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Interior and Boundary Stabilization of Navier-Stokes Equations

Roberto Triggiani ∗

abstract: We report on very recent work on the stabilization of the steady-state
solutions to Navier-Stokes equations on an open bounded domain Ω ⊂ Rd, d = 2, 3,
by either interior, or else boundary control.

More precisely, as to the interior case, we obtain that the steady-state solutions
to Navier-Stokes equations on Ω ⊂ Rd, d = 2, 3, with no-slip boundary conditions,
are locally exponentially stabilizable by a finite-dimensional feedback controller with
support in an arbitrary open subset ω ⊂ Ω of positive measure. The (finite) dimen-
sion of the feedback controller is minimal and is related to the largest algebraic
multiplicity of the unstable eigenvalues of the linearized equation.

Second, as to the boundary case, we obtain that the steady-state solutions to
Navier-Stokes equations on a bounded domain Ω ⊂ Rd, d = 2, 3, are locally expo-
nentially stabilizable by a boundary closed-loop feedback controller, acting on the
boundary ∂Ω, in the Dirichlet boundary conditions. If d = 3, the non-linearity
imposes and dictates the requirement that stabilization must occur in the space

(H
3
2+ε(Ω))3, ε > 0, a high topological level. A first implication thereof is that,

for d = 3, the boundary feedback stabilizing controller must be infinite dimensional.
Moreover, it generally acts on the entire boundary ∂Ω. Instead, for d = 2, where the

topological level for stabilization is (H
3
2−ε(Ω))2, the boundary feedback stabilizing

controller can be chosen to act on an arbitrarily small portion of the boundary.
Moreover, still for d = 2, it may even be finite dimensional, and this occurs if the
linearized operator is diagonalizable over its finite-dimensional unstable subspace.

Keywords: Internal stabilization, boundary stabilization, Navier-Stokes Equa-
tions.
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We hereby report on recent joint work on the stabilization of steady-state so-
lutions to Navier-Stokes equations on an open bounded domain Ω ⊂ Rd, d = 2, 3,
by either interior feedback control or else boundary feedback control. The case of
interior control is taken from the joint work with V. Barbu in [4]. The case of
boundary control is taken from the joint work with V. Barbu and I. Lasiecka in
[3]. To enhance readability, we provide independent accounts of each case.
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Part I: Interior Control [4]

1. Introduction

The controlled N-S equations. Consider the controlled Navier-Stokes equa-
tions (see [6, p. 45], [13, p. 253] for the uncontrolled case u ≡ 0) with the non-slip
Dirichlet B.C.:

yt(x, t)− ν∆y(x, t) + (y · ∇)y(x, t)
= m(x)u(x, t) + fe(x) +∇p(x, t) in Q = Ω× (0,∞), (1.1)

∇ · y = 0 in Q;

y = 0 on Σ = ∂Ω× (0,∞);

y(x, 0) = y0(x) in Ω.

Here, Ω is an open smooth bounded domain of Rd, d = 2, 3; m is the char-
acteristic function of an open smooth subset ω ⊂ Ω of positive measure; u is the
control input; and y = (y1, y2, . . . , yd) is the state (velocity) of the system. The
function v = mu can be viewed itself as an internal controller with support in
Qω = ω × (0,∞). The functions y0, fe ∈ (L2(Ω))d are given, the latter being a
body force, while p is the unknown pressure.

Let (ye, pe) ∈ ((H2(Ω))d ∩ V ) ×H1(Ω) be a steady-state solution to equation
(1.1), i.e.,

− ν∆ye + (ye · ∇)ye = fe +∇pe in Ω; (1.2)

∇ · ye = 0 in Ω;

ye = 0 on ∂Ω.

The steady-state solution is known to exist for d = 2, 3, [6, Theorem 7.3, p. 59].
Here [6, p. 9], [13, p. 18]

V = {y ∈ (H1
0 (Ω))d; ∇ · y = 0}, with norm ‖y‖V ≡ ‖y‖

=
{ ∫

Ω

|∇y(x)|2dΩ
} 1

2

. (1.3)

