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On δ-Semiopen Sets And A Generalization Of Functions

Erdal Ekici

abstract: In this paper, we introduce and investigate a weaker form of R-maps
and δ-continuous functions which is called almost δ-semicontinuity. We obtain its
characterizations, its basic properties and their relationships with other types of
functions between topological spaces.
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1. Introduction and preliminaries

By using various forms of open sets many authors introduced and studied var-
ious types of continuity. In 1973, Carnahan introduced the notion of R-maps. In
1980, Noiri studied the notion of δ-continuous functions. The aim of this paper is
to introduce the notion of almost δ-semicontinuous functions which generalize R-
maps and δ-continuous functions. Various characterizations and properties of such
functions are obtained. Throughout the present paper, spaces mean topological
spaces and f : (X, τ) → (Y, σ) (or simply f : X → Y ) denotes a function f of a
space (X, τ) into a space (Y, σ). Let S be a subset of a space X. The closure and
the interior of S are denoted by cl(S) and int(S), respectively.

Definition 1 A subset S of a space X is said to be
(1) regular open [22] if S = int(cl(S)),
(2) δ-open [23] if for each x ∈ S, there exists a regular open set W such that

x ∈ W ⊂ S,
(3) α-open [14] if S ⊂ int(cl(int(S))),
(4) semi-open [9] if S ⊂ cl(int(S)),
(5) preopen [11] if S ⊂ int(cl(S)),
(6) γ-open [7] if S ⊂ int(cl(S)) ∪ cl(int(S)),
(7) β-open [1] or semi-preopen [2] if S ⊂ cl(int(cl(S))).
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The complement of a regular open set is said to be regular closed [22].
The complement of a semiopen set is said to be semiclosed [6]. The intersection

of all semiclosed sets containing a subset A of X is called the semi-closure [6] of A
and is denoted by s-cl(A). The union of all semiopen sets contained in a subset A
of X is called the semi-interior of A and is denoted by s-int(A).

A point x ∈ X is called a δ-cluster (resp. θ-cluster) point of A [23] if A ∩
int(cl(U)) 6= ∅ (resp. A∩ cl(U) 6= ∅) for each open set U containing x. The set of
all δ-cluster (resp. θ-cluster) points of A is called the δ-closure (resp. θ-closure) of
A and is denoted by δ-cl(A) (resp. θ-cl(A)). If δ-cl(A) = A (resp. θ-cl(A) = A),
then A is said to be δ-closed (resp. θ-closed). The complement of a δ-closed (resp.
θ-closed) set is said to be δ-open (resp. θ-open).

A subset S of a topological space X is said to be δ-semiopen [20] iff S ⊂ cl(δ-
int(S)). The complement of a δ-semiopen set is called a δ-semiclosed set [20].
The union (resp. intersection) of all δ-semiopen (resp. δ-semiclosed) sets, each
contained in (resp. containing) a set S in a topological space X is called the
δ-semiinterior (resp. δ-semiclosure) of S and it is denoted by δ-sint(S) (resp. δ-
scl(S)) [20].

The family of all δ-semiopen (resp.regular open, preopen, β-open. α-open,
semi-open, δ-open) sets of a space X will be denoted by δSO(X) (resp. RO(X),
PO(X), βO(X), αO(X), SO(X), δO(X)). The family of all δ-semiclosed (resp.
regular closed, δ-closed) sets in a space X is denoted by δSC(X) (resp. RC(X),
δC(X)). The family of all δ-semiopen (resp.regular open, δ-open) sets containing
a point x ∈ X will be denoted by δSO(X, x) (resp. RO(X,x), δO(X, x)).

Lemma 2 Let (X, τ) be a topological space. Intersection of arbitrary of δ-closed
sets in X is δ-closed.

Lemma 3 Let A be a subset of a topological space (X, τ). Then δ-cl(A) = ∩{F ∈
δC(X) : A ⊂ F}.
Corollary 4 δ-cl(A) is δ-closed for a subset A in a topological space (X, τ).

Proof. It is obvious from the above lemmas.

Definition 5 A function f : (X, τ) → (Y, σ) is said to be
(1) R-map [5] if f−1(V ) ∈ RO(X) for every V ∈ RO(Y ),
(2) almost semi-continuous [12] if f−1(V ) ∈ SO(X) for every V ∈ RO(Y ),
(3) δ-continuous [15] if f−1(V ) is δ-open in X for every V ∈ RO(Y ).

