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Lyapunov–type numbers for Poincaré maps ∗

K.D. Edoh and J. Lorenz

abstract: In [3] we have addressed computational issues related to Lyapunov–
type numbers for invariant curves of planar maps. These numbers are important
for understanding persistence and breakdown of the invariant curves when the map
is perturbed. The purpose of this paper is to apply the results of [3] to Poincaré
maps of systems of ODEs depending on a parameter and to address numerical issues
involved.
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1. Introduction

Consider a first–order system of ODEs

dz

dt
= f(z, λ, t), z(t) ∈ IRn, (1.1)

depending on the real parameter λ. We assume that

f : IRn+2 → IRn

is a smooth map which is T–periodic in t, i.e,

f(z, λ, t + T ) ≡ f(z, λ, t) . (1.2)

Let
z(t) = S(z0, λ, t)
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denote the solution of (1.1) with z(0) = z0. (We always assume the solution to
exist for all t for the parameter values and initial data under consideration.) Then
the map, from IRn to IRn, defined by

z0 → S(z0, λ, T ) =: P (z0, λ)

is the Poincaré map corresponding to the T–periodicity of f for the fixed parameter
value λ. If Γ(λ) is a simple closed curve in IRn which is mapped bijectively onto
itself by P (·, λ), then Γ(λ) is called invariant under P (·, λ). Upon identification of
t = 0 with t = T , the continuous–time dynamical system (1.1) has a corresponding
invariant 2–torus,

T(λ) ⊂ IRn × (IRmodT ),

formed by the trajectories
(
S(z0, λ, t), t

)
, 0 ≤ t ≤ T, z0 ∈ Γ(λ) .

An interesting and important question is under what assumptions an invariant
torus T(λ) gets merely deformed diffeomorphically as λ changes or gets destroyed
(breaks) near certain λ–values. As explained in [1], generally one cannot assign a
definite value of λ to the disappearance of an invariant torus, but the breakdown
may be a chaotic process. (This may be unexpected from the point of view of stan-
dard bifurcation theory, based on Fredholm’s alternative for linearized problems.
The linearized equations governing torus breakdown are not of Fredholm–type.)

However, sufficient conditions for the persistence of smooth invariant manifolds
under small C1 perturbations of the governing vector field can be formulated in
terms of so–called Lyapunov–type numbers. These numbers are determined by the
linearized dynamics. For the general theory see, for example, [6].

In [3] we have specialized the general theory of Lyapunov–type numbers to the
simple case of an invariant curve of a planar map and have addressed corresponding
computational issues. The purpose of the present paper is to illustrate the results
of [3], as well as numerical issues, in the case when the planar map is the Poincaré
map of a continuous–time system (1.1) with n = 2. In Section 4, the periodically
forced van der Pol oscillator is considered as a particular example. This is a much
studied example for which invariant tori have been computed in [5], for example.
As far as we know, the current paper is the first, however, which relates numerically
computed Lyapunov–type numbers to the tori in the van der Pol oscillator. For a
related case study, see [2].

2. Lyapunov–Type Numbers

We first define the Lyapunov–type numbers ν(q), ν̄(q), σ(q), and σ̄(q) for the
case where Γ is a simple closed C1 curve in IR2 which is invariant under an orien-
tation preserving diffeomorphism P : IR2 → IR2. For further details we refer to [3].
We then address numerical issues for the case where P is the Poincaré map of a
dynamical system (1.1) with (1.2) and n = 2.
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2.1. The Case of a General Map. Let P : IR2 → IR2 denote an orientation
preserving diffeomorphism and let Γ ⊂ IR2 be a simple closed C1 curve which is
mapped bijectively onto itself by P . For q ∈ Γ let Tq and Nq denote unit tangent
and normal vectors to Γ in q, respectively. (Below, in (2.5), we assume that Tq and
Nq are column vectors in IR2.) We assume that the vectors Tq and Nq are oriented
consistently along Γ, i.e, they depend continuously on q ∈ Γ. Let Aq = P ′(q)
denote the Jacobian of P at q. Invariance of Γ under the map P implies that