Literature. According to some recent results of O. Imanuvilov [9] (see also
[1]) any such solution ye is locally exactly controllable on every interval [0, T ] with
controller u with support in Qω. More precisely, if the distance ‖ye − y0‖H2(Ω) is
sufficiently small, then there is a solution (y, p, u) to (1.1) of appropriate regularity
such that y(T ) ≡ ye. The steering control is open-loop and depends on the ini-
tial condition. Subsequently, paper [2] proved that any steady-state solution ye is
locally exponentially stabilizable by means of an infinite-dimensional feedback con-
troller, by using the controllability of the linear Stokes equation. In contrast, here
we shall prove, via the state decomposition technique of [14], [15], and the first-
order stabilization Riccati equation method developed in our previous work [2] (see
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also [5] still in the parabolic case, as well as [11] in the hyperbolic case), that any
steady-state solution ye is locally exponentially stabilizable by a finite-dimensional
closed-loop feedback controller of the form

u = −
2K∑

i=1

(RN (y − ye), ψi)ωψi, (1.4)

where RN ∈ L(D(A
1
4 )) ∩ L(D(A

1
2 ); H) is the solution of the algebraic Riccati

equation (2.10) below associated with the linearized system (2.5) below and {ψi}2K
i=1

is an explicitly constructed (in (3.3.5) of [4]) system of functions related to the
space of eigenfunctions corresponding to the unstable eigenvalues of such linearized
system. Here A is the Stokes operator defined by (1.6); H the space in (1.5);
and ( · , · )ω is the scalar product in (L2(ω))d. The present closed-loop feedback
stabilization result has two main features, besides being finite-dimensional:

(1) it is more precise and less restrictive concerning the vectors y0 and ye than
the open-loop version provided by the local exact controllability result established
in [9], or the closed-loop stabilization in [2] (in that smallness of the distance
between y0 and ye is measured in the D(A

1
4 )-norm, i.e., the (H

1
2 (Ω))d-norm, see

the set Vρ in (2.13) below, rather than in the (H2(Ω))d-norm, as recalled above,
where A is defined in (1.6).);

(2) it is independent of the Carleman inequality for the Stokes equation, which
is necessary for the proof of local controllability.

There is a large literature on the stabilization problem of steady-state solutions
to Navier-Stokes equations. Here we confine ourselves to mention only a few of
the papers ([2], [7]) which are more related to this present work. We also refer to
the recent paper of Fursikov [8] for a study of a boundary—rather than interior—
problem for the N-S equations, which, however, does not pertain to the topic of
feedback stabilization in the established sense, as in the present paper.

Notation. Here we shall use the standard notation for the spaces of summable
functions and Sobolev spaces on Ω. In particular, Hs(Ω) is the Sobolev space of
order s with the norm denoted by ‖ · ‖s. The following notation will be also used:

∇ · y = div y, (y · ∇)y = yiDiyj = y · ∇yj ,

j = 1, . . . , d, Di =
∂

∂xi
;

H = {y ∈ (L2(Ω))d; ∇ · y = 0, y · n = 0 on ∂Ω} [6, p. 7]; (1.5)

H⊥ = {y ∈ (L2(Ω))d : y = ∇p, p ∈ H1(Ω)}, (L2(Ω))d = H + H⊥,

H⊥ being the orthogonal complement of H in (L2(Ω))d [13, p. 15] with summation
convention to be used throughout the paper, presently in i = 1, . . . , d, where n is the
outward normal to the boundary ∂Ω of Ω. We shall denote by P : (L2(Ω))d → H
the orthogonal Leray projector [6, p. 9], and moreover [6, p. 31],

Ay = −P∆y, ∀ y ∈ D(A) = (H2(Ω))d ∩ V, V = D(A
1
2 ), (1.6)
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which is a self-adjoint positive definite operator in H with compact (resolvent) A−1

on H [6, p. 32]. Accordingly, the fractional powers As, 0 < s < 1, are well-defined
[6, p. 33]. We have V = D(A

1
2 ) [6, p. 33]. Furthermore, we define B : V → V ′ by

[6, p. 47, p. 54], [13, p. 162],

By = P [(y · ∇)y], (By,w) = b(y, y, w), ∀ y, w ∈ V, (1.7)

where the trilinear form is defined by [6, p. 49], [13, p. 161]

b(y, z, w) =
∫

Ω

yi(Dizj)wjdx =
∫

Ω

〈y · ∇z, w〉RddΩ,

y, w ∈ H, z ∈ V. (1.8)

We shall denote by (·, ·) the scalar product in both H and (L2(Ω))d. Similarly,
we shall denote by the same symbol | · | the norm of both (L2(Ω))d and H, and by
‖ · ‖ the norm of the space V as defined in (1.3).

