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A Note on Indefinite Ternary Quadratic Forms Representing All Odd
Integers

Jean Bureau and Jorge Morales

abstract: In this paper we determine, up to equivalence, all the indefinite ternary
quadratic forms over Z that represent all odd integers.
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1. Introduction

The problem of representing integers by ternary quadratic forms has a long and
venerable history. The best known of these problems is determining which integers
can be written in the form x2 + y2 + z2, which was solved by Gauss [8, p. 79].

Another interesting classical example is the form x2 + y2 + 2z2, studied by
Fermat, Legendre and Torelli [3, p. 282], [4, p. 224], which represents all odd
positive integers. I. Kaplansky [5] found all positive-definite ternary quadratic
forms that share this property. In this note, we deal with the equivalent question
for indefinite forms, which was also raised by Kaplansky in an unpublished note
[6].

The classification of the indefinite ternary forms that represent all odd integers
turns out to be simpler than in the definite situation, as these forms happen to have
always class number one, as shown below, and hence determined by the “obvious”
local conditions. As particular cases, we find the so-called universal forms, i.e.
forms that represent all integers, that were already described by Dickson in the
1930’s.

2000 Mathematics Subject Classification: 11E25, 11E12; 11E41, 11E57, 11D09
Date submission 26 -Nov-2005.

85
Typeset by BSPMstyle.
c© Soc. Paran. Mat.



86 Jean Bureau and Jorge Morales

2. Notation and terminology

Let B be a symmetric n × n matrix with coefficients in Q. The associated
quadratic form on Zn is

q(x) = xtBx.

We say that q is integral if it takes values in Z. This is equivalent to 2B being
an integer matrix with even coefficients on the diagonal. We say that q is classically
integral if B has integer coefficients.

The symmetric bilinear form of q is defined by

β(x,y) = q(x + y)− q(x)− q(y) (1)

and is related to B by
β(x,y) = 2xtBy.

The determinant of q is defined by d(q) = det B. We say that q is nondegenerate if
d(q) 6= 0. All the quadratic forms in this paper will be assumed nondegenerate.

Let R be a commutative ring containing Z. Two quadratic forms q and q′ as
above are R-equivalent if there exists U ∈ GLn(R) such that q(Ux) = q′(x). We
shall denote this equivalence by q 'R q′. The rings R relevant for this paper are
Z, Q, Zp, Qp and R.

Recall that q and q′ are said to be in the same genus if q 'Zp q′ for all prime
numbers p and q 'R q′. The determinant d(q) is an invariant of the genus of q. It
is a standard fact that the genus of a form q contains finitely many Z-equivalence
classes (see e.g. [7, Theorem 6.1.2]); the number of these classes is called the class
number of q.

3. Sufficiency of Local Conditions

Recall that an integral quadratic form q is indefinite if it takes both positive
and negative values.

Theorem 3.1 Let q be a nondegenerate integral indefinite ternary quadratic form
representing all odd integers, then the genus of q contains exactly one class.

Proof: Let q be first any nondegenerate quadratic form on a Z-lattice L of rank
≥ 3 and let V = L⊗Q. Let θp : SO(Vp, q) → Q×p /Q×p

2 be the spinor norm.
Let P be a finite set of prime numbers containing 2 and such that θp(SO(Lp, q)) =

Z×p /Z×p
2 for all p /∈ P and define

RP =
∏

p∈P

Q×p /Q×2
p ; SP =

∏

p∈P

θp(SO(Lp, q)) ⊂ RP . (2)

Define also T ′P = {x ∈ Q× : |x|p = 1 for all p /∈ P} and denote by TP the image
of T ′P in RP under the “diagonal” map T ′P −→ RP . It is known (see Cassels [1,
Theorem 3.1, Capter 11]) that the number of spinor genera in the genus of q is
equal to the index [RP : SP TP ] for any set of primes P as above. If in addition q
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is indefinite, then by strong approximation [7, Theorem 6.3.2], spinor genera and
classes coincide, so in this case the index [RP : SP TP ] is actually equal to the class
number.

