δ} - R_1 .

Contents

1	Introduction	69
2	(au_i, au_j) - (Λ,δ) -open sets and associated separation axioms	70
3	Pairwise Λ_{δ} - R_0 spaces	73
4	Pairwise Λ_{δ} - R_1 spaces	75

1. Introduction

The concept of bitopological spaces was introduced by Kelly [3] in 1963. In 1943, Shanin [8] introduced the separation axioms R_0 and R_1 in topological spaces. Murdeshwar and Naimpally [5], Definition 6.9 and Definition 6.11] offered the notions pairwise R_0 and pairwise R_1 bitopological spaces. Recently, Caldas et al. [1] introduced the notions of Λ_{δ} - T_0 , Λ_{δ} - T_1 , Λ_{δ} - R_0 and Λ_{δ} - R_1 topological spaces as a version of the known notions of R_0 and R_1 topological spaces. In this paper, we offer the pairwise versions of Λ_{δ} - T_0 , Λ_{δ} - T_1 , Λ_{δ} - R_0 and Λ_{δ} - R_1 in bitopological spaces and investigate their fundamental properties.

Throughout the present paper, the space (X, τ_1, τ_2) always means a bitopological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a bitopological space $(X, \tau_1, \tau_2), \tau_i$ -Cl(A) (resp. τ_i -Int(A)) denotes the closure (resp. interior) of A with respect to τ_i for i = 1, 2. The complement of A is denoted by $A^c(=X \setminus A)$.

²⁰⁰⁰ Mathematics Subject Classification: 54B05, 54C08; Secondary: 54D05 Date submission 15-Oct-2006.

2. (τ_i, τ_j) - (Λ, δ) -open sets and associated separation axioms

Definition 1. A subset A of a space (X, τ_1, τ_2) is said to be $\tau_i \cdot \Lambda_{\delta}$ -set if $A = \tau_i \cdot \Lambda_{\delta}(A)$ where $\tau_i \cdot \Lambda_{\delta}(A) = \bigcap \{ G \in \delta(X, \tau_i) / A \subset G \}, i = 1, 2$. In what follows, by a space we mean a bitopological space.

Definition 2. Let A be a subset of a space (X, τ_1, τ_2) .

(i) A is called a (τ_i, τ_j) - (Λ, δ) -closed set if $A = T \cap C$, where T is a τ_i - Λ_{δ} -set and C is a τ_j - δ -closed set where i, j = 1, 2 and $i \neq j$. The complement of a (τ_i, τ_j) - (Λ, δ) -closed set is called (τ_i, τ_j) - (Λ, δ) -open. We denoted the collection of all (τ_i, τ_j) - (Λ, δ) -open sets (resp. (τ_i, τ_j) - (Λ, δ) -closed sets) by $\Lambda_{\delta}O(X, \tau_i, \tau_j)$ (resp. by $\Lambda_{\delta}C(X, \tau_i, \tau_j)$).

(ii) A point $x \in (X, \tau_1, \tau_2)$ is called a (τ_i, τ_j) - (Λ, δ) -cluster point of A if for every (τ_i, τ_j) - (Λ, δ) -open set U of (X, τ_1, τ_2) containing $x, A \cap U \neq \emptyset$. The set of all (τ_i, τ_j) - (Λ, δ) -cluster points is called the (τ_i, τ_j) - (Λ, δ) -closure of A and is denoted by $A^{(\Lambda, \delta)(\tau_i, \tau_j)}$.

Lemma 2.1. Let A and B be subsets of a space (X, τ_1, τ_2) . For the (τ_i, τ_j) - (Λ, δ) closure where i, j = 1, 2 and $i \neq j$, the following properties hold.

(1) $A \subset A^{(\Lambda,\delta)(\tau_i,\tau_j)}$.

 $(2) A^{(\Lambda,\delta)(\tau_i,\tau_j)} = \cap \{F/A \subset F \text{ and } F \text{ is } (\tau_i,\tau_j) \cdot (\Lambda,\delta) \cdot closed\}.$

(3) If $A \subset B$, then $A^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset B^{(\Lambda,\delta)(\tau_i,\tau_j)}$.

(4) A is (τ_i, τ_j) -(Λ, δ)-closed if and only if $A = A^{(\Lambda, \delta)(\tau_i, \tau_j)}$.

(5) $A^{(\Lambda,\delta)(\tau_i,\tau_j)}$ is (τ_i,τ_j) - (Λ,δ) -closed.

Lemma 2.2. Let A be a subset of a space (X, τ_1, τ_2) . Then the following hold.

(1) If A_k is (τ_i, τ_j) - (Λ, δ) -closed for each $k \in I$, then $\bigcap_{k \in I} A_k$ is (τ_i, τ_j) - (Λ, δ) -closed where i, j = 1, 2 and $i \neq j$.