Preliminaries. In the notation introduced above, Eqn. (1.1) can be equiva-
lently rewritten in abstract form as

dy

dt
+ νAy + By = P (mu + fe); y(0) = y0 ∈ H, (1.9)

since the procedure of applying P to (1.1) eliminates the pressure from the equa-
tions [6, p. 47], the orthogonal space H⊥ to H being made up of (L2(Ω)d-functions
which are the gradients of H1(Ω)-functions by (1.5). Moreover, y ∈ H for (1.1)
implies Pyt = yt.

2. The main results

Assumptions. (i) The boundary ∂Ω of Ω is a finite union of d−1 dimensional
C2-connected manifolds. Moreover, the boundary ∂ω of ω is of class C2.

(ii) The steady-state solution (ye, pe) defined in (1.2) belongs to
((H2(Ω))d ∩ V ) × H1(Ω), where we recall from (1.6) that then ye ∈ D(A). [For
d = 2, 3, this property is guaranteed by [6, Theorem 7.3, p. 59] on ye, for fe ∈ H,
followed by [6, Theorem 3.11, p. 30] on pe, for sufficiently smooth ∂Ω.]

Preliminaries. The translated problem. By the substitutions y → ye + y,
p → pe + p, we are readily led via (1.1), (1.2) to the study of null stabilization of
the equation

yt − ν∆y + (y · ∇)y + (ye · ∇)y + (y · ∇)ye = mu +∇p in Q; (2.1)

∇ · y = 0 in Q;

y = 0 on Σ;

y(x, 0) = y0(x) = y0(x)− ye(x).
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By use of (1.5) on H, (1.6), (1.7) on A and B, we see that (2.1), after application
of P , can be rewritten abstractly as

dy

dt
+ νAy + A0y + By = P (mu), t > 0; y(0) = y0 (2.2)

(compare with (1.9) again Pyt = yt, since y ∈ H by (2.1)), where we have now
introduced the operator A0 ∈ L(V ; H),

A0y = P ((ye · ∇)y + (y · ∇)ye), D(A0) = V = D(A
1
2 ), (2.3a)

or equivalently, recalling (1.7),

(A0y, z) = b(ye, y, z) + b(y, ye, z), ∀ y ∈ V, z ∈ H. (2.3b)

The operator A0 in (2.3) is well-defined H ⊃ V = D(A0) → H. This follows from
the estimate

|A0y| ≤ C1‖ye‖2‖y‖, ∀ y ∈ V = D(A0) = D(A
1
2 ), (2.4)

which is obtained directly by use of the definition (2.3b).
The linearized problem. Next, we consider the following linearized system

of the translated model (2.1) or (2.2):

dy

dt
+ νAy + A0y = P (mu), t > 0; y(0) = y0 ∈ H. (2.5)

We have already noted below (1.6) that the operator −νA (ν > 0, the viscosity
coefficient) is negative self-adjoint and has compact resolvent on H. Thus, −νA
generates an analytic (self-adjoint) C0-semigroup on H. It then follows from here
and from D(A0) = V = D(A

1
2 ), as noted in (1.6) and in (2.4), that: the perturbed

operator

A = −(νA + A0), with domain D(A) = D(A) = (H2(Ω))d ∩ V (2.6a)

likewise has compact resolvent and generates an analytic C0-semigroup on H. This
is well-known. It follows from the above claim that the operator A has a finite
number N of eigenvalues λj with Re λj ≥ 0 (the unstable eigenvalues). The
eigenvalues are repeated according to their algebraic multiplicity `j . Let {ϕj}N

j=1 be
a corresponding system of generalized eigenfunctions, ϕj = ϕ1

j + iϕ2
j , j = 1, . . . , N

of A. (See [10, p. 41, 181].) More precisely, we shall denote by M the number of
distinct unstable eigenvalues, so that `1 + `2 + · · ·+ `M = N . In order to state our
first result, we finally need to introduce the following finite-dimensional real spaces
Xα

N , α = 1, 2 as well as the following natural number K:

Xα
N = span{ϕα

j }N
j=1 ; K = max{`j ; 1 ≤ j ≤ M}. (2.7)

Main results. Linearized problem (2.5). We first state the following
feedback stabilization result for the linearized system (2.5).