Lemma 6 (Park et. al. [20]) Let A be a subset of a space X. Then
(1) δ-scl(X\A) = X\δ-sint(A),
(2) x ∈ δ-scl(A) if and only if A ∩ U 6= ∅ for each U ∈ δSO(X,x),
(3) A is δ-semiclosed in X if and only if A = δ-scl(A),
(4) δ-scl(A) is δ-semiclosed in X.

Lemma 7 (Noiri [17]) For a subset of a space Y , the following hold:
(1) α-cl(V ) = cl(V ) for every V ∈ βO(Y ).
(2) p-cl(F ) = cl(V ) for every V ∈ SO(Y ).
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Lemma 8 (Noiri [18]) s-cl(V ) = int(cl(V )) for every preopen set V of a space X.

Definition 9 A space (X, τ) is said to be
(1) submaximal [3] if every dense subset of X is open in X,
(2) extremally disconnected [3, 16] if cl(U) ∈ τ for every U ∈ τ .

2. Almost δ-semicontinuous functions

In this section, we obtain several characterizations of almost δ-semicontinuous
functions.

Definition 10 A function f : (X, τ) → (Y, σ) is said to be almost δ-semicontinuous
if for each x ∈ X and each V ∈ RO(Y ) containing f(x), there exists U ∈ δSO(X)
containing x such that f(U) ⊂ V .

Theorem 11 For a function f : (X, τ) → (Y, σ), the following are equivalent:
(1) f is almost δ-semicontinuous;
(2) for each x ∈ X and each V ∈ σ containing f(x), there exists U ∈ δSO(X)

containing x such that f(U) ⊂ int(cl(V ));
(3) f−1(F ) ∈ δSC(X) for every F ∈ RC(Y );
(4) f−1(V ) ∈ δSO(X) for every V ∈ RO(Y ).
(5) f(δ-scl(A)) ⊂ δ-cl(f(A)) for every subset A of X ;
(6) δ-scl(f−1(B)) ⊂ f−1(δ-cl(B)) for every subset B of Y ;
(7) f−1(F ) ∈ δSC(X) for every δ-closed set F of (Y, σ);
(8) f−1(V ) ∈ δSO(X) for every δ-open set V of (Y, σ);
(9) δ-scl(f−1(cl(int(cl(B))))) ⊂ f−1(cl(B)) for every subset B of Y ;
(10) δ-scl(f−1(cl(int(F )))) ⊂ f−1(F ) for every closed set F of Y ;
(11) δ-scl(f−1(cl(V ))) ⊂ f−1(cl(V )) for every open set V of Y ;
(12) f−1(V ) ⊂ δ-sint(f−1(s-cl(V ))) for every open set V of Y ;
(13) f−1(V ) ⊂ cl(δ-int(f−1(s-cl(V )))) for every open set V of Y ;
(14) f−1(V ) ⊂ δ-sint(f−1(int(cl(V ))))) for every open set V of Y ;
(15) f−1(V ) ⊂ cl(δ-int(f−1(int(cl(V )))))) for every open set V of Y ;
(16) δ-scl(f−1(V )) ⊂ f−1(cl(V )) for each V ∈ βO(Y );
(17) δ-scl(f−1(V )) ⊂ f−1(cl(V )) for each V ∈ SO(Y );
(18) f−1(V ) ⊂ δ-sint(f−1(int(cl(V )))) for each V ∈ PO(Y );
(19) δ-scl(f−1(V )) ⊂ f−1(α-cl(V )) for each V ∈ βO(Y );
(20) δ-scl(f−1(V )) ⊂ f−1(p-cl(V )) for each V ∈ SO(Y );
(21) f−1(V ) ⊂ δ-sint(f−1(s-cl(V ))) for each V ∈ PO(Y ).

Proof. (1)⇒(2). Let x ∈ X and V ∈ σ containing f(x). We have int(cl(V )) ∈
RO(Y ). Since f is almost δ-semicontinuous, then there exists U ∈ δSO(X, x) such
that f(U) ⊂ int(cl(V )).