AqTq = aqTP (q), aq > 0 . (2.3)

The number aq measures local contraction (for 0 < aq < 1) or expansion (for
aq > 1) of the linearized dynamics within Γ. The vector AqNq can be decomposed
as

AqNq = cqTP (q) + bqNP (q), bq > 0 . (2.4)

The number bq measures local contraction (for 0 < bq < 1) or expansion (for bq > 1)
of the linearized dynamics towards Γ. In matrix form, one obtains

Aq

(
Tq Nq

)
=

(
TP (q) NP (q)

) (
aq cq

0 bq

)
(2.5)

where the 2 × 2 matrices (Tq Nq) and (TP (q) NP (q)) are orthogonal. This allows
for an easy evaluation of aq and bq using (2.5).

To define ν(q) we consider the sequence

ν(q, n) =
(
bq bP−1(q) · · · bP−n(q)

)1/(n+1)

and set
ν(q) = lim sup

n→∞
ν(q, n) .

If ν(q) < 1 then let

σ(q, n) =
log

(
aq aP−1(q) · · · aP−n(q)

)

log
(
bq bP−1(q) · · · bP−n(q)

) (2.6)

and
σ(q) = lim sup

n→∞
σ(q, n) .

If ν(q) < 1 then ν(q) measures the rate of attractivity towards Γ. Roughly, the
smaller 0 ≤ supq ν(q) < 1, the stronger the attractivity of Γ. The number σ(q)
measures the rate of the ratio 1 of attractivity within and towards Γ. If ν(q) < 1
and σ(q) < 1 for all q ∈ Γ, then Γ can be shown to persist if a perturbation is added
to P that is C1 small. Here persistence of Γ means that the perturbed map has
an invariant curve close to Γ. If supq ν(q) approaches one during a continuation

1 In general, this is finer than measuring the ratio of rates.
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process, then Γ loses its attractivity. If supq σ(q) approaches one, then the attrac-
tivity of the dynamics within Γ becomes as strong as the attractivity towards Γ,
a situation which allows for the formation of non–smooth attractors replacing Γ.
For a numerical case study, in which spiral points form on Γ, see [4].

The numbers ν(q) and σ(q) measure the linearized dynamics in forward time,
along a backward orbit that ends in q. One can also measure the linearized dy-
namics in forward time along a forward orbit that starts in q. This leads to the
numbers ν̄(q) and σ̄(q) defined as follows:

ν̄(q, n) =
(
bq bP (q) · · · bP n(q)

)1/(n+1)

, ν̄(q) = lim sup
n→∞

ν̄(q, n)

and, if ν̄(q) < 1,

σ̄(q, n) =
log

(
aq aP (q) · · · aP n(q)

)

log
(
bq bP (q) · · · bP n(q)

) , σ̄(q) = lim sup
n→∞

σ̄(q, n) .

Remark: Generally, the number ν(q) differs from ν̄(q) and σ(q) differs from
σ̄(q). Perturbation results for Γ can also be formulated in terms of supq ν̄(q) and
supq σ̄(q). In [6], Fenichel considered overflowing invariant manifolds; for these,
forward orbits q, P (q), . . . are generally not defined and the perturbation theory
was worked out with ν(q) and σ(q) instead of ν̄(q) and σ̄(q).

2.2. The Case of a Poincaré Map. In the following, we suppress the depen-
dency on λ in our notation since it plays no role here. The evaluation of the Poincaré
map P = P (q) requires the numerical solution of the initial–value problem

zt = f(z, t), z(0) = q ,

for 0 ≤ t ≤ T . One then has z(T ) = P (q). Correspondingly, P−1(q) = z(0) if z(t)
solves

zt = f(z, t) for 0 ≤ t ≤ T, z(T ) = q .