96 R. Triggiani

Theorem 2.1 Let ε > 0 be arbitrary but fixed, and let γ0 = |ReλN+1| − ε. Then,
for each λ, 0 ≤ λ ≤ γ0, there are functions {ψi}K

i=1 ⊂ X1
N , {ψi}2K

i=K+1 ⊂ X2
N and

a linear self-adjoint operator RN : D(RN ) ⊂ H → H such that for some constants
0 < a1 < a2 < ∞ and C1 > 0, we have:

(i)
a1|A 1

4 y|2 ≤ (RNy, y) ≤ a2|A 1
4 y|2, ∀ y ∈ D(A

1
4 ), (2.8)

so that D(A
1
4 ) ⊂ D(R

1
2
N );

(ii)
|RNy| ≤ C1‖y‖, ∀ y ∈ V = D(A

1
2 ); (2.9)

(iii) RN satisfies the following algebraic Riccati equation:

− ((A+ λ)y, RNy) +
1
2

2K∑

i=1

(ψi, RNy)2ω =
1
2
|A 3

4 y|2, ∀ y ∈ D(A). (2.10)

The vectors {ψi}2K
i=1 are explicitly constructed in (3.3.5) of Lemma 4 of [4]. More-

over, with 2K ≤ N , the feedback controller,

u = −
2K∑

i=1

(RNy, ψi)ωψi (2.11a)

once inserted in (2.5), exponentially stabilizes the corresponding closed-loop system
(2.5). The margin of stability for such closed loop system is λ. [See Remark 3.3.1
of [4] for the effective number of controls 2K ≤ N .] More specifically, this means
that the solution of

dy

dt
+ νAy + A0y + P

(
m

2K∑

i=1

(RNy, ψi)ωψi

)
= 0, y(0) = y0 ∈ D(A

1
4 ) (2.11b)

satisfies
|A 1

4 y(t)| ≤ Cλe−λt|A 1
4 y0|, t ≥ 0. (2.11c)

Non-linear system (1.9). We next use the stabilizer in Theorem 1 to the
linearized system (2.5) of the translated problem (2.1), or (2.2), to obtain the
sought-after closed loop, local, feedback stabilization of the steady state solution
ye to the N-S equation (1.9).

Theorem 2.2 With reference to Theorem 1, the feedback controller

u = −
2K∑

i=1

(RN (y − ye), ψi)ωψi (2.12)

[where the vectors ψi are defined in (3.3.5) of Lemma 4 in [4]], once inserted in
the N-S system (1.9) exponentially stabilizes the steady state solution ye to (1.1)
in a neighborhood

Vρ = {y0 ∈ D(A
1
4 ); |A 1

4 (y0 − ye)| < ρ} (2.13)
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of ye, for suitable ρ > 0. More precisely, if ρ > 0 is sufficiently small, then for
each y0 ∈ Vρ there exists a weak solution y ∈ L∞(0, T ; H) ∩ L2(0, T ; V ), dy

dt ∈
L

4
3 (0, T ; V ′) for d = 3, and dy

dt ∈ L2(0, T ; V ′) for d = 2, ∀ T > 0, to the closed loop
system

dy

dt
+νAy+By+P

(
m

2K∑

i=1

(RN (y − ye), ψi)ωψi

)
= Pfe, t ≥ 0, y(0) = y0, (2.14)

obtained from inserting the control (2.12) in (1.9), such that the following two
properties hold:

(i) ∫ ∞

0

e2λt|A 3
4 (y(t)− ye)|2dt ≤ C2|A 1

4 (y0 − ye)|2; (2.15)

(ii)
|A 1

4 (y(t)− ye)| ≤ C3e
−λt|A 1

4 (y0 − ye)|, ∀ t ≥ 0. (2.16)

We refer to [6, p. 71] for definition of weak solutions to equations of the form
(2.14) and the asserted regularity. If d = 2 the solution to (2.14) is strong and
unique [6, p. 83].

The pressure p. Theorem 2 implies the following result giving corresponding
asymptotic properties of the pressure p.

Theorem 2.3 The solution y provided by Theorem 2 satisfies also the equation

yt − ν∆y + (y · ∇)y + m

(
2K∑

i=1

(RN (y − ye), ψi)ωψi

)

= ∇p + fe in Q ≡ Ω× (0,∞); (2.17)

∇ · y ≡ 0 in Q;
y ≡ 0 on Σ = ∂Ω× (0,∞);

y(x, 0) = y0(x) in Ω.

