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Some Sharp Weighted Estimates for Multilinear Operators
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ABSTRACT: In this paper, we establish a sharp inequality for some multilinear oper-
ators related to certain integral operators. The operators include Calderén-Zygmund
singular integral operator, Littlewood-Paley operator, Marcinkiewicz operator and
Bochner-Riesz operator. As application, we obtain the weighted norm inequalities
and Llog L type estimate for the multilinear operators.
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1. Introduction

Let T be a singular integral operator. In[1][2][3], Cohen and Gosselin studied
the LP(p > 1) boundedness of the multilinear singular integral operator 74 defined
by

T4(1)0) = [ R e

In[6], Hu and Yang obtain a variant sharp estimate for the multilinear singular in-
tegral operators. The main purpose of this paper is to prove a sharp inequality for
some multilinear operators related to certain non-convolution type integral opera-
tors. In fact, we shall establish the sharp inequality for the multilinear operators
only under certain conditions on the size of the integral operators. The integral
operators include Calderén-Zygmund singular integral operator, Littlewood-Paley
operator, Marcinkiewicz operator and Bochner-Riesz operator. As applications, we
obtain weighted norm inequalities and L log L type estimates for these multilinear
operators.
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2. Notations and Results

First, let us introduce some notations(see[6][12-14]). Throughout this paper, @
will denote a cube of R™ with side parallel to the axes. For any locally integrable
function f, the sharp function of f is defined by

1
# — _
f7(x) zgg |Q/@If(y) foldy,

where, and in what follows, fo = |Q|! fQ f(z)dz. Tt is well-known that(see[6])

#(z) = sup inf ﬁ /Q @) — cldy.

zeQ c€C

We say that f belongs to BMO(R™) if f# belongs to L>(R") and ||f||Byo =
||f#]|L. For 0 < r < oo, we denote f# by

FE @) = [(1F1)# (@

Let M be the Hardy-Littlewood maximal operator defined by M (f)(x) =
SUP,e Q|1 fQ |f(y)|dy, we write M,(f) = (M(fp))l/p for0 < p < oo; Fork € N,

we denote by M* the operator M iterated k times, i.e., M (f)(z) = M(f)(x) and

M¥(f)(z) = M(M*1(f))(x) for k > 2. Let B be a Young function and B be the
complementary associated to B, we denote that, for a function f

N 1 ()
1115, Q—mf{»o. @'/QB(A) dy < 1}

and the maximal function by

Mg(f)(x) = sup || f]|B, q;
TEQ

The main Young function to be using in this paper is B(t) = t(1 + log™t) and its
complementary B(t) = expt, the corresponding maximal denoted by Mo, and
Megpr.. We have the generalized Holder’s inequality(see[12])

1
|Q|/Q|f(y)g(y)dy < |1fll5, ollgllz, o

and the following inequality (in fact they are equivalent), for any x € R",

Mrpiogr(f)(x) < CM?(f) ()

and the following inequalities, for all cubes Q any b € BMO(R"),
b= bgllexp L, @ < ClbllBaro, [barriq — bagl < 2k[[bl[Brro-

We denote the Muckenhoupt weights by A, for 1 < p < co(see[6]).
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We are going to consider some integral operators as following.
Let m be a positive integer and A be a function on R™. We denote that

R (Ai2,9) = Aw) = 37 Do AQ)(w — )"

la|<m

Definition 1. Let S and S’ be Schwartz space and its dual and T : § — S’
be a linear operator. Suppose there exists a locally integrable function K(x,y) on
R™ x R™ such that

T(f)(x)= | K(z,y)f(y)dy
R’VL
for every bounded and compactly supported function f. The multilinear operator
related to the integral operator T is defined by

R

no |z —ym

Definition 2. Let F(z,y,t) defined on R™ x R™ x [0,+00). Set

Ft(f)(x) = Rn F(x,y,t)f(y)dy

for every bounded and compactly supported function f and

Rerl(A; z, y)
re |l —yl™

Let H be a Banach space of functions h : [0,+00) — R. For each fixed z € R",
we view Fi(f)(z) and F/(f)(x) as a mapping from [0,4+0c0) to H. Then, the
multilinear operators related to F} is defined by

SAH () = [IFA () @)l;

We also define that S(f)(x) = ||Fi(f)(z)]].

Note that when m = 0, T4 and S4 are just the commutators of T, S and A.
While when m > 0, it is non-trivial generalizations of the commutators. It is well
known that multilinear operators are of great interest in harmonic analysis and
have been widely studied by many authors (see [1-5][7]). The main purpose of this
paper is to prove a sharp inequality for the multilinear operators T4 and S4. We
shall prove the following theorems in Section 3.