(2)⇒(1). Obvious.
(3)⇔(4). Obvious.
(1)⇒(4). Let x ∈ X and V ∈ RO(Y, f(x)). Since f is almost δ-semicontinuous,

then there exists Ux ∈ δSO(X, x) such that f(Ux) ⊂ V . We have Ux ⊂ f−1(V ).
Thus, f−1(V ) = ∪Ux ∈ δSO(X).
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(4)⇒(1). Obvious.
(1)⇒(5). Let A be a subset of X. Since δ-cl(f(A)) is δ-closed in Y , it is denoted

by ∩{Fi : Fi ∈ RC(Y ), i ∈ I}, where I is an index set. By (1)⇔(3), we have

A ⊂ f−1(δ − cl(f(A))) = ∩{f−1(Fi) : i ∈ I} ∈ δSC(X)

and hence δ-scl(A) ⊂ f−1(δ-cl(f(A))). Therefore, we obtain f(δ-scl(A)) ⊂ δ-
cl(f(A)).

(5)⇒(6). Let B be a subset of Y . We have f(δ-scl(f−1(B))) ⊂ δ-cl(f(f−1(B))) ⊂
δ-cl(B) and hence δ-scl(f−1(B)) ⊂ f−1(δ-cl(B)).

(6)⇒(7). Let F be any δ-closed set of (Y, σ). We have δ-scl(f−1(F )) ⊂ f−1(δ-
cl(F )) = f−1(F ) and hence f−1(F ) is δ-semiclosed in (X, τ).

(7)⇒(8). Let V be any δ-open set of (Y, σ). We have f−1(Y \V ) = X\f−1(V ) ∈
δSC(X) and hence f−1(V ) ∈ δSO(X).

(8)⇒(1). Let V be any regular open set of (Y, σ). Since V is δ-open in (Y, σ),
f−1(V ) ∈ δSO(X) and hence, by (1)⇔(4), f is almost δ-semicontinuous.

(1)⇒(9). Let B be any subset of Y . Assume that x ∈ X\f−1(cl(B)). Then
f(x) ∈ Y \cl(B) and there exists an open set V containing f(x) such that V ∩B =
∅; hence int(cl(V )) ∩ cl(int(cl(B))) = ∅. Since f is almost δ-semicontinuous,
there exists U ∈ δSO(X,x) such that f(U) ⊂ int(cl(V )). Therefore, we have
U ∩f−1(cl(int(cl(B)))) = ∅ and hence x ∈ X\δ-scl(f−1(cl(int(cl(B))))). Thus we
obtain

δ-scl(f−1(cl(int(cl(B))))) ⊂ f−1(cl(B)).

(9)⇒(10). Let F be any closed set of Y . Then we have

δ-scl(f−1(cl(int(F ))) = δ-scl(f−1(cl(int(cl(F )))))
⊂ f−1(cl(F )) = f−1(F ).

(10)⇒(11). For any open set V of Y , cl(V ) is regular closed in Y and we have

δ-scl(f−1(cl(V )) = δ-scl(f−1(cl(int(cl(V ))))) ⊂ f−1(cl(V )).

(11)⇒(12). Let V be any open set of Y . Then Y \cl(V ) is open in Y and by
using Lemma 8 we have

X\δ-sint(f−1(s-cl(V )))
= δ-scl(f−1(Y \int(cl(V )))) ⊂ f−1(cl(Y \cl(V ))) ⊂ X\f−1(V ).

Therefore, we obtain f−1(V ) ⊂ δ-sint(f−1(s-cl(V ))).
(12)⇒(13). Let V be any open set of Y . We obtain

f−1(V ) ⊂ δ-sint(f−1(s-cl(V ))) ⊂ cl(δ-int(f−1(s-cl(V )))).

(13)⇒(1). Let x be any point of X and V any open set of Y containing f(x).
Then x ∈ f−1(int(cl(V ))) ⊂ cl(δ-int(f−1(s-cl(int(cl(V )))))) = cl(δ-int(f−1(int(cl(V ))))).
Thus, f−1(int(cl(V ))) ∈ δSO(X). Take U = f−1(int(cl(V ))). We obtain x ∈ U
and f(U) ⊂ int(cl(V )). Therefore, f is almost δ-semicontinuous.
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(12)⇔(14) and (13)⇔(15). Obvious.
(1)⇒(16). Let V be any β-open set of Y . It follows from [2, Theorem 2.4]

that cl(V ) is regular closed in Y . Since f is almost δ-semicontinuous, by (1)⇔(3),
f−1(cl(V )) is δ-semiclosed in X. Therefore, we obtain δ-scl(f−1(V )) ⊂ f−1(cl(V )).

(16)⇒(17). This is obvious since SO(Y ) ⊂ βO(Y ).
(17)⇒(1). Let F be any regular closed set of Y . Then F is semi-open in Y

and hence δ-scl(f−1(F )) ⊂ f−1(cl(F )) = f−1(F ). This shows that f−1(F ) is
δ-semiclosed. Therefore, by (1)⇔(3), f is almost δ-semicontinuous.