(2) If A_k is (τ_i, τ_j) - (Λ, δ) -open for each $k \in I$, then $\bigcup_{k \in I} A_k$ is (τ_i, τ_j) - (Λ, δ) -open, where i, j = 1, 2 and $i \neq j$.

Definition 3. Let (X, τ_1, τ_2) be a space, $A \subset X$. Then the (τ_i, τ_j) - Λ_{δ} -kernel of A, denoted by (τ_i, τ_j) - $\Lambda_{\delta}Ker(A)$, is defined to be the set (τ_i, τ_j) - $\Lambda_{\delta}Ker(A) = \cap \{G \in \Lambda_{\delta}O(X, \tau_i, \tau_j) | A \subset G\}$. where i, j = 1, 2 and $i \neq j$.

Lemma 2.3. For any two subsets A, B of a space (X, τ_1, τ_2) , (1) $A \subset B$ implies $(\tau_i, \tau_j) \cdot \Lambda_{\delta} Ker(A) \subset (\tau_i, \tau_j) \cdot \Lambda_{\delta} Ker(B)$, where i, j = 1, 2 and $i \neq j$.

(2) $(\tau_i, \tau_j) - \Lambda_{\delta} Ker((\tau_i, \tau_j) - \Lambda_{\delta} Ker(A)) = (\tau_i, \tau_j) - \Lambda_{\delta} Ker(A)$, where i, j = 1, 2 and $i \neq j$.

Lemma 2.4. For any two points x, y of a space (X, τ_1, τ_2) , $y \in (\tau_i, \tau_j) - \Lambda_{\delta} Ker(\{x\})$ if and only if $x \in \{y\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$, where i, j = 1, 2 and $i \neq j$.

Proof. Let $y \notin (\tau_i, \tau_j) - \Lambda_{\delta} Ker(\{x\})$. Then there exists a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -open set V containing x such that $y \notin V$. Hence $x \notin \{y\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$. The converse is similarly shown.

Proposition 2.5. If (X, τ_1, τ_2) is a space and $A \subset X$, then $(\tau_i, \tau_j) \cdot \Lambda_{\delta} Ker(A) = \{x \in X / \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} \cap A \neq \emptyset\}$, where i, j = 1, 2 and $i \neq j$.

Proof. Let $x \in (\tau_i, \tau_j) - \Lambda_{\delta} Ker(A)$ and suppose that $\{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} \cap A = \emptyset$. Then $x \notin X \setminus \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$ which is a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -open set containing A. This is impossible, since $x \in (\tau_i, \tau_j) - \Lambda_{\delta} Ker(A)$. Consequently, $\{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} \cap A \neq \emptyset$. Next, let $x \in X$ such that $\{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} \cap A \neq \emptyset$ and suppose that $x \notin (\tau_i, \tau_j) - \Lambda_{\delta} Ker(A)$. Then there exists a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -open set U containing A and $x \notin U$. Let $y \in \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} \cap A$. Hence U is a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -neigbourhood of y which does not contain x. By this contradiction $x \in (\tau_i, \tau_j) \Lambda_{\delta} Ker(A)$.

Definition 4. A space (X, τ_1, τ_2) is called

(i) pairwise Λ_{δ} - T_0 if for each pair of distinct points in X, there is a (τ_i, τ_j) - (Λ, δ) -open set containing one of the points but not the other, where i, j = 1, 2 and $i \neq j$. (ii) pairwise Λ_{δ} - T_1 if for each pair of distinct points x and y in X, there is a (τ_i, τ_j) - (Λ, δ) -open U in X containing x but not y and a (τ_j, τ_i) - (Λ, δ) -open set V in X containing y but not x, where i, j = 1, 2 and $i \neq j$.

(iii) pairwise Λ_{δ} - T_2 if for each pair of distinct points x and y in X, there exist a (τ_i, τ_j) - (Λ, δ) -open set U and (τ_j, τ_i) - (Λ, δ) -open set V such that $x \in U, y \in V$ and $U \cap V = \emptyset$, where i, j = 1, 2 and $i \neq j$.

Remark 2.6. If a space (X, τ_1, τ_2) is pairwise Λ_{δ} - T_i , then it is pairwise Λ_{δ} - T_{i-1} , i = 1, 2.

Theorem 2.7. A space (X, τ_1, τ_2) is pairwise Λ_{δ} - T_0 if and only if for each pair of distinct points x, y of X, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, where i, j = 1, 2 and $i \neq j$.