In the case n = 2, the accurate numerical evaluation of z(t) with high–order initial
value codes typically causes no difficulty.

Let us address the evaluation of Aq = P ′(q), the Jacobian of P at q. We have
considered two possibilities:

a) Difference Approximation. We have

(Aq)11 =
∂P1

∂q1
(q) ∼ 1

2h

(
P1(q1 + h, q2)− P1(q1 − h, q2)

)
(2.7)

where h > 0 is a step size. Similar expressions hold for (Aq)12 etc.
b) Solution of an Initial–Value Problem. Let z(t, q) denote the solution

of
zt = f(z, t), z(0) = q , (2.8)
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and let Dqz(t, q) denote the Jacobian w.r.t. q. Differentiation of (2.8) w.r.t. q
yields

Dqzt = Dzf(z, t)Dqz, Dqz(0) = I (2.9)

where I is the 2 × 2 identity matrix. Numerically, it is convenient to solve (2.8)
and (2.9) together by treating the combined system as a system in 6 variables.
Application of a high–order initial–value solver then yields

P (q) = z(T, q), P ′(q) = Dqz(T, q) .

We found that the numerical approach b) is generally preferable to a). It avoids
the difficulty of choosing a good step size h in (2.7). Note that, if h is chosen too
small, then the evaluations errors of P1(q1±h, q2), which get divided by h, become
dominant.

3. Numerical Results

We present three case studies for the periodically forced van der Pol oscillator.
In Case 1 the Poincaré map has two fixed points on the invariant curve. This
allows to determine the Lyapunov–type numbers in terms of eigenvalues and we
have used it to validate the algorithm. Case 2 shows that, typically, the numbers
ν(q) etc. do not depend on q, but they depend, of course, on parameter values for
the system. In Case 3 we relate the parameter dependance to bifurcations.

3.1. The Forced van der Pol Oscillator. The van der Pol equation was
originally introduced in the 1920s as a model for a simple vacuum tube oscillator
circuit. In its periodically forced form it has become a much studied example of
nonlinear dynamics.

We consider the equation in the form

ẍ + α(x2 − 1)ẋ + x = βcos(ωt) (3.10)

where α, β, and ω are real parameters. Under the transformations [7]

p(x) = x3/3− x, y = ẋ + αp(x), (3.11)

the second–order equation (3.10) becomes the first–order system

ẋ = y − αp(x)
ẏ = −x + βcos(ωt) .

(3.12)

The system (3.12) takes the general form (1.1) with (1.2) and T = 2π/ω.
Using the standard notations

κ = β/2α and ρ = (1− ω2)/α

we present results for three cases:
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Case 1: Let α = κ = ρ = 0.4. The invariant curve Γ of the Poincaré map P is
shown in Figure 1. In this case, P has two fixed points on Γ, namely

Q1 = (2.086522, 0.992962) and Q2 = (1.182570,−1.126298) .

Here Q1 is a sink, denoted by x in Figure 1, and Q2 is a saddle, denote by o in
Figure 1. The eigenvalues of the Jacobian AQ1 of P at Q1 are

λ1 = 0.029751 and λ2 = 0.788402 .

Here the eigenvector to the larger eigenvalue λ2 is tangential to Γ, and the smaller
eigenvalue λ1 is the other eigenvalue of AQ1 , measuring the rate of attractivity
towards Γ. If q ∈ Γ is any point on the invariant curve Γ which is different from the
saddle, then simple theoretical considerations (see [3]) show that one can express
ν̄(q) and σ̄(q) in terms of the eigenvalues of AQ1 as follows:

ν̄(q) = λ1 = 0.029751

and
σ̄(q) =

log λ2

log λ1
= 0.067639 .

The eigenvalues of P at the saddle fixed point Q2 are

λ1 = 0.324142 and λ2 = 1.358307 .

Again, the eigenvector to the larger eigenvalue λ2 is tangential to Γ and the smaller
eigenvalue λ1 is the other eigenvalue of AQ2 , measuring the rate of attractivity
towards Γ. Since λ2 > 1, the fixed point Q2 is repelling in direction tangential to
Γ.