(1)⇒(18). Let V be any preopen set of Y . Then V ⊂ int(cl(V )) and int(cl(V ))
is regular open in Y . Since f is almost δ-semicontinuous, by (1)⇔(4), f−1(int(cl(V )))
is δ-semiopen in X and hence we obtain that f−1(V ) ⊂ f−1(int(cl(V ))) ⊂ δ-
sint(f−1(int(cl(V )))).

(18)⇒(1). Let V be any regular open set of Y . Then V is preopen and f−1(V ) ⊂
δ-sint(f−1(int(cl(V )))) = δ-sint(f−1(V )). Therefore, f−1(V ) is δ-semiopen in X
and hence, by (1)⇔(4), f is almost δ-semicontinuous.

(16)⇔(19), (17)⇔(20), (18)⇔(21). Obvious.

3. Relationships

In this section, the relationships of almost δ-semicontinuity are investigated.

almost semi-continuous ⇐ almost δ-semicontinuous ⇐ δ-continuous ⇐ R-map

However, the converses are not true in general as shown by the following exam-
ples:

Example 12 Let X = {a, b, c, d} and τ = {X,∅, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}.
Let f : X → X be a function defined by f(a) = a, f(b) = d, f(c) = c, f(d) = d.
Then, f is almost semi-continuous but not almost δ-semicontinuous.

Example 13 Let X = {a, b, c} and τ = {X,∅, {a}, {b}, {a, b}}. Let f : X → X
be a function defined by f(a) = b, f(b) = a, f(c) = a. Then, f is almost δ-
semicontinuous but not δ-continuous.

The other example for the last implication can be seen in [15].

Definition 14 Let (X, τ) be a topological space. The collection of all regular open
sets forms a base for a topology τs. It is called the semiregularization. In case
when τ = τs, the space (X, τ) is called semi-regular [22].

Theorem 15 Let (X, τ) be a semi-regular space. Then a function f : (X, τ) →
(Y, σ) is almost semi-continuous if and only if it is almost δ-semicontinuous.

Definition 16 A function f : X → Y is said to be
(1) weakly δ-semicontinuous if for each x ∈ X and each open set V of Y

containing f(x), there exists U ∈ δSO(X,x) such that f(U) ⊂ cl(V ).
(2) δ-semicontinuous if for each x ∈ X and each open set V of Y containing

f(x), there exists U ∈ δSO(X, x) such that f(U) ⊂ V ,
(3) δ-semiirresolute [4] if for each x ∈ X and each δ-semiopen set V of Y

containing f(x), there exists U ∈ δSO(X,x) such that f(U) ⊂ V .
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The following example shows that the composition of two δ-semicontinuous
functions is not δ-semicontinuous.

Example 17 Let X = Y = Z = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}}. Let
f : X → Y and g : Y → Z be functions defined by f(a) = b, f(b) = b, f(c) = c,
f(d) = d and g(a) = a, g(b) = c, g(c) = a, g(d) = d, respectively. Then, f and g
are δ-semicontinuous but g ◦ f is not δ-semicontinuous.

Theorem 18 Let f : X → Y and g : Y → Z be functions. Then the following
hold:

(1) If f is almost δ-semicontinuous and g is an R-map, then the composition
g ◦ f : X → Z is almost δ-semicontinuous,

(2) If f is δ-semiirresolute and g is almost δ-semicontinuous, the composition
g ◦ f : X → Z is almost δ-semicontinuous.

Theorem 19 The following properties are equivalent for a function f : X → Y
(1) f is δ-semicontinuous,
(2) f−1(F ) is δ-semiclosed in X for every closed set F in Y .

Definition 20 A function f : X → Y is said to be faintly δ-semicontinuous if for
each x ∈ X and each θ-open set V of Y containing f(x), there exists U ∈ δSO(X, x)
such that f(U) ⊂ V .

Theorem 21 The following properties are equivalent for a function f : X → Y
(1) f is faintly δ-semicontinuous,
(2) f−1(F ) is δ-semiclosed in X for θ-closed set F in Y .

Theorem 22 Let f : X → Y be a function. Suppose that Y is regular. Then, the
following properties are equivalent:

(1) f is δ-semicontinuous,
(2) f−1(δ-cl(B)) is δ-semiclosed in X for every subset B of Y ,
(3) f is almost δ-semicontinuous,
(4) f is weakly δ-semicontinuous,
(5) f is faintly δ-semicontinuous.