Proof. Sufficiency: Suppose that $x, y \in X, x \neq y$ and $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. Let z be a point of X such that $z \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ but $z \notin \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. We claim that $x \notin \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. For it, if $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ then $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, where i, j = 1, 2 and $i \neq j$. And this contradicts the fact that $z \notin \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. Consequently, x belongs to the (τ_j, τ_i) - (Λ, δ) -open set $[\{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)}]^c$ to which y does not belong.

Necessity: Let (X, τ_1, τ_2) be a pairwise Λ_{δ} - T_0 space and x, y be any two distinct points of X. There exists a (τ_i, τ_j) - (Λ, δ) -open set G containing x or y, say xbut not y. Then G^c is a (τ_i, τ_j) - (Λ, δ) -closed set which does not contain x but contains y. Since $\{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ is the smallest (τ_j, τ_i) - (Λ, δ) -closed set containing y (Lemma 2.1), $\{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset G^c$, and so $x \notin \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. Consequently, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, where i, j = 1, 2 and $i \neq j$.

Theorem 2.8. A bitopological space (X, τ_1, τ_2) is pairwise Λ_{δ} - T_1 if and only if the singletons are (τ_i, τ_j) - (Λ, δ) -closed sets, where i, j = 1, 2 and $i \neq j$.

Proof. Suppose that (X, τ_1, τ_2) is pairwise Λ_{δ} - T_1 and x be any point of X. Let $y \in \{x\}^c$. Then $x \neq y$ and so there exists a (τ_i, τ_j) - (Λ, δ) -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently, $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y/y \in \{x\}^c\}$ which is (τ_i, τ_j) - (Λ, δ) -open.

Conversely, suppose that $\{p\}$ is $(\tau_i, \tau_j) \cdot (\Lambda, \delta)$ -closed for every $p \in X$, where i, j = 1, 2 and $i \neq j$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is a $(\tau_i, \tau_j) \cdot (\Lambda, \delta)$ -open set containing y but not containing x. Similarly $\{y\}^c$ is a $(\tau_j, \tau_i) \cdot (\Lambda, \delta)$ -open set containing x but not y. Therefore, X is a pairwise Λ_{δ} - T_1 space.

Definition 5. A space (X, τ_1, τ_2) is pairwise Λ_{δ} -symmetric if for x and y in X, $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ implies $y \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$, where i, j = 1, 2 and $i \neq j$.

Definition 6. A subset A of a space (X, τ_1, τ_2) is called a (τ_i, τ_j) - Λ_{δ} -generalized closed set (briefly (τ_i, τ_j) - Λ_{δ} -g-closed) if $A^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset U$ whenever $A \subset U$ and U is (τ_i, τ_j) - (Λ, δ) -open, where i, j = 1, 2 and $i \neq j$.

Lemma 2.9. Every (τ_i, τ_j) - (Λ, δ) -closed set is (τ_i, τ_j) - Λ_{δ} -g-closed, where i, j = 1, 2and $i \neq j$.

Remark 2.10. The converse of Lemma 2.9 is not true as shown in the following example.

Example 2.11. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is $(\tau_1, \tau_2) - \Lambda_{\delta}$ -g-closed but not $(\tau_1, \tau_2) - (\Lambda, \delta)$ -closed.

Theorem 2.12. A space (X, τ_1, τ_2) is pairwise Λ_{δ} -symmetric if and only if $\{x\}$ is (τ_i, τ_j) - Λ_{δ} -g-closed for each $x \in X$, where i, j = 1, 2 and $i \neq j$.

Proof. Assume that $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ but $y \notin \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$. This implies that the complement of $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ contains y. Therefore, the set $\{y\}$ is a subset of the complement of $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$. This implies that $\{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ is a subset of the complement of $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$. Now the complement of $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subset D \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$, but $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ is not a subset of D. This means that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ and the complement of D are not disjoint. Let $y \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \cap (X \setminus D)$. Now we have $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ which is a subset of the complement of D and $x \notin D$. But this is a contradiction.

Corollary 2.13. If a space (X, τ_1, τ_2) is pairwise Λ_{δ} - T_1 space, then it is pairwise Λ_{δ} -symmetric.

Proof. In a pairwise Λ_{δ} - T_1 space singleton sets are (τ_i, τ_j) - (Λ, δ) -closed by Theorem 2.8, and therefore, (τ_i, τ_j) - Λ_{δ} -g-closed by Lemma 2.9. By Theorem 2.12, the space is pairwise Λ_{δ} -symmetric.

Remark 2.14. The converse of Corollary 2.13 is not true as shown in the following example.

Example 2.15. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then X is pairwise Λ_{δ} -symmetric but not pairwise Λ_{δ} - T_1 since X and \emptyset are the only (τ_i, τ_j) - (Λ, δ) -open sets for i, j = 1, 2 and $i \neq j$.