Moreover, the following relations hold true for the pressure p:
(i) for d = 2, we have

∫ ∞

0

t|p(t)− pe|2(H1(Ω))ddt ≤ C|A 1
4 (y0 − ye)|2[1 + |A 1

4 (y0 − ye)|2]; (2.18)

(ii) for d = 3, we have
∫ ∞

0

|p(t)− pe|2(L2(Ω))d/Rdt ≤ C|A 1
4 (y − ye)|2][1 + |A 1

4 (y0 − ye)|2]. (2.19)
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Part II: Boundary Control [3]

1. Introduction

Boundary controlled Navier-Stokes equations. We consider the con-
trolled Navier-Stokes equations (see [6, p. 45], [15, p. 253] for the uncontrolled
case u ≡ 0) with boundary control u in the Dirichlet B.C.:





yt(x, t)− ν0∆y(x, t) + (y · ∇)y(x, t) = fe(x)
+∇p(x, t) in G;

∇ · y = 0 in G;

y = u on Σ;

y(x, 0) = y0(x) in Ω.

(1.1a)

(1.1b)

(1.1c)

(1.1d)

Here, G = Ω × (0,∞); Σ = ∂Ω × (0,∞) and Ω is an open smooth bounded
domain of Rd, d = 2, 3; u ∈ L2(0, T ; (L2(∂Ω))d) is the boundary control input; and
y = (y1, y2, . . . , yd) is the state (velocity) of the system. The constant ν0 > 0 is the
viscosity coefficient. The functions y0, fe ∈ (L2(Ω))d are given, the latter being a
body force, while p is the unknown pressure. Because of the divergence theorem:∫
Ω
∇ · y dΩ =

∫
Γ

y · ν dΓ, [Γ = ∂Ω, ν = unit outward normal to ∂Ω], we must
require (at least) the integral boundary compatibility condition:

∫
Γ

u · ν dΓ = 0 on
the control function u. Actually, a more stringent condition has to be imposed, in
our final results: u · ν ≡ 0 on Σ, to sustain the pointwise boundary compatibility
condition contained in the definition of the critical state space H in (1.5a) below.
To summarize we shall then assume

either u · ν ≡ 0 on Σ; or at least
∫

Γ

u · ν dΓ ≡ 0, a.e. t > 0, (1.1e)

as it will be specified on a case-by-case basis.
Steady-state solutions and space V : sames as in (1.2), (1.3).
Goal. Our goal is to construct a boundary control u, subject to the boundary

compatibility condition (c.c.) given by (1.1e) in the strong pointwise form u ·ν ≡ 0
on ∂Ω, and, moreover, in feedback form u = u(y) via some linear operator y → u,
such that, once u(y) is substituted in the translated problem (2.1c), the resulting
well-posed, closed-loop system (2.1a–d) possesses the following desirable property:
the steady-state solutions ye defined in (1.2) are locally exponentially stable. In
particular, motivated by our prior effort [4] to be described below, we seek to
investigate if and when the feedback controller u = u(y) can be chosen to be finite-
dimensional, and, moreover, to act on an arbitrarily small portion (of positive
measure) of the boundary Γ = ∂Ω.

Orientation. Use of the Optimal Control Problem and Algebraic
Riccati Theory. (d = 3) We emphasize here only the more demanding case of
d = 3. A preliminary difficulty (for d = 2, 3) is the requirement in (1.1e) that
the boundary control u must always be tangential at each point of the boundary.
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It is standard that this requirement is intrinsically built in the definition of the
state space H (above in (1.5) Part I) of the velocity vector y, which is critical
to eliminate the second unknown of the N-S model, the pressure term ∇p (see
the orthogonal complement H⊥ in (1.5) above, Part I), by virtue of the Leray
projection P . Evolution of the velocity must occur in H. Accordingly, we must
then have that the boundary controls be pointwise tangential: u · ν ≡ 0 on Σ
in (1.1e). Next, a second difficulty, this time for d = 3, is that the non-linearity
of the N-S equation dictates and forces the requirement that stabilization must
occur in the space (H