Theorem 1. Let D*A € BMO(R") for all a with |a| = m. Suppose that T
is the same as in Definition 1 such that T" is bounded on LP(w) for all w € A, with
1 < p < 00 and weak bounded of (L'(w), L' (w)) for all w € A;. If T4 satisfies the
following size condition:

T4 (f) (@) = T4(f)(zo)| < C Y [ID*Allparo M (f) ()

lo|=m
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for any cube Q = Q(zg,d) with suppf C (2Q)¢, € Q = Q(x0,d). Then for any
0 < r < 1, there exists a constant C' > 0 such that for any f € C§°(R") and any
xz € R,
(TA()FE (@) <O Y [ID*AllpaoM?(f)(x).
|a]=m

Theorem 2. Let D*A € BMO(R") for all o with |a] = m. Suppose that
S is the same as in Definition 2 such that S is bounded on L?(w) for all w € A,,
1 < p < 0o and weak bounded of (L'(w), L' (w)) for all w € A;. If S4 satisfies the
following size condition:

IEA () (@) = FA) @)l <€ Y (1D AllproM?(f)(x)
|a]=m
for any cube Q = Q(xo,d) with suppf C (2Q)¢, z € Q = Q(zg,d). Then for any
0 < r < 1, there exists a constant C > 0 such that for any f € C§°(R"™) and any
r € R",
(SANE@) <C Y |ID*AllpamoM?(f) ().
|a]=m

From the theorems, we get the following

Corollary. Let D®A € BMO(R") for all a with |a| = m. Suppose that T4,
T and S4, S satisfy the conditions of Theorem 1 and Theorem 2.

(a). Ifwe A, for 1 <p< oo Then T4 and S# are all bounded on LP(w),
that is

ITA(A)|zow) < C Y IID*Allsaoll 1l Lo w)

|a]=m

and

IS4 oy < C Y [ID*Allaol| fll o w)-

la|=m

(b). If w € A;. Then there exists a constant C' > 0 such that for each A > 0,
w({z € R*: [TA(f)(@)| > A}) <
CZM:m |D*Al[Bmo fRn ‘f(/\x)‘ (1 + log™ (‘f(/\z)‘>) w(z)dx

and
w({z € R": [SA(f)(2)] > A}) <
C Yz 1D Allpa1 f L2 (14 10g™ (L)) wi(w)da.

3. Proof of Theorem

To prove the theorems, we need the following lemmas.
Lemma 1 (Kolmogorov, [6, p.485]). Let 0 < p < ¢ < oo and for any function
f > 0. We define that, for 1/r =1/p—1/q

A llwee = ilipo)\m € R": f(z) > MY, Ny (f) = SléprXEllLv/IIXEHLm
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where the sup is taken for all measurable sets E with 0 < |E| < co. Then

1/ llwes < Noo(£) < (af (@ = p))/?|| fllwes.

Lemma 2([12, p.165]) Let w € A;. Then there exists a constant C' > 0 such
that for any function f and for all A > 0,

w({y € R" : M?f(y) > A}) < CA7} : [F ()1 +log™ (A f(y))w(y)dy.
Lemma 3.([3, p.448]) Let A be a function on R" and D*A € L4(R"™) for all
a with |a] = m and some ¢ > n. Then

1/q
1
R (A;z,y)| < Clz —y[™ Z (M a¢ )|DQA(Z)qu> )
9 z,Y

la]=m
where Q is the cube centered at 2 and having side length 5vn|z —y).
Proof of Theorem 1. It suffices to prove for f € C§°(R™) and some constant
Cy, the following inequality holds:

(o [ i - o) < crr)

Fix a cube Q = Q(zo,d) and & € Q. Let @ = 5y/nQ and A(z) = A(z) —
> %(DQA)QIO‘, then R,,(A;z,y) = Rn(A;z,y) and D*A = D*A — (D”‘A)Q
|a]=m

for |a| = m. We write, for f1 = fxo and fo = fXR"\Q?