If q is any point on Γ and q 6= Q1, then backward orbits tend to Q2 and one
obtains

ν(q) = λ1 = 0.324142

and
σ(q) =

log λ2

log λ1
= −0.271832 .

We have used these theoretically based results to test our algorithm, which
approximates the numbers ν(q), ν̄(q), σ(q) and σ̄(q) using the formulae stated in
Section 2.1. For the example described here, we obtained four digits of accuracy
without difficulty.

Case 2: In this case, α = 0.4, ρ = 0.55 and β varies in the interval 0.38 ≤ β ≤
0.3925. Invariant curves Γ = Γ(β) of the Poincaré map P = P (·, β) are shown in
Figure 2. These are in good agreement with the those of van Veldhuizen [8].

Numerical results for the Lyapunov–type number ν = ν(q, β) are shown in
Figure 3. For fixed β, the variable q ∈ Γ is replaced by an angle variable, 0 ≤
θ ≤ 2π. The curves in Figure 3 are almost flat, showing that the dependency on
q (or, equivalently, on θ) is very weak. On the other hand, the dependency on β
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is strong. When β increases beyond ∼ 0.3925 the invariant curve Γ(β) disappears
in a sink. In terms of ν(q, β), this disappearance is connected with ν approaching
the value ν = 1. We note that for the parameter values used in Figure 3 numerical
computations show that ν̄(q, β) = ν(q, β). For the same parameter values we have
also computed σ(q, β) and σ̄(q, β). These functions (not shown) turn out to be
identically zero, saying that there is no attractivity of the linearized dynamics
within the invariant curve Γ(β).

Case 3: In Figures 5 and 6 we show the Lyapunov–type numbers ν, ν̄, σ, σ̄ as
functions of 0.1 ≤ β ≤ 0.3418 for ρ = α = 0.4. (As in Case 2, there is practically
no dependency on the point q ∈ Γ(β).)

Previous numerical and analytical studies (see, for example, the bifurcation
diagrams in [8,7,9]) have shown that for β less than ∼ 0.275 there is an attracting
invariant curve Γ(β) and a source point S(β) in the region surrounded by Γ(β).
Representative curves Γ(β) are shown in Figure 4. A saddle point appears on Γ(β)
at β ∼ 0.275 through a saddle–node bifurcation and splits into a sink and a saddle,
located on Γ(β), for larger values of β. In terms of the Lyapunov–type numbers,
the saddle–node bifurcation at β ∼ 0.275 is clearly shown: For β > 0.275 the
values ν(β) and ν̄(β) differ from each other, as do the values σ(β) and σ̄(β). This
is expected since the appearance of a saddle and a sink on Γ(β) lead to different
asymptotic behavior of the orbits that determine ν and ν̄ as well as σ and σ̄.

As β approaches 0.3418, the saddle on Γ(β) collides with the source S(β) inside
Γ(β), leading to a second saddle–node bifurcation and the disappearance of Γ(β).
In terms of the Lyapunov–type numbers, this is indicated by ν(β) approaching the
value ν = 1, i.e, Γ(β) loses its attractivity.
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Figure 1: The invariant curve for the
van der Pol oscillator with α = ρ =
0.4 and β = 0.32. The point x is a
sink and o is a saddle.
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Figure 2: The invariant curves for van
der Pol oscillator for ρ = 0.55, α =
0.4 and 0.38 ≤ β ≤ 0.3925.
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Figure 5: The values of ν (dotted
curve, up) and ν̄ (solid line, down) for
van der Pol oscillator with α = ρ =
0.4 and 0.1 ≤ β ≤ 0.3418.
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Figure 6: The values of σ (dotted
curve, down) and σ̄ (solid curve, up)
for van der Pol oscillator with α =
ρ = 0.4 and 0.1 ≤ β ≤ 0.3418.


