Bol. Soc. Paran. Mat. (3s.) v. 23 1-2 (2005): 73-84. ©SPM –ISNN-00378712

42

On δ -Semiopen Sets And A Generalization Of Functions

Erdal Ekici

ABSTRACT: In this paper, we introduce and investigate a weaker form of R-maps and δ -continuous functions which is called almost δ -semicontinuity. We obtain its characterizations, its basic properties and their relationships with other types of functions between topological spaces.

Key Words: δ -semicontinuity, R-map, δ -continuity, almost δ -semicontinuity.

Contents

1	Introduction and preliminaries	73
2	Almost δ -semicontinuous functions	75
3	Relationships	77
4	Properties	80

1. Introduction and preliminaries

By using various forms of open sets many authors introduced and studied various types of continuity. In 1973, Carnahan introduced the notion of R-maps. In 1980, Noiri studied the notion of δ -continuous functions. The aim of this paper is to introduce the notion of almost δ -semicontinuous functions which generalize Rmaps and δ -continuous functions. Various characterizations and properties of such functions are obtained. Throughout the present paper, spaces mean topological spaces and $f:(X,\tau)\to (Y,\sigma)$ (or simply $f:X\to Y$) denotes a function f of a space (X, τ) into a space (Y, σ) . Let S be a subset of a space X. The closure and the interior of S are denoted by cl(S) and int(S), respectively.

Definition 1 A subset S of a space X is said to be

(1) regular open [22] if S = int(cl(S)),

(2) δ -open [23] if for each $x \in S$, there exists a regular open set W such that $x \in W \subset S$.

(3) α -open [14] if $S \subset int(cl(int(S)))$,

(4) semi-open [9] if $S \subset cl(int(S))$,

(5) preopen [11] if $S \subset int(cl(S))$,

(6) γ -open [7] if $S \subset int(cl(S)) \cup cl(int(S))$,

(7) β -open [1] or semi-preopen [2] if $S \subset cl(int(cl(S)))$.

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. Mat.

²⁰⁰⁰ Mathematics Subject Classification: 54C08, 54C10 Date submission 06-Apr-2005.

The complement of a regular open set is said to be regular closed [22].

The complement of a semiopen set is said to be semiclosed [6]. The intersection of all semiclosed sets containing a subset A of X is called the semi-closure [6] of Aand is denoted by s-cl(A). The union of all semiopen sets contained in a subset Aof X is called the semi-interior of A and is denoted by s-int(A).

A point $x \in X$ is called a δ -cluster (resp. θ -cluster) point of A [23] if $A \cap int(cl(U)) \neq \emptyset$ (resp. $A \cap cl(U) \neq \emptyset$) for each open set U containing x. The set of all δ -cluster (resp. θ -cluster) points of A is called the δ -closure (resp. θ -closure) of A and is denoted by δ -cl(A) (resp. θ -cl(A)). If δ -cl(A) = A (resp. θ -cl(A) = A), then A is said to be δ -closed (resp. θ -closed). The complement of a δ -closed (resp. θ -closed) set is said to be δ -open (resp. θ -open).

A subset S of a topological space X is said to be δ -semiopen [20] iff $S \subset cl(\delta int(S))$. The complement of a δ -semiopen set is called a δ -semiclosed set [20]. The union (resp. intersection) of all δ -semiopen (resp. δ -semiclosed) sets, each contained in (resp. containing) a set S in a topological space X is called the δ -semiinterior (resp. δ -semiclosure) of S and it is denoted by δ -sint(S) (resp. δ -secl(S)) [20].

The family of all δ -semiopen (resp.regular open, preopen, β -open. α -open, semi-open, δ -open) sets of a space X will be denoted by $\delta SO(X)$ (resp. RO(X), PO(X), $\beta O(X)$, $\alpha O(X)$, SO(X), $\delta O(X)$). The family of all δ -semiclosed (resp. regular closed, δ -closed) sets in a space X is denoted by $\delta SC(X)$ (resp. RC(X), $\delta C(X)$). The family of all δ -semiopen (resp.regular open, δ -open) sets containing a point $x \in X$ will be denoted by $\delta SO(X, x)$ (resp. RO(X, x), $\delta O(X, x)$).

Lemma 2 Let (X, τ) be a topological space. Intersection of arbitrary of δ -closed sets in X is δ -closed.

Lemma 3 Let A be a subset of a topological space (X, τ) . Then δ -cl $(A) = \cap \{F \in \delta C(X) : A \subset F\}$.

Corollary 4 δ -cl(A) is δ -closed for a subset A in a topological space (X, τ) .

Proof. It is obvious from the above lemmas.