() = [ Roned & 29) ey 1)y

no o=y
/ Rm+1(A;$7y)

|z —y|™

R (A;z,
+/ (A;2,y)

|z — y|™

K(z,y) f2(y)dy

K(z,y)fi(y)dy

. i K(x,y)(x 7y)oz ap
2 Al o Ty D AWAGD

then

I T4(f) (@) = T (f2)(xo)| <

1

= I(z)+ II(x)+ I11(x),

r <R’”(A””’ ')f1> (@)

[z —|m
T ((x - _'|)7z DA fl) (z)

|z

+ [TA(f2)(2) = T4 (f2) (o)
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thus,

(o /Q TAS) @) - TA(fz)(fvo)|de)1/r

= <g| /Q I(:v)de>1/T+ <g| /Q II(x)de>1/T+ (é' /Q III(w)de)l/T

= I+ IT+111.

Now, let us estimate I, I1 and 111, respectively. First, for x € @Q and y € Q. using
Lemma 3, we get

Ry (A;2,y) < Clo —y|™ > ||ID*AllBuo,

|a]=m
thus, by Lemma 1 and the weak type (1,1) of T, we get

Tl
C D% A||pao|Q| ™ A
2 D% AllsaolQI™ T =T

la]=m
C > ID*AllsuolQI T (f)llwe

lal=m

¢ Y 1D Allsaol QI /Q FWldy < C Y 11D AllsaroM(1)(@);

la]=m

I

IN

IN

IN

lal=m
For I, similar to the proof of I, we get

-1 [IT(D*Af1)xollrr
lIxellLr/a-n

I<c ) lQ

|a]=m

c Y IQI‘I/QID“A(y)IIf(y)IdySC > I Allsp .0F 1 Liogr.0

lee|=m.

<C Z QIHIT(D*Af1)||w s

la]=m

IN

loe|=m

IN

C Y |IDYAllsroMpieg £(f)(E) < C > [ID*Allppo M (f)(2);

la|=m la|=m
For I11, using Holder’ inequality and the size condition of T', we have
HI<C Y |ID*AllsaroM?(£)(3).
|a]=m

This completes the proof of Theorem 1.
Proof of Theorem 2. It is only to prove for f € C§°(R™) and some constant
Co, the following inequality holds:

(5 JSGEE ol "< carp),
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Fix a cube Q = Q(z¢,d) and & € Q. Let Q and fl(x) be the same as the proof of

Theorem 1. We write, for fi = fxg and fo = fXRn\Qv

@ = [ S 0 nod

ylm
Z " xlg:/c’—y|m 9% pe Aty 11 )y
la=
+ M F(z,y,t)f2(y)dy,
Rn lz -yl
then
1S4 (f) () — SA( f2)(wo)| = |[IFA(F) @) = [FA(f2) (o)
< IFA)(=) - 2)(1’0
Rm 1 (217— _)a ax T
+ IFAf) (@) — FA(f2) (=
= ()+JJ()+JJJ()
thus,
1/r
(731 154010 = 5* R woprae
. 1/r C . 1/r C . 1/r
< (@/QJ(:E) d;v) + <|Q|/QJJ(96) dm) + (@/QJJJ(x) d;v)

= J+JJ+JJJ

Now, similar to the proof of Theorem 1, we have

J<cC Z 10" Ao / F@)dz < C S (1D Allparo M (£)(7)
lal= la|=m

and

JJ C Z |Q|—1||S(Da1‘~1f1)XQ||Lr

| = lIxqllLr/a-r

IN

<C Y QIS Af)llw e

laj=m

< c Z Q! / DAy < C 3 (1D Allpao M2 (£)(3);

lee|= la|=m

For JJJ, using the size condition of S, we have

JJJ<C Y |IDAll o M3(f)(@).

lee|=m
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This completes the proof of Theorem 2.

From Theorem 1, 2 and the weighted boundedness of T" and S, we may obtain
the conclusion of Corollary(a).

From Theorem 1, 2 and Lemma 2, we may obtain the conclusion of Corollary(b).

4. Applications

In this section we shall apply the Theorem 1, 2 and Corollary of the paper to
some particular operators such as the Calderén-Zygmund singular integral opera-
tor, Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz opera-
tor.

Application 1. Calderén-Zygmund singular integral operator.

Let T be the Calderén-Zygmund operator(see[6][14][15]), the multilinear oper-
ator related to 7' is defined by

/Rm+1 A x y
[z —yl™

K(z,y)f(y)dy.

Then it is easily to see that T satisfies the conditions in Theorem 1 and Corollary.
In fact, it is only to verify that T satisfies the size condition in Theorem 1, which
has done in [6](see also [12][13]). Thus the conclusions of Theorem 1 and Corollary
hold for T4.

Application 2. Littlewood-Paley operator.