Let now q be a nondegenerate integral indefinite ternary quadratic form rep-
resenting all odd integers. If p is an odd prime, the form q represents all of Zp

since the odd numbers are dense in Zp. If p = 2, q represents the units of Z2.
Let u ∈ Z×p and choose e1, e2 ∈ Lp such that q(e1) = u and q(e2) = 1. The
reflections τei , defined by τei(x) = x − β(x, ei)q(ei)−1ei, preserve Lp and hence
τe1τe2 ∈ SO(Lp, q). It follows that u = θp(τe1τe2) ∈ θp(SO(Lp, q)) and there-
fore θp(SO(Lp, q)) ⊇ Z×p /Z×p

2. Since Z×p /Z×p
2 has index two in Q×p /Q×p

2, there
are only two possibilities for every prime p: either θp(SO(Lp, q)) = Z×p /Z×p

2 or
θp(SO(Lp, q)) = Q×p /Q×p

2.
Now let

P = {2} ∪ {
p odd : θp(SO(Lp, q)) = Q×p /Q×2

p

}
.

By [1, Lemma 3.5 Chapter 11], the odd primes in P are divisors of d(q), so P is s
finite set. Therefore we can use the groups in (2) to compute the class number of
q. In our situation

SP = θ2(SO(L2, q))×
∏

p∈P\{2}
Q×p /Q×2

p ,

thus RP /SP = (Q×2 /Q×2
2 )/θ2(SO(L2, q)) is a group of order at most 2. If [RP :

SP ] = 2, the nontrivial element is represented by 2, which is obviously in the
subgroup TP , so [RP : SP TP ] = 1. Therefore q has class number one as claimed.

2

In the next two sections we shall determine the genera of nondegenerate integral
indefinite ternary quadratic forms that represent all odd integers.

4. The Case p 6= 2

In the remaining of this paper, we shall denote by 〈a1; · · · ; an〉 the diagonal
quadratic form a1x

2
1 + · · ·+ anx2

n.

Proposition 4.1 Let q be a ternary form over Z of determinant d that represents
all odd integers. Then q 'Zp 〈1;−1;−d〉 for all odd primes p.

Proof: We diagonalize q to find q 'Zp 〈a1; a2; a3〉. One, at least, of the ai’s (say
a1) is a p-adic unit; in fact we can assume a1 = 1 since q represents 1. So we
can write q = 〈1; pau; pbv〉 where u, v ∈ Z×p , and a, b ∈ Z, a ≤ b. On the other
hand, 1 + 2Z is dense in Zp and consequently q(Zp) = Zp. If a > 0, then reducing
(mod p) we would get q(x) = x2 (mod p), which is clearly impossible. It follows
that a = 0 and thus q ' 〈1; u; pbv〉

If b = 0, i.e. d ∈ Z×p , the equivalence class of q over Zp is determined by d, so
q ' Zp〈1;−1;−d〉.
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Suppose b > 0. The equation

x2 + uy2 + vpbz2 = pw (3)

has a solution for any w ∈ Z×p . If −u ∈ Z×p 2 then obviously q ' 〈1;−1;−d〉. If
not, x2 + uy2 does not represent 0 non trivially (mod p). In particular, assuming
(x, y, z) is a solution to (3), it follows x ≡ y ≡ 0 (mod p).

Let s = min(ordp(x), ordp(y), ordp(z)). Clearly p2s must divide pw and thus we
get s = 0. So z is a unit. Finally,

x2 + uy2 = p(w − vpb−1z2)

but p2|x2 + ay2 and therefore p|w− bpb−1z2. If b > 1 this relation is clearly impos-
sible. If b = 1 we just choose w so that w 6= v (mod Z×p

2) to get a contradiction.
2

Corollary 4.1A Let q be an indefinite nondegenerate ternary form over Z that
represents all odd integers. Then q is isotropic.

Proof: By Proposition 4.1, q is isotropic over Qp for all odd primes and also over
R since it is indefinite. By reciprocity, q is isotropic over Q2 as well and therefore
is isotropic over Q by Hasse-Minkowski. 2

5. The case p = 2

We shall describe below all the nondegenerate ternary integral quadratic forms
over Z2 that satisfy the following properties:

(a) q is isotropic
(b) q represents all dyadic units

(4)

The form 〈1;−1;−d〉 satisfies trivially (4) for any d ∈ Z2. We shall call it the trivial
form.