3
2+ε(Ω))3, ε > 0, see Eqn. (5.18a–b) of [3]. This is a high

topological level, of which we shall have to say more below. A third source of
difficulty consists in deciding how to inject ‘dissipation’ into the N-S model, in
fact, as required, through a boundary tangential controller expressed in feedback
form. Here, motivated by [4] and, in turn, by optimal control theory [12], in order
to inject dissipation into the N-S system as to force local exponential boundary
stabilization of its steady-state solutions, we choose the strategy of introducing an
Optimal Control Problem (OCP) with a quadratic cost functional, over an infinite
time-horizon, for the linearized N-S model subject to tangential Dirichlet-boundary
control u, i.e., satisfying u · ν ≡ 0 on Σ. One then seeks to express the boundary
feedback, closed-loop controller of the optimal solution of the OCP, in terms of the
Riccati operator arising in the corresponding algebraic Riccati theory. As a result,
the same Riccati-based boundary feedback optimal controller that is obtained in
the linearized OCP is then selected and implemented also on the full N-S system.
This controller in feedback form is both dissipative as well as ‘robust’ (with respect
to a certain class of perturbations). For d = 3, however, the OCP must be resolved
at the high (H

3
2+ε(Ω))3-topological level, within the class of Dirichlet boundary

controls in L2(0,∞; (∂Ω)3), which are further constrained to be tangential to the
boundary.

Thus, the OCP faces two additional difficulties that set it apart and definitely
outside the boundaries of established optimal control theory for parabolic systems
with boundary controls: (1) the high degree of unboundedness of the boundary
control operator, of order ( 3

4 + ε) as expressed in terms of fractional powers of the
basic free-dynamics generator; and (2) the high degree of unboundedness of the
‘penalization’ or ‘observation’ operator of order also (3

4 + ε), as expressed in terms
of fractional powers of the basic free-dynamics generator. This yields a ‘combined
index’ of unboundedness strictly greater than 3

2 . By contrast, the established (and
rich) optimal control theory of boundary control parabolic problems and corre-
sponding algebraic Riccati theory requires a ‘combined index’ of unboundedness
strictly less than 1 [12, Vol. 1, in particular, p. 501–503], which is the maximum
limit handled by perturbation theory of analytic semigroups. To implement this
program, however, one must first overcome, at the very outset, the preliminary
stumbling obstacle of showing that the present highly non-standard OCP—with
the aforementioned high level of combined unboundedness in control and obser-
vation operators and further restricted within the class of tangential boundary
controllers—is, in fact, non-empty. This result is achieved in Theorem 3.5.1 of
[3] in full generality (and in Proposition 3.7.1 of [3] under the assumption that
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the linearized operator is diagonalizable over the finite-dimensional unstable sub-
space). Thus, after this result, the study of the OCP may then begin. Because
of the aforementioned intrinsic difficulties of the OCP with a combined index of
unboundedness > 3

2 , one cannot (and cannot hope to) recover in full all desirable
features of the corresponding algebraic Riccati theory which are available when the
combined index of unboundedness in control and observation operators is strictly
less than 1 ( [12] and references therein). For instance, existence of a solution (Ric-
cati operator) of the algebraic Riccati equation is here asserted only on the domain
of the generator of the optimal feedback dynamics (Proposition 4.5.1 of [3]); not
on the domain of the free-dynamics operator, as it would be required by, or at
least desirable from, the viewpoint of the OCP. However, in our present treatment,
the OCP is a means to extract dissipation and stability, not an end in itself. And
indeed, the present study of the algebraic Riccati theory, with a combined index of
unboundedness in control and observation operator strictly above 3

2 (rather than
strictly less than 1) does manage, at the end, to draw out the key sought-after
features of interest—dissipativity and decay—for the resulting optimal solution in
feedback form of the OCP for the linearized N-S equation. All this is accomplished
in Section 4 of [3].

The subsequent step of the strategy is then to select and use the same Riccati-
based, boundary feedback operator, which was found to describe the optimal solu-
tion of OCP of the linearized N-S equation, directly into the full N-S model. For
d = 3, the heavy groundwork for the feedback stabilization of the linearized prob-
lem via optimal control theory makes then the resulting analysis of well-posedness
(in Section 5 of [3]) and stabilization (in Section 6) of the N-S model more amenable
than would otherwise be the case.

To this end, key use is made of the Algebraic Riccati Equation satisfied by the
Riccati operator that describes the stabilizing control in closed-loop feedback form.