Let € > O and 1 be a fixed function which satisfies the following properties:

(1) [po¥(x)dz =0,

(2) [v( )l < C(1 A+ |z)=C+D

(3) lo+y) - ¥(@)] < Clyle(L+ [o]) 49 when 2ly| < [al;

The multilinear Littlewood-Paley operator is defined by(see[8])

s = ([TiEnert) "

where
Rm+1 (Av &€, y)

rr T —y|™

and ¥ (x) =t "(x/t) for t > 0. We write Fi(f) = ¢ * f. We also define that

wine = ([ Enert) ",

which is the Littlewood-Paley operator(see [15]);
Let H be a space of functions h : [0,4+00) — R, normed by

Ihf) = ( I h<t>|2dt/t)1/2 <.

FAf)(x) = Vi(z —y) fly)dy
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Then, for each fixed x € R, F/A(f)(x) may be viewed as a mapping from [0, +00)
to H, and it is clear that

9o (H)() = [|F(f)(@)]] and g (f)(z) = [|F{ (f)(@)]].

It is known that g, is bounded on LP(w) for all w € A4,, 1 < p < oo and weak
(L' (w), L' (w)) bounded for all w € A;. Thus it is only to verify that g,ﬁ satisfies
the size condition in Theorem 2. In fact, we write, for a cube Q = Q(x,d) with

suppf € (Q)°, = € Q = Q(x0, d),
R - A = [

M(Rm(ﬁ; ,y) — Rin(A; 20,)) f(y)dy
Rn |330 y\

3 Z /n ( v —y)*U(z—y) (T —y)"he(xo — y)) D Ay) f(y)dy

IfU*ylm |z — y|™

wt<x—y>_wt<xo—y>) -
|z — y|™ lzo — y|™ Ry (Asz,y) f(y)dy

o=
= L+ I 2+ Is.
By Lemma 3 and the following inequality(see[14])

1bg, — b, | < Clog(|Q2|/|Q1)[Ibl|Brmo, for @1 C Q2,
we know that, for z € Q and y € 281Q \ 2FQ with k > 1,

[R(Aiz,y)l < Cle—y™ Y (ID*Allparo + (D A)g () — (D*A)g))

lee|=m

Cklz —y[™ Y |ID*Allpumo-

lee|=m

IN

Note that |z — y| ~ |zo — y| for x € Q and y € R™ \ Q. By the condition on ¢ and
Minkowski’ inequality , we obtain

mA; s
|ul||gc/m |Run (A 2,9) |1 ()]

lzo — y|™
1/2
" /°°< tlz — mo| N tlx — mo© )2dt i
o \lwo —yl(t o —y)™* ' (t+ 20—yt ) ¢ Y
|z — o] |x — xol® =
< ¢ (w)c('xo_ i+ Tt ) WGl
—_ _ £
< C DA / ('xm0|+|xx0|) d
O; I HB]MOZ P2k 2o — y|" L | Jzo — gl te |f(y)|dy
< €Y D Allsuo YK g [ o Tl
la]=m k=1 2
< C Z ||D*Al| oM (f)(z);

lee|=m
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For I, by the formula (see [3]):
Ron(A;2,y) — Rin(A; 20,y Z _1p|(DP As 3, 20) (2 — y)°
\5\<m

and Lemma 3, we have

R (A;2,y) = R (As0,9)| < C Y Y | — o™ Wz — y| "N D> Al paso,
|B1<m [a]=m

similar to the estimates of I;, we get

J)ol
LIl < C DA i~ Tol d
1] < O; I ||B]LIOZ/k+1\2kQ 2o — y|n+1|f( y)ldy
< CHD%MwMo§jkf*m“49rl/) F@)ldy
b1 2k:+1Q
< C|ID*AllBmoM(f)(x);

For I3, similar to the proof of I;, we obtain

— x| |z — zol® ) ~
I. < C / ( + D*A(y)|| f(y)|dy
|| 3|| IalZ"”; QR 1\2kQ |.Z‘07y|n+1 |1_0 7y|n+5 | ( )|| ( )|
< C k(27F 4272k DA d
< > Z + |2k+1Q‘ 2MQI WIIf(y)|dy
|a|=m k=1
< C Z Zk(27k+27Ek)(|‘DQA‘|expL,2k+1Q||f‘|LlogL,2k+1Q
la|=m k=1

+H[D* Al pro M (f)(x))
< C ) ID*Allpmo(Mpiogr(f)(@) + M(f)())

|a]=m

C Z |ID*A||garoM?(f)(x).

loe|=m

IN

From the above estimates, we know that Theorem 2 and Corollary hold for gﬁ.