Corollary 2.16. For a space (X, τ_1, τ_2) the following are equivalent: (1) (X, τ_1, τ_2) is pairwise Λ_{δ} -symmetric and pairwise Λ_{δ} - T_0 ; (2) (X, τ_1, τ_2) is pairwise Λ_{δ} - T_1 .

Proof. By Corollary 2.13 and Remark 2.6, it suffices to prove only $(1) \Rightarrow (2)$. Let $x \neq y$ and by pairwise Λ_{δ} - T_0 , we may assume that $x \in G_1 \subset \{y\}^c$ for some $G_1 \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$. Then $x \notin \{y\}^{(\Lambda, \delta)(\tau_j, \tau_i)}$. Therefore, we have $y \notin \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$. There exists a $G_2 \in \Lambda_{\delta}O(X, \tau_j, \tau_j)$ such that $y \in G_2 \subset \{x\}^c$. Therefore, (X, τ_1, τ_2) is a pairwise Λ_{δ} - T_1 space.

Theorem 2.17. For a pairwise Λ_{δ} -symmetric space (X, τ_1, τ_2) the following are equivalent:

(1) (X, τ₁, τ₂) is pairwise Λ_δ-T₀;
(2) (X, τ₁, τ₂) is pairwise Λ_δ-T₁.

Proof. $(1) \Rightarrow (2)$: Follows from Corollary 2.16. $(2) \Rightarrow (1)$: Follows from Remark 2.6.

3. Pairwise Λ_{δ} - R_0 spaces

Definition 7. A space (X, τ_1, τ_2) is pairwise R_0 [5] if for each τ_i -open set G, $x \in G$ implies τ_j -Cl($\{x\}$) $\subset G$, where i, j = 1, 2 and $i \neq j$.

Definition 8. A space (X, τ_1, τ_2) is a pairwise Λ_{δ} - R_0 if for each (τ_i, τ_j) - (Λ, δ) -open set $G, x \in G$ implies $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \subset G$, where i, j = 1, 2 and $i \neq j$.

Proposition 3.1. In a space (X, τ_1, τ_2) the following statements are equivalent: (1) (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 ;

(2) for any (τ_i, τ_j) - (Λ, δ) -closed set F and a point $x \notin F$, there exists $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ such that $x \notin U$ and $F \subset U$ for i, j = 1, 2 and $i \neq j$;

(3) for any (τ_i, τ_j) - (Λ, δ) -closed set F and $x \notin F$, then $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \cap F = \emptyset$, for i, j = 1, 2 and $i \neq j$.

Proof. (1) \Rightarrow (2): Let F be a (τ_i, τ_j) - (Λ, δ) -closed set and $x \notin F$. Then by (1), $\{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset X \setminus F$, where i, j = 1, 2 and $i \neq j$. Let $U = X \setminus \{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, then $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ and also $F \subset U$ and $x \notin U$.

(2) \Rightarrow (3): Let F be a (τ_i, τ_j) - (Λ, δ) -closed set and a point $x \notin F$. Then by (2), there exists $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ such that $F \subset U$ and $x \notin U$, where i, j = 1, 2 and $i \neq j$. Since $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i), U \cap \{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} = \emptyset$. Then $F \cap \{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} = \emptyset$, where i, j = 1, 2 and $i \neq j$.

(3) \Rightarrow (1): Let $G \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$ and $x \in G$. Now $X \setminus G$ is (τ_i, τ_j) - (Λ, δ) -closed and $x \notin X \setminus G$. By (3), $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \cap (X \setminus G) = \emptyset$ and hence $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \subset G$, where i, j = 1, 2 and $i \neq j$. Therefore, the space (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 .

Proposition 3.2. A space (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 if and only if for each pair x, y of distinct points in X, $\{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} = \emptyset$ or $\{x,y\} \subset \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}$.