Definition 5 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be

- (1) R-map [5] if $f^{-1}(V) \in RO(X)$ for every $V \in RO(Y)$,
- (2) almost semi-continuous [12] if $f^{-1}(V) \in SO(X)$ for every $V \in RO(Y)$,
- (3) δ -continuous [15] if $f^{-1}(V)$ is δ -open in X for every $V \in RO(Y)$.
- **Lemma 6** (Park et. al. [20]) Let A be a subset of a space X. Then (1) δ -scl(X\A) = X\ δ -sint(A),
 - (2) $x \in \delta$ -scl(A) if and only if $A \cap U \neq \emptyset$ for each $U \in \delta SO(X, x)$,
 - (3) A is δ -semiclosed in X if and only if $A = \delta$ -scl(A),
 - (4) δ -scl(A) is δ -semiclosed in X.
- **Lemma 7** (Noiri [17]) For a subset of a space Y, the following hold: (1) α -cl(V) = cl(V) for every $V \in \beta O(Y)$.
 - (2) p-cl(F) = cl(V) for every $V \in SO(Y)$.

Lemma 8 (Noiri [18]) s-cl(V) = int(cl(V)) for every preopen set V of a space X.

Definition 9 A space (X, τ) is said to be

- (1) submaximal [3] if every dense subset of X is open in X,
- (2) extremally disconnected [3, 16] if $cl(U) \in \tau$ for every $U \in \tau$.

2. Almost δ -semicontinuous functions

In this section, we obtain several characterizations of almost δ -semicontinuous functions.

Definition 10 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be almost δ -semicontinuous if for each $x \in X$ and each $V \in RO(Y)$ containing f(x), there exists $U \in \delta SO(X)$ containing x such that $f(U) \subset V$.

Theorem 11 For a function $f : (X, \tau) \to (Y, \sigma)$, the following are equivalent: (1) f is almost δ -semicontinuous;

(2) for each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \delta SO(X)$ containing x such that $f(U) \subset int(cl(V))$;

(3) $f^{-1}(F) \in \delta SC(X)$ for every $F \in RC(Y)$; (4) $f^{-1}(V) \in \delta SO(X)$ for every $V \in RO(Y)$. (5) $f(\delta \operatorname{-scl}(A)) \subset \delta \operatorname{-cl}(f(A))$ for every subset A of X ; (6) δ -scl $(f^{-1}(B)) \subset f^{-1}(\delta$ -cl(B)) for every subset B of Y; (7) $f^{-1}(F) \in \delta SC(X)$ for every δ -closed set F of (Y, σ) ; (8) $f^{-1}(V) \in \delta SO(X)$ for every δ -open set V of (Y, σ) ; (9) δ -scl $(f^{-1}(cl(int(cl(B))))) \subset f^{-1}(cl(B))$ for every subset B of Y; (10) δ -scl $(f^{-1}(cl(int(F)))) \subset f^{-1}(F)$ for every closed set F of Y; (11) δ -scl $(f^{-1}(cl(V))) \subset f^{-1}(cl(V))$ for every open set V of Y; (12) $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(s \cdot cl(V)))$ for every open set V of Y; (13) $f^{-1}(V) \subset cl(\delta - int(f^{-1}(s - cl(V))))$ for every open set V of Y; (14) $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(int(cl(V)))))$ for every open set V of Y; (15) $f^{-1}(V) \subset cl(\delta - int(f^{-1}(int(cl(V))))))$ for every open set V of Y; (16) δ -scl $(f^{-1}(V)) \subset f^{-1}(cl(V))$ for each $V \in \beta O(Y)$; (17) δ -scl $(f^{-1}(V)) \subset f^{-1}(cl(V))$ for each $V \in SO(Y)$; (18) $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(int(cl(V))))$ for each $V \in PO(Y)$; (19) δ -scl $(f^{-1}(V)) \subset f^{-1}(\alpha$ -cl(V)) for each $V \in \beta O(Y)$; (20) δ -scl $(f^{-1}(V)) \subset f^{-1}(p\text{-}cl(V))$ for each $V \in SO(Y)$; (21) $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(s - cl(V)))$ for each $V \in PO(Y)$.

Proof. $(1) \Rightarrow (2)$. Let $x \in X$ and $V \in \sigma$ containing f(x). We have $int(cl(V)) \in RO(Y)$. Since f is almost δ -semicontinuous, then there exists $U \in \delta SO(X, x)$ such that $f(U) \subset int(cl(V))$.

 $(2) \Rightarrow (1)$. Obvious.

 $(3) \Leftrightarrow (4)$. Obvious.

(1) \Rightarrow (4). Let $x \in X$ and $V \in RO(Y, f(x))$. Since f is almost δ -semicontinuous, then there exists $U_x \in \delta SO(X, x)$ such that $f(U_x) \subset V$. We have $U_x \subset f^{-1}(V)$. Thus, $f^{-1}(V) = \bigcup U_x \in \delta SO(X)$.

 $(4) \Rightarrow (1)$. Obvious.

 $(1) \Rightarrow (5)$. Let A be a subset of X. Since $\delta - cl(f(A))$ is δ -closed in Y, it is denoted by $\cap \{F_i : F_i \in RC(Y), i \in I\}$, where I is an index set. By $(1) \Leftrightarrow (3)$, we have

$$A \subset f^{-1}(\delta - cl(f(A))) = \cap \{f^{-1}(F_i) : i \in I\} \in \delta SC(X)$$

and hence δ -scl(A) $\subset f^{-1}(\delta$ -cl(f(A))). Therefore, we obtain $f(\delta$ -scl(A)) $\subset \delta$ -cl(f(A)).