Application 3. Marcinkiewicz operator.

Let Q be homogeneous of degree zero on R" and [, _, Q(z')do(z’) = 0. Assume
that Q € Lip, (5" 1) for 0 < v < 1, that is there exists a constant M > 0 such that
for any z,y € S"1, |Q(z) — Q(y)| £ M|z — y|[?. The multilinear Marcinkiewicz
operator is defined by(see[9])

u&ﬁ@»z(Amwf(x>P“) ,
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where

L s

lz—y|<t |!E - y‘nil |£E - y|m

we write that

_ Qz —y)
F(f)(x) = / )

z—y|<t |93 )

We also define that

wol@) = ([P ”

109

which is the Marcinkiewicz operator(see [16]); Let H be a space of functions h :

[0, +00) — R, normed by

Ihl] = ( I |h<t>|2dt/t3)l/2 <.

Then, it is clear that

pa(f)(@) = I (f)(@)] and pg(F)(x) = [|F{(F)()]]-

Now, we will verify that ué satisfies the size condition in Theorem 2. In fact, for

a cube @ = Q(xq,d) with suppf C (2Q)°, z € Q = Q(zo,d), we have

1F(f) (@) = FA(f) (o)l <

< (/OO| Q(x*y)Rm(Avmay)f(y)dy
0 lz—y|<t

|z —y[m+nt

7\/ Q(mo—y)Rm(A;xo,Z/)f( ) |2dt)1/2
|zo—y|<t

|$0 _ y‘m—&-n—l

+ Z / /a: u|<t |x_ Tr(ri;%)a

|a|=m

— Qzo —y)(@o =)\ Ha i 2dt 1o
/Ilo y|<t |:170 —_ y|m+n—1 )D A(y)f(y)dyl t3)
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R 5 1/2
e Q(x — y)||Rm (A5 2,y dt
< [T/ e —DIElA I g1y |
0 lz—y|<t, |zo—y|>t [z -yl

't 2
~ 1Q(z0 — y)|| R (A; 20, y)| "
* foldy| &
(/O [/rybt, |zo—y|<t |z — y|mtmt ()] 3

/ / | ( — ) m(Aa:y)
lz—y|<t,|xo—y|<t |x_y|m+n !

o =D ) )
Oz —y)(z —y)*
* Z / \:cfy|§t( |x_y|m+n—1

lel=

_ Qxo —y) (o — Y| 1o 7 th o
~/|m0 y|<t |x0_y‘m+n—1 )D A( ) ( )d | )

= Ji+Jo+Jd3+ Js

and

- 1/2
R,.(A;z, dt
L < C Lf )l W(L+nﬂf1y)\ / dt dy
re T =y lz—y|<t<|zo—y|
Ai. 1/2
< c Lf(W)||Rim (A;2,9)] ( 1 - 1 2) dy
e |z —ylmtnot lz—yl*  |zo—yl
i _1/2
< C/ |f(y)||Rm(:‘r1,3:",1y)| |z0 xlg/2 i
(20) |x_y|m n |x—y|
< O Y D Allawo k2 RQ [ (pwlay
la]=m k=1 2k T1Q
< O |ID*AllsmoM(f)(x),

lee|=m

similarly, we have J < C' 3, [DAl[Bro M (f)(2);

For Js, by the following inequality (see [16]):

|z — o] | — xo|” )
<C +
<350 —y|m  |mo —y|m 1Y)
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we gain
_ Y
Bo< €Y D Allswo | (lm T T )
’ cqz—:m” o @) \|zo —y|" ~ [zo —y[*~1+7
1/2
dt
« / S 1wldy
|zo—yl<t,Ja—y|<t T
< 0% D" Allpao 3 kEF + 27 )M (f) ()
|a|=m k=1
< C Z [|1D*AllBmoM(f)(x);
|a]=m

For J4, similar to the proof of J;, Jo and J3, we obtain

oo
|z — zo] |z — o|1/? |z — zo|” )
Al < C / + +
H 4|| Z Z Sk1Q\2kQ <|x0y|n+1 |x0_y|n+1/2 ‘m07y|n+fy

|aj=m k=1

x| D*A(y)[| f(y)|dy

o0 1 ~
< 0% ket [ i
jal=m k=1
< C Z [|D*A||prproM?(f)(x).

lee|=m

Thus, Theorem 2 and Corollary hold for p§.
Application 4. Bochner-Riesz operator.