Proposition 5.1 Let d = 2km (m odd) and let q be a classically integral quadratic
form over Z2 of determinant d satisfying (4). Then

(i) If k = 3, then either q 'Z2 〈1;−1;−8m〉 or q 'Z2 〈1;−2m;−4〉
(ii) If k ≥ 4 and is even, then either q 'Z2 〈1;−1;−d〉 or q 'Z2 〈1;−5;−5d〉
(iii) For all other values of k, q 'Z2 〈1;−1;−d〉

Proof: Since q represents 1 and is classically integral, it can be written in the form
x2 + 2tr(y, z), where r is a primitive binary form and t ≥ 0. Note that t ≥ 2 is
impossible since q represents all odd integers, so t = 0, 1.
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If t = 0, r is classically integral, so q can be diagonalized over Z2 in the form
q 'Z2 〈1;−u;−ud〉 for some unit u ∈ Z×2 . An easy computation on the Hasse
symbol shows that q is isotropic if and only if (u,−d)2 = 1. If k ≥ 3, then
u ≡ 1 (mod 4) since q must represent all odd integers mod 8. If in addition k
is odd, the condition (u,−d)2 = 1 implies u ≡ 1 (mod 8), so u is a square and
q 'Z2 〈1;−1;−d〉. If k is even and ≥ 4, the condition on the Hasse symbol is
automatically satisfied, so in this cases we get two inequivalent forms 〈1;−u;−ud〉
for u ≡ 1, 5 (mod 8). For k ≤ 2, we see easily case by case that the set of u ∈ Z×2
such that 〈1,−u,−ud〉 satisfies condition (4) coincides with the set of units of the
form a2 + db2 with a, b ∈ Z2 (it is enough to check this modulo 8), so these forms
are all equivalent to the “trivial form” 〈1;−1;−d〉.

If t = 1 and r is not classically integral, then r 'Z2 yz or r 'Z2 y2 + yz + z2. In
both cases q = x2−2q can be diagonalized (see [1, Lemma 4.1, Chapter 8]) and we
are back in the previous case where t = 0. If r is classically integral, then k ≥ 2 and
q 'Z2 〈1;−2u;−2k−1mu〉. We see easily that if k > 3 or k = 2, q fails to represent
all odd integers mod 8, so we are left with k = 3. A straightforward computation
with Hasse symbols shows that 〈1;−2u;−4mu〉 is isotropic if and only if u ≡ m
(mod 8) or u ≡ m + 2 (mod 8). Since m(m + 2) is obviously represented by the
binary form 〈1; 2m〉, both choices of u lead to equivalent forms. One verifies easily
that that 〈1;−2m;−4〉 represents all odd integers modulo 8. 2

Corollary 5.1A A classically integral form q as in Proposition 5.1 is universal if
and only if q 'Z2 〈1;−1;−d〉 with k = ord2(d) ≤ 1.

Proof: If k ≥ 2, the forms 〈1;−1;−d〉 and 〈1;−5;−5d〉 fail to represent 2 (mod 4).
The form 〈1;−2m;−4〉 fails to represent 6m (mod 16), so we are left with q =
〈1;−1;−d〉 and k ≤ 1. It is enough to check that q represents all dyadic integers
of the form 2u, where u is a unit. By Hensel’s Lemma, it is sufficient to verify this
condition modulo 32 and this is done by direct computation. 2

We shall now give the corresponding statements for integral, but not classically
integral, forms satisfying (4). In this situation, the “trivial form” is xy − 4dz2.

Proposition 5.2 Let d = 2km (m odd and k ≥ −2) and let q be an integral but
not classically integral quadratic form over Z2 of determinant d satisfying (4). Let
D = 4d. Then

(i) If k is even and k ≥ 0, either q 'Z2 xy −Dz2 or q 'Z2 x2 + xy + y2 + 3Dz2

(ii) If k is odd or k = −2, then q 'Z2 xy −Dz2.

Proof: By [1, Lemma 4.1, Chapter 8], q must be of one of the types xy −Dz2 or
x2 + xy + y2 + 3Dz2 . An easy computation with the Hasse symbol shows that the
latter is isotropic only when k is even. When k = −2 (and only in this case), the
forms xy −Dz2 and x2 + xy + y2 + 3Dz2 are equivalent over Z2. It is trivial that
the latter represents all dyadic units since x2 + xy + y2 does. 2
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Corollary 5.1B Let q be a quadratic form as in Proposition 5.2. Then q is uni-
versal if and only if q 'Z2 xy −Dz2.

Proof: The form x2 + xy + y2 + 3Dz2, with ord2(D) ≥ 2, does not represent 2
(mod 4). It is trivial that xy −Dz2 represents all dyadic integers. 2

6. Global forms representing all odd integers

We can now answer completely the initial question over Z. By Theorem 3.1, the
indefinite ternary quadratic forms over Z that represent all integers are determined
completely by their local data.