 $(5) \Rightarrow (6)$. Let B be a subset of Y. We have $f(\delta - scl(f^{-1}(B))) \subset \delta - cl(f(f^{-1}(B))) \subset \delta - cl(B)$ and hence $\delta - scl(f^{-1}(B)) \subset f^{-1}(\delta - cl(B))$.

(6) \Rightarrow (7). Let F be any δ -closed set of (Y, σ) . We have δ -scl $(f^{-1}(F)) \subset f^{-1}(\delta - cl(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is δ -semiclosed in (X, τ) .

 $(7) \Rightarrow (8)$. Let V be any δ -open set of (Y, σ) . We have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \in \delta SC(X)$ and hence $f^{-1}(V) \in \delta SO(X)$.

(8) \Rightarrow (1). Let V be any regular open set of (Y, σ) . Since V is δ -open in (Y, σ) , $f^{-1}(V) \in \delta SO(X)$ and hence, by (1) \Leftrightarrow (4), f is almost δ -semicontinuous.

 $(1) \Rightarrow (9)$. Let *B* be any subset of *Y*. Assume that $x \in X \setminus f^{-1}(cl(B))$. Then $f(x) \in Y \setminus cl(B)$ and there exists an open set *V* containing f(x) such that $V \cap B = \emptyset$; hence $int(cl(V)) \cap cl(int(cl(B))) = \emptyset$. Since *f* is almost δ -semicontinuous, there exists $U \in \delta SO(X, x)$ such that $f(U) \subset int(cl(V))$. Therefore, we have $U \cap f^{-1}(cl(int(cl(B)))) = \emptyset$ and hence $x \in X \setminus \delta$ -scl $(f^{-1}(cl(int(cl(B)))))$. Thus we obtain

$$\delta\operatorname{-scl}(f^{-1}(cl(int(cl(B))))) \subset f^{-1}(cl(B)).$$

 $(9) \Rightarrow (10)$. Let F be any closed set of Y. Then we have

$$\delta\operatorname{-scl}(f^{-1}(cl(int(F))) = \delta\operatorname{-scl}(f^{-1}(cl(int(cl(F)))))) \subset f^{-1}(cl(F)) = f^{-1}(F).$$

 $(10) \Rightarrow (11)$. For any open set V of Y, cl(V) is regular closed in Y and we have

$$\delta\operatorname{-scl}(f^{-1}(cl(V)) = \delta\operatorname{-scl}(f^{-1}(cl(int(cl(V))))) \subset f^{-1}(cl(V)).$$

 $(11)\Rightarrow(12)$. Let V be any open set of Y. Then $Y \setminus cl(V)$ is open in Y and by using Lemma 8 we have

$$X \setminus \delta - sint(f^{-1}(s - cl(V)))$$

= $\delta - scl(f^{-1}(Y \setminus int(cl(V)))) \subset f^{-1}(cl(Y \setminus cl(V))) \subset X \setminus f^{-1}(V)$

Therefore, we obtain $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(s-cl(V)))$.

 $(12) \Rightarrow (13)$. Let V be any open set of Y. We obtain

$$f^{-1}(V) \subset \delta \operatorname{-sint}(f^{-1}(s \operatorname{-cl}(V))) \subset \operatorname{cl}(\delta \operatorname{-int}(f^{-1}(s \operatorname{-cl}(V)))).$$

 $(13) \Rightarrow (1)$. Let x be any point of X and V any open set of Y containing f(x). Then $x \in f^{-1}(int(cl(V))) \subset cl(\delta - int(f^{-1}(s - cl(int(cl(V)))))) = cl(\delta - int(f^{-1}(int(cl(V)))))$. Thus, $f^{-1}(int(cl(V))) \in \delta SO(X)$. Take $U = f^{-1}(int(cl(V)))$. We obtain $x \in U$ and $f(U) \subset int(cl(V))$. Therefore, f is almost δ -semicontinuous. $(12) \Leftrightarrow (14)$ and $(13) \Leftrightarrow (15)$. Obvious.

(1) \Rightarrow (16). Let V be any β -open set of Y. It follows from [2, Theorem 2.4] that cl(V) is regular closed in Y. Since f is almost δ -semicontinuous, by (1) \Leftrightarrow (3), $f^{-1}(cl(V))$ is δ -semiclosed in X. Therefore, we obtain δ -scl $(f^{-1}(V)) \subset f^{-1}(cl(V))$. (16) \Rightarrow (17). This is obvious since $SO(Y) \subset \beta O(Y)$.

 $(17) \Rightarrow (1)$. Let F be any regular closed set of Y. Then F is semi-open in Y and hence $\delta - scl(f^{-1}(F)) \subset f^{-1}(cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is δ -semiclosed. Therefore, by $(1) \Leftrightarrow (3)$, f is almost δ -semicontinuous.