Let B (f)(€) = (1 — 2[¢]%)%. f(€). Denote

Rm+l(A; ‘T,y) )

Bl @) = [ P i — ) )y,

where B{(z) = t~"B°(z/t) for t > 0. The maximal multilinear Bochner-Riesz
operator is defined by(see[9])

B (f)(x) = sup 1B (f)(x)].

We also define

BY(f)(z) = sup 1B (f)(z)],

which is the maximal Bochner-Riesz operator (see [10][11]).
Let H be the space of functions h(t) such that ||k|| = sup|h(t)|] < oo, where
>0

h(t) maps [0,4+00) to H. Then it is clear that

B)(f)(x) = ||B} (f)(@)|| and Bl (f)(x) = ||Bs} «(f)(2)]]-
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Now, we will verify that B4 5. satisfies the size condition in Theorem 2. In fact, for
a cube @ = Q(xg,d) with suppf C (2Q)¢, x € Q = Q(x0,d), we have

Bis(£)(@) = Bis(f)(w0) = /R [

Blao ) ip (i y) = Ro(dswo, )l f(w)dy
R» |fEO - y|m

B‘Sxf (x—1y)*  Bd(xg—1y)(zo—y)~ o 7
Za'/n< y|m y)*  Bi(zo—y)(xo y)>DA(y)f(y)dy

|zg — y|™

B (x — B (zg — ~
t@—y)  Bilxo ,Z)] Bon(As 2. ) F(y)dy
Ty Jwo ]

+

lo|=

= Ly +Ly+ Ls.

Consider the following two cases:
Case 1. 0 < t < d. In this case, notice that (see [11])

|B(2)] < e(1+ [z]) O/,

we obtain
Ll < orn [ MOWGERD g,
R™\Q lzo — y|™
< Claz: [|ID*Allpymot™ nz /HIQ\%Q T 1+|x_|zj](/t§(6+(n+1)/2)dy
< 0y ||D°YA||BMo<t/d>5*<"*”/2Zkzk“”*”/?*é)M(f)(x)
lor|=m k=1
< C Y |ID*AllpmwoM(f)(x),
or|=m

|La| < Ct_"/ W) Rn (A; 2, y) — Rin(A; 20, 7)| d
r\O 2o — Y™ (1 + |z — y|/t) 6+ H1)/2)
|z — ol|f(y)]
= A ot / dy
|OL|Z || ||BM Z 2k+1Q\2k ‘Io - yl(l + |£L’ — y|/t)(6+(n+1)/2)
< C Z [[D* Al Baro M (f)(x),

|a]=m
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<0y 93 UL DI y
< C Z t/d6 (n— 1)/222k((n 1)/2-9)
lo|=m
1

K] Jorarg M OIPAW) — (D gl

C Z ID*Al| o M?(f)().

lo|=m

IA

Case 2. t > d. In this case, we choose dy such that (n —1)/2 < dy < min(4, (n +
1)/2), notice that (see [11])

|B’(z — y) — B® (w0 — y)| < Cla — ao|(1+ |& —y|)~CHn+D/2),

similar to the proof of Case 1, we obtain

—n f y Rm A;xﬂy — n
o< o f \Q' e M a0 = al(1-+ 0 = ol 0D 2y

- [f )| R (A; 2, ) |20 — 2|
t—nt d
e /R"\Q |lwo — y|™ (1 + |wo — yl/t)Co+(nF1)/2) Y
< C Y |ID*Allpuo(d/t) /200 " k(=2 =00 A (£ ) ()
la]=m k=1
< C ) |ID*AllsmoM(f)(x),
la]=m
- |f(W)|[Bim (A; 2, y) = Rin(A; 20, 9))|
L < Ct d
| < /R"\Q 2o — g™ (1 + [wg — | /1) @0t (/2 Y
< C Z |\DQAHBMo(d/t)("H)/Q_‘SOZ2k(("_1)/2_60)M(f)($)
|a|=m k=1
< C Z ||[D*Al| oM (f)(x),
|a]=m
|Ls] < C (d/t)(rHD/2=00 % = gM(n =) /2= L |f(W)ID*A(y)|dy
,(; ,;) 261Q] Jar+16
< C k(= D/2700) — |f (I D*Aly) — (D A)pldy
|OL|ZmI; |2’“+1Q| 28410 ©
< C Y ID*AllsmoM?(f)(x).

lee|=m
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Thus, Theorem 2 and Corollary hold for BZ.,.

The author would like to express his deep,gratitude to the referee for his valuable

comments and suggestions.
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