Literature. This paper [3] is a successor to [4], which instead considered the
interior stabilization problem of the Navier-Stokes equations, that is, problem (1.1),
Part I, with (i) non-slip boundary condition y ≡ 0 on Σ ≡ ∂Ω × (0,∞) in place
of the boundary controlled condition (1.1c); and (ii) interior control m(x)u(x, t)
on the right-hand side of Eqn. (1.1a), where m(x) is the characteristic function
of an arbitrary open subset ω ⊂ Ω of positive measure. In this case [4] (Part I)
proves that (the linearized problem is exponentially stabilizable, hence that) the
steady-state solutions ye to the Navier-Stokes equations are locally exponentially
stabilizable by a finite-dimensional feedback controller, in fact, of minimal size, see
Part I. In addition, one may select the finite-dimensional feedback controller to be
expressed in terms of a Riccati operator (solution of an algebraic Riccati equation,
which arises in an optimization problem associated with the linearized equation).
We shall need to invoke this interior stabilization problem (though not in its full
strength) in Section 3.5 of [3].

The work in the literature which is most relevant to our present paper is that
of A. Fursikov, see [8] (of which we become aware after completing [4]), which
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culminates a series of papers quoted therein. A statement of the main contribution
of [8], as it pertains to the linearized problem (2.3) below, is contained in [8,
Theorems 3.3 and 3.5, pp. 104–5].

One should note, however, that the aforementioned controller for problem (2.3)
below given in [8] is not a feedback controller in the standard sense. Instead, our
main results (in [4] as well as) in the present paper construct genuine, authen-
tic, and real feedback controls (Riccati-based, in fact, hence with some feature of
‘robustness’), that use at time t only the state information on Ω at time t. The
present paper, therefore, encounters a host of technical problems not present in [8]:
from the need for the genuine feedback control u to satisfy the pointwise compati-
bility condition u · ν ≡ 0 on Σ; to the high topological level (H

3
2+ε(Ω))3 at which

stabilization must occur in our case, as dictated by the non-linearity for d = 3,
see Eqn. (5.18a–b) of [3], versus the H1-topology decay obtained in [8]; to the
treatment of the Riccati theory for a corresponding optimal control problem with
a combined ‘index of unboundedness’ in control and observation operators exceed-
ing 3

2 —thus 1
2 + 2ε beyond the (rich) theory of the literature [12], as explained in

the Orientation.
Main contributions of the present paper. Qualitative summary of

main results. A first qualitative description of the main results of the present
paper follows next. First of all, the pre-set goal is achieved: with no assump-
tions whatsoever (except mild assumptions on the domain), we prove here that the
steady-state solutions to Navier-Stokes equations on Ω ⊂ Rd, d = 2, 3, are locally
exponentially stabilizable by a closed-loop boundary feedback controller acting in the
Dirichlet boundary conditions in the required topologies [Theorem 2.3 for d = 3 and
Theorem 2.6 for d = 2 of [3]]. The feedback controller is expressed in terms of
a Riccati operator (solution of a suitable algebraic Riccati equation): as such, via
standard arguments (e.g., [4]) this feedback controller is ‘robust’ with respect to a
certain class of exogeneous perturbations.

More precisely, the following main results are established in the present paper:
(i) For the general cases d = 2, 3, an infinite-dimensional, closed-loop boundary

feedback, stabilizing controller is constructed, as acting (for general initial data)
on the entire boundary ∂Ω for d = 3; or on an arbitrarily small portion of the
boundary, for d = 2.

(ii) By contrast, for d = 2 and under a finite-dimensional spectral assumption
FDSA = (3.6.2) of [3] (diagonalizability of the restriction of the linearized opera-
tor over the finite-dimensional unstable subspace), the feedback controller can be
chosen to be finite-dimensional, with dimension related to properties of the unsta-
ble eigenvalues, and, moreover, still to act on an arbitrarily small portion of the
boundary.

(iii) For d = 3, local exponential feedback stabilization of the steady-state solu-
tions to Navier-Stokes equations is not possible with a finite-dimensional boundary
feedback controller (except for a meager set of special initial conditions).

(iv) The pathology noted in (iii) for d = 3 is due to the non-linearity (see
Eqn. (5.18a–b) of [3]) which (by Sobolev embedding and multiplier theory for
d = 3) forces the the requirement that solutions of the linearized problem be
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considered at the high regularity space H
3
2+ε(Ω)∩H, ε > 0, under initial conditions

y0 ∈ H
1
2+ε(Ω)∩H and L2(0,∞; (L2(Γ))d)-boundary controls u. In turn, this high

regularity space H
3
2+ε(Ω) causes the occurrence of the compatibility condition

y0|Γ = u(0) at t = 0 on the boundary to be satisfied. Thus, for d = 3, the
constructed feedback controller must be infinite-dimensional in general.