(1)⇒(18). Let V be any preopen set of Y. Then $V \subset int(cl(V))$ and int(cl(V)) is regular open in Y. Since f is almost δ -semicontinuous, by (1)⇔(4), $f^{-1}(int(cl(V)))$ is δ -semiopen in X and hence we obtain that $f^{-1}(V) \subset f^{-1}(int(cl(V))) \subset \delta$ - $sint(f^{-1}(int(cl(V))))$.

 $(18) \Rightarrow (1)$. Let V be any regular open set of Y. Then V is preopen and $f^{-1}(V) \subset \delta$ -sint $(f^{-1}(int(cl(V)))) = \delta$ -sint $(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is δ -semiopen in X and hence, by $(1) \Leftrightarrow (4)$, f is almost δ -semicontinuous.

 $(16) \Leftrightarrow (19), (17) \Leftrightarrow (20), (18) \Leftrightarrow (21).$ Obvious.

3. Relationships

In this section, the relationships of almost δ -semicontinuity are investigated.

almost semi-continuous \Leftarrow almost $\delta\text{-semicontinuous} \Leftarrow \delta\text{-continuous} \Leftarrow \text{R-map}$

However, the converses are not true in general as shown by the following examples:

Example 12 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $f : X \to X$ be a function defined by f(a) = a, f(b) = d, f(c) = c, f(d) = d. Then, f is almost semi-continuous but not almost δ -semicontinuous.

Example 13 Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Let $f : X \to X$ be a function defined by f(a) = b, f(b) = a, f(c) = a. Then, f is almost δ -semicontinuous but not δ -continuous.

The other example for the last implication can be seen in [15].

Definition 14 Let (X, τ) be a topological space. The collection of all regular open sets forms a base for a topology τ_s . It is called the semiregularization. In case when $\tau = \tau_s$, the space (X, τ) is called semi-regular [22].

Theorem 15 Let (X, τ) be a semi-regular space. Then a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is almost semi-continuous if and only if it is almost δ -semicontinuous.

Definition 16 A function $f: X \to Y$ is said to be

(1) weakly δ -semicontinuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta SO(X, x)$ such that $f(U) \subset cl(V)$.

(2) δ -semicontinuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta SO(X, x)$ such that $f(U) \subset V$,

(3) δ -semiirresolute [4] if for each $x \in X$ and each δ -semiopen set V of Y containing f(x), there exists $U \in \delta SO(X, x)$ such that $f(U) \subset V$.

The following example shows that the composition of two δ -semicontinuous functions is not δ -semicontinuous.

Example 17 Let $X = Y = Z = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $f: X \to Y$ and $g: Y \to Z$ be functions defined by f(a) = b, f(b) = b, f(c) = c, f(d) = d and g(a) = a, g(b) = c, g(c) = a, g(d) = d, respectively. Then, f and g are δ -semicontinuous but $g \circ f$ is not δ -semicontinuous.

Theorem 18 Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the following hold:

(1) If f is almost δ -semicontinuous and g is an R-map, then the composition $g \circ f : X \to Z$ is almost δ -semicontinuous,

(2) If f is δ -semiirresolute and g is almost δ -semicontinuous, the composition $g \circ f : X \to Z$ is almost δ -semicontinuous.

Theorem 19 The following properties are equivalent for a function $f: X \to Y$ (1) f is δ -semicontinuous,

(2) $f^{-1}(F)$ is δ -semiclosed in X for every closed set F in Y.

Definition 20 A function $f : X \to Y$ is said to be faintly δ -semicontinuous if for each $x \in X$ and each θ -open set V of Y containing f(x), there exists $U \in \delta SO(X, x)$ such that $f(U) \subset V$.

Theorem 21 The following properties are equivalent for a function $f: X \to Y$ (1) f is faintly δ -semicontinuous,

(2) $f^{-1}(F)$ is δ -semiclosed in X for θ -closed set F in Y.

Theorem 22 Let $f : X \to Y$ be a function. Suppose that Y is regular. Then, the following properties are equivalent:

(1) f is δ -semicontinuous,

(2) $f^{-1}(\delta \text{-}cl(B))$ is $\delta \text{-}semiclosed$ in X for every subset B of Y,

- (3) f is almost δ -semicontinuous,
- (4) f is weakly δ -semicontinuous,
- (5) f is faintly δ -semicontinuous.

Proof. (1) \Rightarrow (2). Since δ -cl(B) is closed in Y for every subset B of Y, $f^{-1}(\delta$ -cl(B)) is δ -semiclosed in X.

 $(2) \Rightarrow (3)$. For any subset B of Y, $f^{-1}(\delta \cdot cl(B))$ is δ -semiclosed in X and hence we have $\delta \cdot scl(f^{-1}(B)) \subset \delta \cdot scl(f^{-1}(\delta \cdot cl(B))) = f^{-1}(\delta \cdot cl(B))$. It follows that f is almost δ -semicontinuous

 $(3) \Rightarrow (4)$. This is obvious.