Proof. (1)⇒(2). Since δ-cl(B) is closed in Y for every subset B of Y , f−1(δ-
cl(B)) is δ-semiclosed in X.

(2)⇒(3). For any subset B of Y , f−1(δ-cl(B)) is δ-semiclosed in X and hence
we have δ-scl(f−1(B)) ⊂ δ-scl(f−1(δ-cl(B))) = f−1(δ-cl(B)). It follows that f is
almost δ-semicontinuous

(3)⇒(4). This is obvious.
(4)⇒(5). Let A be any subset of X. Let x ∈ δ-scl(A) and V be any open set

of Y containing f(x). There exists U ∈ δSO(X,x) such that f(U) ⊂ cl(V ). Since
x ∈ δ-scl(A), we have U ∩ A 6= ∅ and hence ∅ 6= f(U) ∩ f(A) ⊂ cl(V ) ∩ f(A).
Therefore, we have f(x) ∈ θ-cl(f(A)) and hence f(δ-scl(A)) ⊂ θ-cl(f(A)).

Let B be any subset of Y . We have f(δ-scl(f−1(B))) ⊂ θ-cl(B) and δ-
scl(f−1(B)) ⊂ f−1(θ-cl(B)).
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Let F be any θ-closed set of Y . It follows that δ-scl(f−1(F )) ⊂ f−1(θ-
cl(F )) = f−1(F ). Therefore f−1(F ) is δ-semiclosed in X and hence f is faintly
δ-semicontinuous.

(5)⇒(1). Let V be any open set of Y . Since Y is regular, V is θ-open in Y .
By the faint δ-semicontinuity of f , f−1(V ) is δ-semiopen in X. Therefore, f is
δ-semicontinuous.

Definition 23 A function f : X → Y is said to be faintly continuous [10] (resp.
faintly semi-continuous [19], faintly precontinuous [19], faintly β-continuous [13,
19], faintly α-continuous [13]) if f−1(V ) is open (resp. semi-open, preopen, β-open,
α-open) in X for each θ-open set V of of Y .

Theorem 24 If (X, τ) is submaximal extremally disconnected semi-regular and
(Y, σ) is regular, then the following are equivalent for a function f : (X, τ) → (Y, σ):

(1) f is faintly α-continuous,
(2) f is faintly semi-continuous,
(3) f is faintly precontinuous,
(4) f is faintly γ-continuous,
(5) f is faintly β-continuous,
(6) f is faintly continuous,
(7) f is faintly δ-semicontinuous,
(8) f is δ-semicontinuous,
(9) f is almost δ-semicontinuous,
(10) f is weakly δ-semicontinuous.

Definition 25 A function f : X → Y is said to be almost δ-semiopen if f(U) ⊂
int(cl(f(U))) for every δ-semiopen set U of X.

Theorem 26 If f : X → Y is an almost δ-semiopen and weakly δ-semicontinuous
function, then f is almost δ-semicontinuous

Proof. Let x ∈ X and let V be an open set of Y containing f(x). Since f
is weakly δ-semicontinuous, there exists U ∈ δSO(X,x) such that f(U) ⊂ cl(V ).
Since f is almost δ-semiopen, f(U) ⊂ int(cl(f(U))) ⊂ int(cl(V )) and hence f is
almost δ-semicontinuous.

Definition 27 A space X is said to be
(1) almost regular [21] if for any regular closed set F of X and any point

x ∈ X\F there exist disjoint open sets U and V such that x ∈ U and F ⊂ V ,
(2) semi-regular if for any open set U of X and each point x ∈ U there exists

a regular open set V of X such that x ∈ V ⊂ U .

Theorem 28 If f : X → Y is a weakly δ-semicontinuous function and Y is almost
regular, then f is almost δ-semicontinuous.
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Proof. Let x ∈ X and let V be any open set of Y containing f(x). By the
almost regularity of Y , there exists a regular open set G of Y such that f(x) ∈ G ⊂
cl(G) ⊂ int(cl(V )) [21, Theorem 2.2]. Since f is weakly δ-semicontinuous, there
exists U ∈ δSO(X, x) such that f(U) ⊂ cl(G) ⊂ int(cl(V )). Therefore, f is almost
δ-semicontinuous.

Theorem 29 If f : X → Y is an almost δ-semicontinuous function and Y is
semi-regular, then f is δ-semicontinuous.