Theorem 6.1 Let q be a classically integral indefinite quadratic form of determi-
nant d = 2km (m ≥ 1 odd) that represents all odd integers.

(i) If k = 3, then either q 'Z 〈1;−1;−d〉 or q 'Z 〈1;−2m;−4〉.
(ii) If k ≥ 4 and is even, then either q 'Z 〈1;−1;−d〉 or q 'Z x2− r(y, z), where

r is a positive-definite binary form satisfying r 'Z2 〈5, 5d〉 and r 'Zp 〈1, d〉
for p 6= 2.

(iii) For all other values of k, q 'Z 〈1;−1;−d〉.

Proof: The theorem follows immediately from Proposition 5.1 since q has class
number one by Theorem 3.1. Note that the form r of (ii) is in general not unique,
but the equivalence class of the associated ternary form x2− r(y, z) is independent
of this choice by Theorem 3.1. 2

Remark. A binary form r satisfying the property of (ii) in Theorem 6.1 can be
easily constructed by choosing a prime number ` satisfying the congruences ` ≡ 5
(mod 8) and ` ≡ 1 (mod m) and letting r = `y2 + 2byz + cz2, where b2 ≡ −d
(mod `) and c = (b2 + d)/`. Note that the Legendre symbol (−d/`) is trivial by
quadratic reciprocity.

We now consider the case of integral but not classically integral forms. Let
d = 2km, with m ≥ 1 odd and let D = 4d. Let r be a positive definite binary
form of determinant D satisfying r 'Z2 〈5; 5D〉 and and r 'Zp 〈1, D〉 for p 6= 2.
We can assume without loss of generality that r(1, 0) ≡ 5 (mod 8) and r(1, 0) ≡ 1
(mod m)

Theorem 6.2 Let q be an integral but not classically integral indefinite quadratic
form of determinant d = 2km (m ≥ 1 odd, k ≥ −2) that represents all odd integers.
With the notation above, we have

(i) If k ≥ 0 is even, then either q 'Z xy −Dz2 or q 'Z (2x + y)2/4− r(y/2, z)

(ii) If k is odd or k = −2, then q 'Z xy −Dz2.
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Proof: If k is odd or k = −2, by Proposition 5.2 and Theorem 3.1, we have
q 'Z xy −Dz2.

Let k be even and ≥ 0 and assume q 'Z2 x2 + xy + y2 + 3Dz2 (otherwise
q 'Z2 xy− dz2 as in the previous case). Let L be the underlying Z-lattice of q and
let L] be the dual lattice (with respect to the bilinear form β of (1)). Let v1 ∈ L
be such that q(v1) = 1. Since q takes only even values on L ∩ 2L] if ord2(D) ≥ 2,
we have v1 /∈ 2L]. Define L′ = {x ∈ L : β(x,v1) ≡ 0 (mod 2)}. Note that
L′ = Zv1 ⊕ N , where N = (Qv1)⊥ ∩ L. Let w ∈ L be such that β(w,v1) = 1.
Then q(w) must be odd, otherwise the restriction of q to Z2v1 ⊕ Z2w would be
equivalent to xy (the two possible dyadic forms xy and x2+xy+z2 are distinguished
by their determinant). Write 2w = av1 + bv2, with v2 ∈ N primitive. Then a = 1
and b2q(v2) ≡ 3 (mod 8), so b is odd, say b = 2c + 1. Replacing w by w − cv2 we
can assume b = 1. Choose v3 ∈ N such that {v2,v3} is a Z-basis of N . Then the
vectors w = (v1 + v2)/2,v2,v3 form a basis of L. In this basis, q has the desired
form. Note that r := −q|N 'Z2 〈−3;−3D〉 'Z2 〈5; 5D〉. For p 6= 2 we must have
r 'Zp

〈−1;−D〉 by Proposition 4.1.
2

Example. The indefinite ternary quadratic forms of determinant d = 16 that rep-
resent all odd integers are x2 − y2 − 16z2, xy− 64z2 (these are the “trivial” ones),
and x2− 4y2 + 4yz− 5z2 and x2 + xy− y2− yz− 13z2 (these are the “non-trivial”
ones).

Corollary 6.2A (Dickson [2, Theorem 109]) Up to Z-equivalence, there are only
two types of integral ternary universal quadratic forms: (1) x2 − y2 − dz2 with
ord2(d) ≤ 1, and (2) xy −Dz2.

Proof: Follows immediately from Theorems 6.1 and 6.2 and Corollaries 5.1A and
5.1B. 2
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