 $\begin{array}{l} Proof. \ \mathrm{Let}\,(X,\tau_1,\tau_2) \ \mathrm{be}\ \mathrm{pairwise}\ \Lambda_{\delta}\text{-}R_0. \ \mathrm{Suppose}\ \mathrm{that}\ \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \\ \neq \emptyset \ \mathrm{and}\ \{x,y\} \ \mathrm{is}\ \mathrm{not}\ \mathrm{a}\ \mathrm{subset}\ \mathrm{of}\ \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}. \ \mathrm{Let}\ s \in \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \ \mathrm{and}\ x \notin \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}. \ \mathrm{Then}\ x \notin \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \ \mathrm{and}\ x \in X \setminus \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \in \Lambda_{\delta}O(X,\tau_2,\tau_1). \ \mathrm{But}\ \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \ \mathrm{is}\ \mathrm{not}\ \mathrm{a}\ \mathrm{subset}\ \mathrm{of}\ X \setminus \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \ \mathrm{since}\ \mathrm{this}\ \mathrm{is}\ \mathrm{a}\ \mathrm{contradiction}. \ \mathrm{Hence}\ \mathrm{for}\ \mathrm{each}\ \mathrm{pair}\ x,y\ \mathrm{of}\ \mathrm{distinct}\ \mathrm{points}\ \mathrm{in}\ X,\ \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} = \emptyset\ \mathrm{or}\ \{x,y\} \subset \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}. \ \mathrm{Conversely},\ \mathrm{let}\ U\ \mathrm{be}\ \mathrm{a}\ (\tau_1,\tau_2) \cdot (\Lambda,\delta) \ \mathrm{opens}\ \mathrm{set}\ \mathrm{and}\ x \in U. \ \mathrm{Suppose}\ \mathrm{that}\ \{x\}^{(\Lambda,\delta)(\tau_2,\tau_1)}. \ \mathrm{for}\ \mathrm{and}\ \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)} \ \mathrm{subset}\ \mathrm{of}\ U. \ \mathrm{So}\ \mathrm{there}\ \mathrm{is}\ \mathrm{a}\ \mathrm{point}\ y \in \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}. \ \mathrm{for}\ \mathrm{for$

Theorem 3.3. In a space (X, τ_1, τ_2) , the following statements are equivalent: (1) (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 ;

(2) For any $x \in X$, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} = (\tau_j,\tau_i) - \Lambda_{\delta} Ker(\{x\}, \text{ for } i, j = 1, 2 \text{ and } i \neq j;$

(3) For any $x \in X$, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset (\tau_j,\tau_i)$, $\Lambda_{\delta}Ker(\{x\}, \text{ for } i, j = 1, 2 \text{ and } i \neq j;$ (4) For any $x, y \in X$, $y \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ if and only if $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, for

(4) for any $x, y \in \mathbb{N}, y$ $i, j = 1, 2 \text{ and } i \neq j;$

(5) For any (τ_i, τ_j) - (Λ, δ) -closed set $F, F = \cap \{G/Gisa(\tau_i, \tau_j)-(\Lambda, \delta)$ -open set and $F \subset G\}$, for i, j = 1, 2 and $i \neq j$;

(6) For any (τ_i, τ_j) - (Λ, δ) -open set $G, G = \bigcup \{F/F \text{ is } a (\tau_i, \tau_j)$ - (Λ, δ) -closed set and $F \subset G\}$, for i, j = 1, 2 and $i \neq j$;

(7) For every $A \neq \emptyset$ and each $G \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$ such that $A \cap G \neq \emptyset$, there exists $a(\tau_j, \tau_i)$ - (Λ, δ) -closed set F such that $F \subset G$ and $A \cap F \neq \emptyset$.

Proof. (1) \Rightarrow (2): Let $x, y \in X$. Then by Lemma 2.4 and Proposition 3.2, $y \in (\tau_j, \tau_i)$ - $\Lambda_{\delta} Ker(\{x\}) \Leftrightarrow x \in \{y\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \Leftrightarrow y \in \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$. Hence $\{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)} = (\tau_j, \tau_i)$ - $\Lambda_{\delta} Ker(\{x\})$, where i, j = 1, 2 and $i \neq j$.

 $(2) \Rightarrow (3)$: Straightforward.

(3) \Rightarrow (4): For any $x, y \in X$, if $y \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$, then $y \in (\tau_j,\tau_i)-\Lambda_{\delta}Ker(\{x\})$ by (3). Then by Lemma 2.4, $x \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, for i, j = 1, 2 and $i \neq j$. The converse follows by the same token.

 $\begin{array}{l} (4) \Rightarrow (5): \mbox{ Let } F \mbox{ be a } (\tau_i,\tau_j)\text{-}(\Lambda,\delta)\text{-closed set and } H = \cap\{G/G \mbox{ is } a \ (\tau_j,\tau_i)\text{-}(\Lambda,\delta)\text{-}open \ set \ and \ F \subset G\}. \ \mbox{Clearly } F \subset H. \ \mbox{Let } x \notin F. \ \mbox{Then for any } y \in F, \ \mbox{we have that } \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset F. \ \mbox{Hence follows that } x \notin \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)}. \ \mbox{Now by } (4), x \notin \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \ \mbox{implies } y \notin \{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)}. \ \mbox{There exists a } (\tau_j,\tau_i)\text{-}(\Lambda,\delta)\text{-open set } G_y \ \mbox{such that } y \in G_y \ \mbox{and } x \notin G_y. \ \mbox{Let } G = \bigcup_{y \in F} \{G_y/G_y \ \ is \ (\tau_j,\tau_i)\text{-}(\Lambda,\delta)\text{-}open \ \mbox{such that } x \notin G_y \ \mbox{and } x \notin G_y\}. \ \mbox{Thus, there exists a } (\tau_j,\tau_i)\text{-}(\Lambda,\delta)\text{-}open \ \mbox{such that } x \notin G \ \mbox{and } x \notin G_y\}. \ \mbox{Thus, there fore, } F = H. \end{array}$

 $(5) \Rightarrow (6)$: Straightforward.