Proof. Let x ∈ X and let V be an open set of Y containing f(x). By the semi-
regularity of Y , there exists a regular open set G of Y such that f(x) ∈ G ⊂ V .
Since f is almost δ-semicontinuous, there exists U ∈ δSO(X,x) such that f(U) ⊂
int(cl(G)) = G ⊂ V and hence f is δ-semicontinuous.

4. Properties

Theorem 30 Let f : (X, τ) → (Y, σ) be a function and g : (X, τ) → (X×Y, τ×σ)
the graph function defined by g(x) = (x, f(x)) for every x ∈ X. Then g is almost
δ-semicontinuous if and only if f is almost δ-semicontinuous.

Proof. Necessity. Let x ∈ X and V ∈ RO(Y ) containing f(x). Then, we have
g(x) = (x, f(x)) ∈ X ×V ∈ RO(X ×Y ). Since g is almost δ-semicontinuous, there
exists a δ-semiopen set U of X containing x such that g(U) ⊂ X × V . Therefore,
we obtain f(U) ⊂ V and hence f is almost δ-semicontinuous.

Sufficiency. Let x ∈ X and W be a regular open set of X × Y containing g(x).
There exist U1 ∈ RO(X) and V ∈ RO(Y ) such that (x, f(x)) ∈ U1 × V ⊂ W .
Since f is almost δ-semicontinuous, there exists U2 ∈ δSO(X) such that x ∈ U2

and f(U2) ⊂ V . Put U = U1 ∩ U2, then we obtain x ∈ U ∈ δSO(X) and g(U) ⊂
U1 × V ⊂ W . This shows that g is almost δ-semicontinuous.

Let {Xi : i ∈ I} and {Yi : i ∈ I} be any two families of spaces with the same
index set I. For each i ∈ I, let fi : Xi → Yi be a function. The product space∏
i∈I

Xi will be denoted by
∏

Xi and the product function
∏

fi :
∏

Xi →
∏

Yi is

simply denoted by f :
∏

Xi →
∏

Yi.

Theorem 31 If a function f : X → ∏
Yi is almost δ-semicontinuous, then pi ◦ f :

X → Yi is almost δ-semicontinuous for each i ∈ I, where pi is the projection of∏
Yi onto Yi.

Proof. Let Vi be any regular open set of Yi. Since pi is continuous open, it
is an R-map and hence p−1

i (Vi) ∈ RO(
∏

Yi). By Theorem 11, f−1(p−1
i (Vi)) =

(pi ◦ f)−1(Vi) ∈ δSO(X). This shows that pi ◦ f is almost δ-semicontinuous for
each i ∈ I.

Theorem 32 The product function f :
∏

Xi →
∏

Yi is almost δ-semicontinuous
if and only if fi : Xi → Yi is almost δ-semicontinuous for each i ∈ I.
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Proof. Necessity. Let k be an arbitrarily fixed index and Vk any regular open
set of Yk. Then

∏
Yj × Vk is regular open in

∏
Yi, where j ∈ I and j 6= k, and

hence f−1(
∏

Yj × Vk) =
∏

Yj × f−1
k (Vk) is δ-semiopen in

∏
Xi. Thus, f−1

k (Vk) is
δ-semiopen in Xk and hence fk is almost δ-semicontinuous.

Sufficiency. Let {xi} be any point of
∏

Xi and W any regular open set of
∏

Yi

containing f({xi}). There exists a finite subset I0 of I such that Vk ∈ RO(Yk) for
each k ∈ I0 and {fi(xi)} ∈

∏{Vk : k ∈ I0} ×
∏{Yj : j ∈ I\I0} ⊂ W . For each

k ∈ I0, there exists Uk ∈ δSO(Xk) containing xk such that fk(Uk) ⊂ Vk. Thus,
U =

∏{Uk : k ∈ I0} ×
∏{Xj : j ∈ I\I0} is a δ-semiopen set of

∏
Xi containing

{xi} and f(U) ⊂ W . This shows that f is almost δ-semicontinuous.

Lemma 33 A set S in X is δ-semiopen if and only if S ∩G ∈ δSO(X) for every
δ-open set G of X.

Lemma 34 Let A and X0 be subsets of a space (X, τ). If A ∈ δSO(X) and
X0 ∈ δO(X), then A ∩X0 ∈ δSO(X0) [8].