 $(4) \Rightarrow (5)$. Let A be any subset of X. Let $x \in \delta - scl(A)$ and V be any open set of Y containing f(x). There exists $U \in \delta SO(X, x)$ such that $f(U) \subset cl(V)$. Since $x \in \delta - scl(A)$, we have $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U) \cap f(A) \subset cl(V) \cap f(A)$. Therefore, we have $f(x) \in \theta - cl(f(A))$ and hence $f(\delta - scl(A)) \subset \theta - cl(f(A))$.

Let B be any subset of Y. We have $f(\delta - scl(f^{-1}(B))) \subset \theta - cl(B)$ and $\delta - scl(f^{-1}(B)) \subset f^{-1}(\theta - cl(B))$.

Let F be any θ -closed set of Y. It follows that δ -scl $(f^{-1}(F)) \subset f^{-1}(\theta - cl(F)) = f^{-1}(F)$. Therefore $f^{-1}(F)$ is δ -semiclosed in X and hence f is faintly δ -semicontinuous.

(5)⇒(1). Let V be any open set of Y. Since Y is regular, V is θ -open in Y. By the faint δ -semicontinuity of f, $f^{-1}(V)$ is δ -semicontinuous. ■

Definition 23 A function $f : X \to Y$ is said to be faintly continuous [10] (resp. faintly semi-continuous [19], faintly precontinuous [19], faintly β -continuous [13, 19], faintly α -continuous [13]) if $f^{-1}(V)$ is open (resp. semi-open, preopen, β -open, α -open) in X for each θ -open set V of of Y.

Theorem 24 If (X, τ) is submaximal extremally disconnected semi-regular and (Y, σ) is regular, then the following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

- (1) f is faintly α -continuous,
- (2) f is faintly semi-continuous,
- (3) f is faintly precontinuous,
- (4) f is faintly γ -continuous,
- (5) f is faintly β -continuous,
- (6) f is faintly continuous,
- (7) f is faintly δ -semicontinuous,
- (8) f is δ -semicontinuous,
- (9) f is almost δ -semicontinuous,
- (10) f is weakly δ -semicontinuous.

Definition 25 A function $f : X \to Y$ is said to be almost δ -semiopen if $f(U) \subset int(cl(f(U)))$ for every δ -semiopen set U of X.

Theorem 26 If $f : X \to Y$ is an almost δ -semiopen and weakly δ -semicontinuous function, then f is almost δ -semicontinuous

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). Since f is weakly δ -semicontinuous, there exists $U \in \delta SO(X, x)$ such that $f(U) \subset cl(V)$. Since f is almost δ -semicontinuous. \blacksquare

Definition 27 A space X is said to be

(1) almost regular [21] if for any regular closed set F of X and any point $x \in X \setminus F$ there exist disjoint open sets U and V such that $x \in U$ and $F \subset V$,

(2) semi-regular if for any open set U of X and each point $x \in U$ there exists a regular open set V of X such that $x \in V \subset U$.

Theorem 28 If $f : X \to Y$ is a weakly δ -semicontinuous function and Y is almost regular, then f is almost δ -semicontinuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the almost regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset cl(G) \subset int(cl(V))$ [21, Theorem 2.2]. Since f is weakly δ -semicontinuous, there exists $U \in \delta SO(X, x)$ such that $f(U) \subset cl(G) \subset int(cl(V))$. Therefore, f is almost δ -semicontinuous.

Theorem 29 If $f : X \to Y$ is an almost δ -semicontinuous function and Y is semi-regular, then f is δ -semicontinuous.

Proof. Let $x \in X$ and let V be an open set of Y containing f(x). By the semiregularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost δ -semicontinuous, there exists $U \in \delta SO(X, x)$ such that $f(U) \subset int(cl(G)) = G \subset V$ and hence f is δ -semicontinuous.

4. Properties

Theorem 30 Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ the graph function defined by g(x) = (x, f(x)) for every $x \in X$. Then g is almost δ -semicontinuous if and only if f is almost δ -semicontinuous.

Proof. Necessity. Let $x \in X$ and $V \in RO(Y)$ containing f(x). Then, we have $g(x) = (x, f(x)) \in X \times V \in RO(X \times Y)$. Since g is almost δ -semicontinuous, there exists a δ -semiopen set U of X containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$ and hence f is almost δ -semicontinuous.

Sufficiency. Let $x \in X$ and W be a regular open set of $X \times Y$ containing g(x). There exist $U_1 \in RO(X)$ and $V \in RO(Y)$ such that $(x, f(x)) \in U_1 \times V \subset W$. Since f is almost δ -semicontinuous, there exists $U_2 \in \delta SO(X)$ such that $x \in U_2$ and $f(U_2) \subset V$. Put $U = U_1 \cap U_2$, then we obtain $x \in U \in \delta SO(X)$ and $g(U) \subset U_1 \times V \subset W$. This shows that g is almost δ -semicontinuous.