(6) \Rightarrow (7): Let $A \neq \emptyset$ and G be a (τ_i, τ_j) - (Λ, δ) -open set and $x \in A \cap G$. By (6), $G = \bigcup \{F/ \text{ is } (\tau_i, \tau_j)$ - (Λ, δ) -closed and $F \subset G\}$. It follows that there is a (τ_i, τ_j) - (Λ, δ) -closed set F such that $x \in F \subset G$. Hence $A \cap F \neq \emptyset$.

(7) \Rightarrow (1): Let G be a (τ_i, τ_j) - (Λ, δ) -open set and $x \in G$, then $\{x\} \cap G \neq \emptyset$. Therefore by (7), there exists a (τ_j, τ_i) - (Λ, δ) -closed F such that $x \in F \subset G$ and $\{x\} \cap F \neq \emptyset$, which implies $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \subset G$, where i, j = 1, 2 and $i \neq j$. Therefore, (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 .

Remark 3.4. Let (X, τ_1, τ_2) be a space. Then for each $x \in X$, let $bi-\{x\}^{(\Lambda,\delta)} = \{x\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{x\}^{(\Lambda,\delta)(\tau_2,\tau_1)}$ and $bi-\Lambda_{\delta}Ker(\{x\}) = (\tau_1, \tau_2)-\Lambda_{\delta}Ker(\{x\}) \cap (\tau_2, \tau_1)-\Lambda_{\delta}Ker(\{x\})$.

Proposition 3.5. If a space (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 then for each pair of distinct points $x, y \in X$, either $bi-\{x\}^{(\Lambda,\delta)} = bi-\{y\}^{(\Lambda,\delta)}$ or $bi-\{x\}^{(\Lambda,\delta)} \cap bi-\{y\}^{(\Lambda,\delta)} = \emptyset$.

Proof. Let (X, τ_1, τ_2) be a pairwise Λ_{δ} - R_0 space. Suppose that $bi-\{x\}^{(\Lambda,\delta)} \neq bi-\{y\}^{(\Lambda,\delta)}$ and $bi-\{x\}^{(\Lambda,\delta)} \cap bi-\{y\}^{(\Lambda,\delta)} \neq \emptyset$. Let $s \in bi-\{x\}^{(\Lambda,\delta)} \cap bi-\{y\}^{(\Lambda,\delta)}$ and $x \notin bi-\{y\}^{(\Lambda,\delta)} = \{y\}^{(\Lambda,\delta)(\tau_1,\tau_2)} \cap \{y\}^{(\Lambda,\delta)(\tau_2,\tau_1)}$. Then $x \notin \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ where i, j = 1, 2 and $i \neq j$. and $x \in X \setminus \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$, where i, j = 1, 2 and $i \neq j$. But $\{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ is not a subset of $X \setminus \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ since $s \in bi-\{x\}^{(\Lambda,\delta)} \cap bi-\{y\}^{(\Lambda,\delta)}$. Thus (X, τ_1, τ_2) is not a pairwise Λ_{δ} - R_0 space which is a contradiction to our assumption. Hence we have either $bi-\{x\}^{(\Lambda,\delta)} = bi-\{y\}^{(\Lambda,\delta)}$ or $bi-\{x\}^{(\Lambda,\delta)} \cap bi-\{y\}^{(\Lambda,\delta)} = \emptyset$.

Theorem 3.6. In a space (X, τ_1, τ_2) , the following properties are equivalent: (1) (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 ;

(2) For any (τ_i, τ_j) - (Λ, δ) -closed set $F \subset X$, $F = (\tau_j, \tau_i)$ - $\Lambda_{\delta}Ker(F)$, where i, j = 1, 2 and $i \neq j$;

(3) For any (τ_i, τ_j) - (Λ, δ) -closed set $F \subset X$ and $x \in F$, (τ_j, τ_i) - $\Lambda_{\delta}Ker(\{x\}) \subset F$, where i, j = 1, 2 and $i \neq j$;

(4) For any $x \in X$, $(\tau_j, \tau_i) \cdot \Lambda_{\delta} Ker(\{x\}) \subset \{x\}^{(\Lambda, \delta)(\tau_i, \tau_j)}$, where i, j = 1, 2 and $i \neq j$.