Theorem 35 If f : (X, τ) → (Y, σ) is almost δ-semicontinuous and A is δ-open
in (X, τ), then the restriction f |A: (A, τA) → (Y, σ) is almost δ-semicontinuous.

Proof. Let V be any regular open set of Y . By Theorem 11, we have f−1(V ) ∈
δSO(X) and hence (f |A)−1(V ) = f−1(V ) ∩ A ∈ δSO(A) by Lemma 34. Thus, it
follows that f |A is almost δ-semicontinuous.

Lemma 36 Let A and X0 be subsets of a space (X, τ). If A ∈ δSO(X0) and
X0 ∈ δO(X), then A ∈ δSO(X) [8].

Theorem 37 Let f : (X, τ) → (Y, σ) be a function and {Ui : i ∈ I} a cover of X
by δ-open sets of (X, τ). If f |Ui : (Ui, τUi) → (Y, σ) is almost δ-semicontinuous for
each i ∈ I, then f is almost δ-semicontinuous.

Proof. Let V be any regular open set of (Y, σ). Then, we have

f−1(V ) = X ∩ f−1(V ) = ∪{Ui ∩ f−1(V ) : i ∈ I} = ∪{(f |Ui)
−1(V ) : i ∈ I}.

Since f |Ui is almost δ-semicontinuous, (f |Ui)
−1(V ) ∈ δSO(Ui) for each i ∈ I. By

Lemma 36, for each i ∈ I, (f |Ui)
−1(V ) is δ-semiopen in X and hence f−1(V ) is

δ-semiopen in X. Therefore, f is almost δ-semicontinuous.

Definition 38 The δ-semifrontier of a subset A of X, denoted by δ-sfr(A), is
defined by δ-sfr(A) = δ-scl(A) ∩ δ-scl(X\A) = δ-scl(A)\δ-sint(A) [8].

Theorem 39 The set of all points x of X at which a function f : X → Y is not
almost δ-semicontinuous is identical with the union of the δ-semifrontiers of the
inverse images of regular open sets containing f(x).
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Proof. Let x be a point of X at which f is not almost δ-semicontinuous Then,
there exists a regular open set V of Y containing f(x) such that U ∩(X\f−1(V )) 6=
∅ for every U ∈ δSO(X, x). Therefore, we have x ∈ δ-scl(X\f−1(V )) = X\δ-
sint(f−1(V )) and x ∈ f−1(V ). Thus, we obtain x ∈ δ-sfr(f−1(V )).

Conversely, suppose that f is almost δ-semicontinuous at x ∈ X and let V be
a regular open set containing f(x). Then there exists U ∈ δSO(X, x) such that
U ⊂ f−1(V ); hence x ∈ δ-sint(f−1(V )). Therefore, it follows that x ∈ X\δ-
sfr(f−1(V )). This completes the proof.

Theorem 40 If f : X → Y is almost δ-semicontinuous, g : X → Y is δ-
continuous and Y is Hausdorff, then the set {x ∈ X : f(x) = g(x)} is δ-semiclosed
in X.

Proof. Let A = {x ∈ X : f(x) = g(x)} and x ∈ X\A. Then f(x) 6= g(x).
Since Y is Hausdorff, there exist open sets V and W of Y such that f(x) ∈ V ,
g(x) ∈ W and V ∩ W = ∅; hence int(cl(V )) ∩ int(cl(W )) = ∅. Since f is
almost δ-semicontinuous, there exists G ∈ δSO(X, x) such that f(G) ⊂ int(cl(V )).
Since g is δ-continuous, there exists an δ-open set H of X containing x such that
g(H) ⊂ int(cl(W )). Now, put U = G∩H, then U ∈ δSO(X, x) and f(U)∩g(U) ⊂
int(cl(V ))∩ int(cl(W )) = ∅. Therefore, we obtain U ∩A = ∅ and hence x ∈ X\δ-
scl(A). This shows that A is δ-semiclosed in X.

Theorem 41 If f1 : X1 → Y is weakly δ-semicontinuous, f2 : X2 → Y is almost
δ-semicontinuous and Y is Hausdorff, then the set {(x1, x2) ∈ X1 ×X2 : f(x1) =
f(x2)} is δ-semiclosed in X1 ×X2.