Let $\{X_i : i \in I\}$ and $\{Y_i : i \in I\}$ be any two families of spaces with the same index set I. For each $i \in I$, let $f_i : X_i \to Y_i$ be a function. The product space $\prod_{i \in I} X_i$ will be denoted by $\prod X_i$ and the product function $\prod f_i : \prod X_i \to \prod Y_i$ is simply denoted by $f : \prod X_i \to \prod Y_i$.

Theorem 31 If a function $f : X \to \prod Y_i$ is almost δ -semicontinuous, then $p_i \circ f : X \to Y_i$ is almost δ -semicontinuous for each $i \in I$, where p_i is the projection of $\prod Y_i$ onto Y_i .

Proof. Let V_i be any regular open set of Y_i . Since p_i is continuous open, it is an R-map and hence $p_i^{-1}(V_i) \in RO(\prod Y_i)$. By Theorem 11, $f^{-1}(p_i^{-1}(V_i)) = (p_i \circ f)^{-1}(V_i) \in \delta SO(X)$. This shows that $p_i \circ f$ is almost δ -semicontinuous for each $i \in I$.

Theorem 32 The product function $f : \prod X_i \to \prod Y_i$ is almost δ -semicontinuous if and only if $f_i : X_i \to Y_i$ is almost δ -semicontinuous for each $i \in I$.

Proof. Necessity. Let k be an arbitrarily fixed index and V_k any regular open set of Y_k . Then $\prod Y_j \times V_k$ is regular open in $\prod Y_i$, where $j \in I$ and $j \neq k$, and hence $f^{-1}(\prod Y_j \times V_k) = \prod Y_j \times f_k^{-1}(V_k)$ is δ -semiopen in $\prod X_i$. Thus, $f_k^{-1}(V_k)$ is δ -semiopen in X_k and hence f_k is almost δ -semicontinuous.

Sufficiency. Let $\{x_i\}$ be any point of $\prod X_i$ and W any regular open set of $\prod Y_i$ containing $f(\{x_i\})$. There exists a finite subset I_0 of I such that $V_k \in RO(Y_k)$ for each $k \in I_0$ and $\{f_i(x_i)\} \in \prod\{V_k : k \in I_0\} \times \prod\{Y_j : j \in I \setminus I_0\} \subset W$. For each $k \in I_0$, there exists $U_k \in \delta SO(X_k)$ containing x_k such that $f_k(U_k) \subset V_k$. Thus, $U = \prod\{U_k : k \in I_0\} \times \prod\{X_j : j \in I \setminus I_0\}$ is a δ -semicopen set of $\prod X_i$ containing $\{x_i\}$ and $f(U) \subset W$. This shows that f is almost δ -semicontinuous.

Lemma 33 A set S in X is δ -semiopen if and only if $S \cap G \in \delta SO(X)$ for every δ -open set G of X.

Lemma 34 Let A and X_0 be subsets of a space (X, τ) . If $A \in \delta SO(X)$ and $X_0 \in \delta O(X)$, then $A \cap X_0 \in \delta SO(X_0)$ [8].

Theorem 35 If $f : (X, \tau) \to (Y, \sigma)$ is almost δ -semicontinuous and A is δ -open in (X, τ) , then the restriction $f \mid_A : (A, \tau_A) \to (Y, \sigma)$ is almost δ -semicontinuous.

Proof. Let V be any regular open set of Y. By Theorem 11, we have $f^{-1}(V) \in \delta SO(X)$ and hence $(f \mid_A)^{-1}(V) = f^{-1}(V) \cap A \in \delta SO(A)$ by Lemma 34. Thus, it follows that $f \mid_A$ is almost δ -semicontinuous.

Lemma 36 Let A and X_0 be subsets of a space (X, τ) . If $A \in \delta SO(X_0)$ and $X_0 \in \delta O(X)$, then $A \in \delta SO(X)$ [8].

Theorem 37 Let $f: (X, \tau) \to (Y, \sigma)$ be a function and $\{U_i : i \in I\}$ a cover of X by δ -open sets of (X, τ) . If $f|_{U_i}: (U_i, \tau_{U_i}) \to (Y, \sigma)$ is almost δ -semicontinuous for each $i \in I$, then f is almost δ -semicontinuous.

Proof. Let V be any regular open set of (Y, σ) . Then, we have

$$f^{-1}(V) = X \cap f^{-1}(V) = \bigcup \{ U_i \cap f^{-1}(V) : i \in I \} = \bigcup \{ (f \mid_{U_i})^{-1}(V) : i \in I \}.$$

Since $f \mid_{U_i}$ is almost δ -semicontinuous, $(f \mid_{U_i})^{-1}(V) \in \delta SO(U_i)$ for each $i \in I$. By Lemma 36, for each $i \in I$, $(f \mid_{U_i})^{-1}(V)$ is δ -semiopen in X and hence $f^{-1}(V)$ is δ -semicontinuous.