Proof. (1) \Rightarrow (2): Let F be (τ_i, τ_j) - (Λ, δ) -closed and $x \notin F$. Then $X \setminus F$ is (τ_i, τ_j) - (Λ, δ) -open containing x. Since (X, τ_1, τ_2) is pairwise Λ_{δ} - R_0 , $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \subset X \setminus F$, where i, j = 1, 2 and $i \neq j$. Therefore, $\{x\}^{(\Lambda, \delta)(\tau_j, \tau_i)} \cap F = \emptyset$ and by Proposition 2.5, $x \notin (\tau_j, \tau_i)$ - $\Lambda_{\delta} Ker(F)$. Hence $F = (\tau_j, \tau_i)$ - $\Lambda_{\delta} Ker(F)$, where i, j = 1, 2 and $i \neq j$.

(2) \Rightarrow (3): Let F be a (τ_i, τ_j) - (Λ, δ) -closed set containing x. Then $\{x\} \subset F$ and (τ_j, τ_i) - $\Lambda_{\delta}Ker(\{x\}) \subset (\tau_j, \tau_i)$ - $\Lambda_{\delta}Ker(F)$. From (2), it follows that (τ_j, τ_i) - $\Lambda_{\delta}Ker(\{x\}) \subset F$, where i, j = 1, 2 and $i \neq j$.

(3) \Rightarrow (4): Since $x \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ and $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$ is (τ_i,τ_j) - (Λ,δ) -closed in X, by (3) it follows that (τ_j,τ_i) - $\Lambda_{\delta}Ker(F) \subset \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$, where i, j = 1, 2 and $i \neq j$. (4) \Rightarrow (1): It follows from Theorem 3.3.

4. Pairwise Λ_{δ} - R_1 spaces

Definition 9. A space (X, τ_1, τ_2) is said to be pairwise Λ_{δ} - R_1 if for each $x, y \in X$, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, there exist disjoint sets $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ and $V \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$ such that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset U$ and $\{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset V$, where i, j = 1, 2 and $i \neq j$.

Proposition 4.1. If (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 , then it is pairwise Λ_{δ} - R_0 .

Proof. Suppose that (X, τ_1, τ_2) is pairwise $\Lambda_{\delta} - R_1$. Let U be a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -open set and $x \in U$. Then for each point $y \in X \setminus U$, $\{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \neq \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)}$. Since (X, τ_1, τ_2) is pairwise $\Lambda_{\delta} - R_1$, there exists a $(\tau_i, \tau_j) - (\Lambda, \delta)$ -open set U_y and a $(\tau_j, \tau_i) - (\Lambda, \delta)$ -open set V_y such that $\{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset U_y, \{y\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset V_y$ and $U_y \cap V_y = \emptyset$, where i, j = 1, 2 and $i \neq j$. Let $A = \bigcup\{V_y \mid y \in X \setminus U\}$. Then $X \setminus U \subset A, x \notin A$ and A is a $(\tau_j, \tau_i) - (\Lambda, \delta)$ -open set. Therefore, $\{x\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset X \setminus A \subset U$. Hence (X, τ_1, τ_2) is pairwise $\Lambda_{\delta} - R_0$.

Proposition 4.2. A space (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 if and only if for every pair of points x and y of X such that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, there exists a (τ_i, τ_j) - (Λ, δ) -open set U and (τ_j, τ_i) - (Λ, δ) -open set V such that $x \in V$, $y \in U$ and $U \cap V = \emptyset$, where i, j = 1, 2 and $i \neq j$.

Proof. Suppose that (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 . Let x, y be points of X such that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$, where i, j = 1, 2 and $i \neq j$. Then there exist a (τ_i, τ_j) - (Λ, δ) -open set U and a (τ_j, τ_i) - (Λ, δ) -open set V such that $x \in \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset V$ and $y \in \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset U$. On the other hand, suppose that there exists a (τ_i, τ_j) - (Λ, δ) -open set U and (τ_j, τ_i) - (Λ, δ) -open set V such that $x \in V, y \in U$ and $U \cap V = \emptyset$, where i, j = 1, 2 and $i \neq j$. Since every pairwise Λ_{δ} - R_1 space is pairwise Λ_{δ} - R_0 , $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset V$ and $\{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset U$. Hence the claim.

Proposition 4.3. A pairwise Λ_{δ} - R_0 space (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 if for each pair of points x and y of X such that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \cap \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} = \emptyset$, there exist disjoint sets $U \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$ and $V \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ such that $x \in U$ and $y \in V$, where i, j = 1, 2 and $i \neq j$.

Proof. It follows directly from Definition 8 and Proposition 3.5.