Proof. Let A = {(x1, x2) ∈ X1 × X2 : f(x1) = f(x2)} and (x1, x2) ∈ (X1 ×
X2)\A. Then f(x1) 6= f(x2) and there exist open sets V1 and V2 of Y such that
f(x1) ∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = ∅; hence cl(V1) ∩ int(cl(V2)) = ∅. Since f1

(resp, f2) is weakly δ-semicontinuous (resp. almost δ-semicontinuous), there exists
U1 ∈ δSO(X1, x1) such that f1(U1) ⊂ cl(V1) (resp. U2 ∈ δSO(X2, x2) such that
f2(U2) ⊂ int(cl(V2))). Therefore, we obtain (x1, x2) ∈ U1×U2 ⊂ (X1×X2)\A and
U1 × U2 ∈ δSO(X1 ×X2). This shows that A is δ-semiclosed in X1 ×X2.

Definition 42 A space X is said to be δ-semi-T2 [4] if for any distinct points x,
y of X, there exist disjoint δ-semiopen sets U , V of X such that x ∈ U and y ∈ V .

Theorem 43 If for each pair of distinct points x1 and x2 in a space X, there
exists a function f of X into a Hausdorff space Y such that

(1) f(x1) 6= f(x2),
(2) f is weakly δ-semicontinuous at x1 and
(3) almost δ-semicontinuous at x2,
then X is δ-semi-T2.

Proof. Since Y is Hausdorff, there exist open sets V1 and V2 of Y such that
f(x1) ∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = ∅; hence cl(V1) ∩ int(cl(V2)) = ∅. Since f
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is weakly δ-semicontinuous at x1, there exists U1 ∈ δSO(X,x1) such that f(U1) ⊂
cl(V1). Since f is almost δ-semicontinuous at x2, there exists U2 ∈ δSO(X, x2)
such that f(U2) ⊂ int(cl(V2)). Therefore, we obtain U1 ∩U2 = ∅. This shows that
X is δ-semi-T2.

Definition 44 A space X is said to be δ-semi-compact if every δ-semiopen cover
of X has a finite subcover.

Let f : X → Y be a function. The subset {(x, f(x)) : x ∈ X} ⊂ X×Y is called
the graph of f and is denoted by G(f).

Definition 45 A function f : X → Y has a (δs, r)-graph if for each (x, y) ∈
X × Y \G(f), there exist U ∈ δSO(X,x) and a regular open set V of Y containing
y such that (U × V ) ∩G(f) = ∅.

Lemma 46 A function f : X → Y has a (δs, r)-graph if and only if for each
(x, y) ∈ X × Y such that y 6= f(x), there exist a δ-semiopen set U and a regular
open set V containing x and y, respectively, such that f(U) ∩ V = ∅.

Theorem 47 If f : X → Y is an almost δ-semicontinuous function and Y is
Hausdorff, then f has a (δs, r)-graph.

Proof. Let (x, y) ∈ X×Y such that y 6= f(x). Then there exist open sets V and
W such that y ∈ V , f(x) ∈ W and V ∩W = ∅; hence int(cl(V )) ∩ int(cl(W )) =
∅. Since f is almost δ-semicontinuous, there exists U ∈ δSO(X,x) such that
f(U) ⊂ int(cl(W )). This implies that f(U) ∩ int(cl(V )) = ∅. Therefore, f has a
(δs, r)-graph.

Theorem 48 If f : (X, τ) → (Y, σ) has a (δs, r)-graph, then f(K) is δ-closed in
(Y, σ) for each subset K which is δ-semi-compact relative to (X, τ).

Proof. Suppose that y /∈ f(K). Then (x, y) /∈ G(f) for each x ∈ K. Since
G(f) is (δs, r)-graph, there exist Ux ∈ δSO(X) containing x and a regular open set
Vx of Y containing y such that f(Ux)∩Vx = ∅. The family {Ux : x ∈ K} is a cover
of K by δ-semiopen sets. Since K is δ-semi-compact relative to (X, τ), there exists
a finite subset K0 of K such that K ⊂ ∪{Ux : x ∈ K0}. Set V = ∩{Vx : x ∈ K0}.
Then V is a regular open set in Y containing y. Therefore, we have

f(K) ∩ V ⊂ [ ∪
x∈K0

f(Ux)] ∩ V ⊂ ∪
x∈K0

[f(Ux) ∩ V ] = ∅.

It follows that y /∈ δ-cl(f(K)). Therefore, f(K) is δ-closed in (Y, σ).

Corollary 49 If f : (X, τ) → (Y, σ) is an almost δ-semicontinuous function and
Y is Hausdorff, then f(K) is δ-closed in (Y, σ) for each subset K which is δ-semi-
compact relative to (X, τ).
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