Definition 38 The δ -semifrontier of a subset A of X, denoted by δ -sfr(A), is defined by δ -sfr $(A) = \delta$ -scl $(A) \cap \delta$ -scl $(X \setminus A) = \delta$ -scl $(A) \setminus \delta$ -sint(A) [8].

Theorem 39 The set of all points x of X at which a function $f : X \to Y$ is not almost δ -semicontinuous is identical with the union of the δ -semifrontiers of the inverse images of regular open sets containing f(x).

Erdal Ekici

Proof. Let x be a point of X at which f is not almost δ -semicontinuous Then, there exists a regular open set V of Y containing f(x) such that $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in \delta SO(X, x)$. Therefore, we have $x \in \delta$ -scl $(X \setminus f^{-1}(V)) = X \setminus \delta$ sint $(f^{-1}(V))$ and $x \in f^{-1}(V)$. Thus, we obtain $x \in \delta$ -sfr $(f^{-1}(V))$.

Conversely, suppose that f is almost δ -semicontinuous at $x \in X$ and let V be a regular open set containing f(x). Then there exists $U \in \delta SO(X, x)$ such that $U \subset f^{-1}(V)$; hence $x \in \delta$ -sint $(f^{-1}(V))$. Therefore, it follows that $x \in X \setminus \delta$ $sfr(f^{-1}(V))$. This completes the proof.

Theorem 40 If $f : X \to Y$ is almost δ -semicontinuous, $g : X \to Y$ is δ -continuous and Y is Hausdorff, then the set $\{x \in X : f(x) = g(x)\}$ is δ -semiclosed in X.

Proof. Let $A = \{x \in X : f(x) = g(x)\}$ and $x \in X \setminus A$. Then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open sets V and W of Y such that $f(x) \in V$, $g(x) \in W$ and $V \cap W = \emptyset$; hence $int(cl(V)) \cap int(cl(W)) = \emptyset$. Since f is almost δ -semicontinuous, there exists $G \in \delta SO(X, x)$ such that $f(G) \subset int(cl(V))$. Since g is δ -continuous, there exists an δ -open set H of X containing x such that $g(H) \subset int(cl(W))$. Now, put $U = G \cap H$, then $U \in \delta SO(X, x)$ and $f(U) \cap g(U) \subset$ $int(cl(V)) \cap int(cl(W)) = \emptyset$. Therefore, we obtain $U \cap A = \emptyset$ and hence $x \in X \setminus \delta$ scl(A). This shows that A is δ -semiclosed in X.

Theorem 41 If $f_1 : X_1 \to Y$ is weakly δ -semicontinuous, $f_2 : X_2 \to Y$ is almost δ -semicontinuous and Y is Hausdorff, then the set $\{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = f(x_2)\}$ is δ -semiclosed in $X_1 \times X_2$.

Proof. Let $A = \{(x_1, x_2) \in X_1 \times X_2 : f(x_1) = f(x_2)\}$ and $(x_1, x_2) \in (X_1 \times X_2) \setminus A$. Then $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$; hence $cl(V_1) \cap int(cl(V_2)) = \emptyset$. Since f_1 (resp, f_2) is weakly δ -semicontinuous (resp. almost δ -semicontinuous), there exists $U_1 \in \delta SO(X_1, x_1)$ such that $f_1(U_1) \subset cl(V_1)$ (resp. $U_2 \in \delta SO(X_2, x_2)$ such that $f_2(U_2) \subset int(cl(V_2))$). Therefore, we obtain $(x_1, x_2) \in U_1 \times U_2 \subset (X_1 \times X_2) \setminus A$ and $U_1 \times U_2 \in \delta SO(X_1 \times X_2)$. This shows that A is δ -semiclosed in $X_1 \times X_2$.

Definition 42 A space X is said to be δ -semi- T_2 [4] if for any distinct points x, y of X, there exist disjoint δ -semiopen sets U, V of X such that $x \in U$ and $y \in V$.

Theorem 43 If for each pair of distinct points x_1 and x_2 in a space X, there exists a function f of X into a Hausdorff space Y such that

(1) $f(x_1) \neq f(x_2)$,

(2) f is weakly δ -semicontinuous at x_1 and

(3) almost δ -semicontinuous at x_2 ,

then X is δ -semi-T₂.

Proof. Since Y is Hausdorff, there exist open sets V_1 and V_2 of Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$; hence $cl(V_1) \cap int(cl(V_2)) = \emptyset$. Since f

82

is weakly δ -semicontinuous at x_1 , there exists $U_1 \in \delta SO(X, x_1)$ such that $f(U_1) \subset cl(V_1)$. Since f is almost δ -semicontinuous at x_2 , there exists $U_2 \in \delta SO(X, x_2)$ such that $f(U_2) \subset int(cl(V_2))$. Therefore, we obtain $U_1 \cap U_2 = \emptyset$. This shows that X is δ -semi-T₂.

Definition 44 A space X is said to be δ -semi-compact if every δ -semiopen cover of X has a finite subcover.