Theorem 4.4. In a space (X, τ_1, τ_2) , the following statements are equivalent: (1) (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 ;

(2) For any two distinct points $x, y \in X$, $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$ implies that there exist a (τ_i, τ_j) - (Λ, δ) -closed set F_1 and a (τ_j, τ_i) - (Λ, δ) -closed set F_2 such that $x \in F_1$, $y \in F_2$, $x \notin F_2$, $y \notin F_1$ and $X = F_1 \cup F_2$, where i, j = 1, 2 and $i \neq j$.

Proof. (1) \Rightarrow (2): Suppose that (X, τ_1, τ_2) is pairwise Λ_{δ} - R_1 . Let $x, y \in X$ such that $\{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}$. By Proposition 4.2, there exist disjoint sets $V \in \Lambda_{\delta}O(X, \tau_i, \tau_j)$ and $U \in \Lambda_{\delta}O(X, \tau_j, \tau_i)$ such that $x \in U$ and $y \in V$, where i, j = 1, 2 and $i \neq j$. Then $F_1 = X \setminus V$ is a (τ_i, τ_j) - (Λ, δ) -closed set and $F_2 = X \setminus U$ is a (τ_j, τ_i) - (Λ, δ) -closed set such that $x \in F_1, x \notin F_2, y \notin F_1, y \in F_2$ and $X = F_1 \cup F_2$, where i, j = 1, 2 and $i \neq j$.

 $\begin{array}{l} (2) \Rightarrow (1): \text{ Let } x, y \in X \text{ such that } \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \neq \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)}, \text{ where } i, j = 1, 2 \text{ and } i \neq j. \text{ Hence for any two distinct points } x, y \text{ of } X, \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \cap \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} = \emptyset, \text{ where } i, j = 1, 2 \text{ and } i \neq j. \text{ Then by Proposition 3.2, } (X,\tau_1,\tau_2) \text{ is pairwise } \Lambda_{\delta}\text{-}R_0. \text{ By } (2), \text{ there exists a } (\tau_i,\tau_j)\text{-}(\Lambda,\delta)\text{-closed set } F_1 \text{ and a } (\tau_j,\tau_i)\text{-}(\Lambda,\delta)\text{-closed set } F_2 \text{ such that } X = F_1 \cup F_2, x \in F_1, y \in F_2, x \notin F_2 \text{ and } y \notin F_1. \text{ Therefore, } x \in X \setminus F_2 = U \in \Lambda_{\delta}O(X,\tau_j,\tau_i) \text{ and } y \in X \setminus F_1 = V \in \Lambda_{\delta}O(X,\tau_i,\tau_j) \text{ which implies that } \{x\}^{(\Lambda,\delta)(\tau_i,\tau_j)} \subset U, \{y\}^{(\Lambda,\delta)(\tau_j,\tau_i)} \subset V \text{ and } U \cap V = \emptyset, \text{ where } i, j = 1, 2 \text{ and } i \neq j. \text{ Hence } (X,\tau_1,\tau_2) \text{ is pairwise } \Lambda_{\delta}\text{-}R_0. \end{array}$

References

- 1. M. Caldas and S. Jafari, On some low separation axioms in topological space, Houston Journal of Math. 29(2003), 93-104.
- 2. A. S. Davis, Indexed systems of neighbourhoods for general topological spaces, Amer. Math. Monthly 68(1961), 886-893.
- 3. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3)(13)(1963),71-89.
- A. S. Mashhour, F. H. Khedr and S. N. El-Deeb, Five separation axioms in bitopological spaces, Bull. Fac. Sci. Assiut. Univ. 11(1) (1982), 53-67.
- 5. M. G. Murdeshwar and S. A. Naimpally, $R_1\mbox{-topological spaces},$ Canad. Math. Bull. 9(1966), 521-523.
- 6. S. A. Naimpally, On $R_0\mbox{-topological spaces},$ Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10(1967), 53-54.
- 7. T. M. Nour, A note on five separation axioms in bitopological spaces, Indian J. Pure and Appl. Math. 26(7) (1995), 669-674.
- N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110-113.

M. Caldas Departamento de Matemática Aplicada Universidade Federal Fluminense Rua Mário Santos Braga, s/n 24020-140, Niterói, RJ- BRAZIL gmamccs@vm.uff.br

S. Jafari College of Vestsjaelland South Herrestraede 11 4200 Slagelse - DENMARK jafari@stofanet.dk

S. A. Ponmani Department of Mathematics, Jayaraj Annapackiam College for Women, Periyakulam, Theni (Dt.)-625601, Tamilnadu, INDIA. athisayaponmani@yahoo.co.in

M. L. Thivagar Department of Mathematics Arul Anandar College Karumathur, Madurai (Dt.)-625514 Tamilnadu, INDIA. mlthivagar@yahoo.co.in

78