Let $f: X \to Y$ be a function. The subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 45 A function $f : X \to Y$ has a (δ_s, r) -graph if for each $(x, y) \in X \times Y \setminus G(f)$, there exist $U \in \delta SO(X, x)$ and a regular open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 46 A function $f : X \to Y$ has a (δ_s, r) -graph if and only if for each $(x, y) \in X \times Y$ such that $y \neq f(x)$, there exist a δ -semiopen set U and a regular open set V containing x and y, respectively, such that $f(U) \cap V = \emptyset$.

Theorem 47 If $f : X \to Y$ is an almost δ -semicontinuous function and Y is Hausdorff, then f has a (δ_s, r) -graph.

Proof. Let $(x, y) \in X \times Y$ such that $y \neq f(x)$. Then there exist open sets V and W such that $y \in V$, $f(x) \in W$ and $V \cap W = \emptyset$; hence $int(cl(V)) \cap int(cl(W)) = \emptyset$. Since f is almost δ -semicontinuous, there exists $U \in \delta SO(X, x)$ such that $f(U) \subset int(cl(W))$. This implies that $f(U) \cap int(cl(V)) = \emptyset$. Therefore, f has a (δ_s, r) -graph.

Theorem 48 If $f : (X, \tau) \to (Y, \sigma)$ has a (δ_s, r) -graph, then f(K) is δ -closed in (Y, σ) for each subset K which is δ -semi-compact relative to (X, τ) .

Proof. Suppose that $y \notin f(K)$. Then $(x, y) \notin G(f)$ for each $x \in K$. Since G(f) is (δ_s, r) -graph, there exist $U_x \in \delta SO(X)$ containing x and a regular open set V_x of Y containing y such that $f(U_x) \cap V_x = \emptyset$. The family $\{U_x : x \in K\}$ is a cover of K by δ -semiopen sets. Since K is δ -semi-compact relative to (X, τ) , there exists a finite subset K_0 of K such that $K \subset \cup \{U_x : x \in K_0\}$. Set $V = \cap \{V_x : x \in K_0\}$. Then V is a regular open set in Y containing y. Therefore, we have

$$f(K) \cap V \subset [\bigcup_{x \in K_0} f(U_x)] \cap V \subset \bigcup_{x \in K_0} [f(U_x) \cap V] = \varnothing.$$

It follows that $y \notin \delta$ -cl(f(K)). Therefore, f(K) is δ -closed in (Y, σ) .

Corollary 49 If $f : (X, \tau) \to (Y, \sigma)$ is an almost δ -semicontinuous function and Y is Hausdorff, then f(K) is δ -closed in (Y, σ) for each subset K which is δ -semicompact relative to (X, τ) .

Erdal Ekici

References

- 1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, $\beta\text{-open sets}$ and $\beta\text{-continuous}$ mappings. Bull Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- 2. D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- 3. N. Bourbaki, General Topology, Part I, addison Wesley, reading, Mass., 1996.
- 4. M. Caldas, D. N. Georgiou, S. Jafari and T. Noiri, More on $\delta\text{-semiopen sets},$ Note di Matematica, 22 (2) (2003/2004), 113-126.
- 5. D. Carnahan, Some Properties Related to Compactness in Topological Spaces, Ph. D. Thesis (Univ. Arkansas, 1973).
- 6. S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci., 22 (1971) 99-112.
- 7. A. A. El-Atik, A study of some types of mappings on topological spaces, MSc Thesis, Tanta Univ., Egypt, 1997.
- B. Y. Lee, M. J. Son and J. H. Park, δ-semiopen sets and its applications, Far East J. Math. Sci., 3 (5) (2001), 745-759.
- N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- 10. P. E. Long and L. L. Herrington, The T_{θ} -topology and faintly continuous functions, Kyungpook Math. J., 22 (1982), 7-14.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- B. M. Munshi and D. S. Bassan, Almost semi-continuous mappings, Math. Student, 49 (1981). 239-248.
- A. A. Nasef, Another weak forms of faint continuity, Chaos, Solitons and Fractals, 12 (2001), 2219-2225.
- 14. O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 96J-970.
- 15. T. Noiri, On δ -continuous functions, J. Korean Math. Soc., 16 (1980), 161-166.
- T. Noiri, Characterizations of extremally disconnected spaces, Indian J. Pure Appl. Math., 19 (1988), 325-329.
- 17. T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20 (1989), 571-576.
- T. Noiri, Almost quasi-continuous functions, Bull. Inst. Math. Acad. Sinica, 18 (1990), 321-332.
- T. Noiri and V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie, 34 (82) (1990), 270-363.
- 20. J. H. Park, B. Y. Lee and M. J. Son, On $\delta\text{-semiopen sets}$ in topological space, J. Indian Acad. Math., 19 (1) (1997), 59-67.
- 21. M. K. Signal and S. P. Arya, On almost-regular spaces, Glasnik Mat. III, 4(24) (1969), 89-99.
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937) 375-381.
- 23. N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.

Erdal Ekici Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale - TURKEY E-mail: eekici@comu.edu.tr