(v) By contrast, the linearized problem for d = 2, 3 is exponentially stabilizable
with a closed-loop boundary, finite-dimensional feedback-controller acting on an
arbitrarily small portion of the boundary up to the topological level (H

3
2−ε(Ω))d

and with initial conditions y0 ∈ (H
1
2−ε(Ω))d ∩H, under the same FDSA = (3.6.2)

of [3].

Notation and preliminaries. Same as in Part I.

2. Main results (Case d = 3)

The following assumptions will be in effect throughout the paper.

Assumptions. (i) The boundary ∂Ω of Ω is a finite union of d−1 dimensional
C2-connected manifolds.

(ii) The steady-state solution (ye, pe) defined in (1.2) Part I, belongs to ((H2(Ω))d∩
V )×H1(Ω). [For d = 2, 3, this property is guaranteed by [6, Theorem 7.3, p. 59] on
ye, for fe ∈ H, followed by [6, Theorem 3.11, p. 30] on pe, for sufficiently smooth
∂Ω.]

Preliminaries. The translated non-linear N-S problem. By the substitu-
tions y → ye + y, p → pe + p and u → ye|Γ + u (with ye|Γ being the Dirichlet trace
of ye on Γ ≡ ∂Ω), we are readily led via (1.1), (1.2) to study the boundary null
stabilization of the equation





yt − ν0∆y + (y · ∇)y + (ye · ∇)y
+ (y · ∇)ye = ∇p in Q;

∇ · y = 0 in Q;

y = u on Σ;

y(x, 0) = y0(x) = y0(x)− ye(x) in Ω.

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Abstract model of the N-S problem (2.1) projected on H. We shall see
in Section 3.1 of [3] that, under the pointwise compatibility condition (c.c.) u·ν = 0
on Σ of (1.1e) (whereby then Pyt = yt), application of the Leray projection P on
(2.1a-d) leads to a corresponding equation in H, without the pressure terms, whose
abstract version can be written as

yt −Ay + By = −ADu, y(0) = y0 ∈ H, u · ν ≡ 0 on Σ, (2.2)

where the infinitesimal generator A and the non-linear operator B are defined in
(2.6) and (1.7), respectively, of Part I. Moreover, the operator D: (L2(Γ))d →
(H

1
2 (Ω))d ∩H ∈ D(A

1
4−ε) is defined in (3.1.3) of [3].
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The translated linearized problem. PDE version. The translated lin-
earized problem corresponding to (2.1) is then





yt − ν0∆y + (ye · ∇)y + (y · ∇)ye = ∇p in Q;

∇ · y = 0 in Q;

y = u on Σ;

y(x, 0) = y0(x) in Ω.

(2.3a)

(2.3b)

(2.3c)

(2.3d)

Abstract model of problem (2.3) projected on H. Its abstract version on
H is then

yt = Ay −ADu ∈ [D(A∗)]′, y(0) = y0 ∈ H; u · ν ≡ on Σ. (2.4)

Main results: Case d = 3. The linearized model. We begin with the
translated linearized problem (2.3) or its projected version (2.4). For the first
result—the main result on problem (2.4)—essentially no assumptions are required.

Theorem 2.1 With reference to the linearized problem (2.4), Part II, the following
results hold true:

(i) Let d = 3 and assume further that Ω is simply connected. Then, given any
y0 ∈ W ≡ (H

1
2+ε(Ω))3 ∩ H, ε > 0 arbitrary, there exists an open-loop, infinite-

dimensional boundary control u ∈ L2(0,∞; (L2(Γ))3), u · ν ≡ 0 on Σ, such that
the corresponding solution y of (2.4) satisfies y ∈ L2(0,∞; (H

3
2+ε(Ω))3 ∩ H) ∩

H
3
4+ ε

2 (0,∞; H). Moreover, if y0 vanishes on the portion Γ0 of the boundary Γ =
∂Ω, then u may be required to act only on the comlementary part Γ1 = Γ \ Γ0 of
the boundary. In particular, if y0 vanishes on all of Γ, then u may be required to
have an arbitrarily small support Γ1, meas(Γ1) > 0. [This is Theorem 3.5.1 along
with Remark 3.5.1, illustrated by Figures 3.5.1 and 3.5.2 in [3].]

(ii) Let d = 3. Then, the control u claimed in (i) cannot generally be finite-
dimensional except for a meager set of special initial conditions. [This is Proposi-
tion 3.1.3 of [3].]

Case d = 3. Original N-S model (1.1). We now report the main result of
the present paper, which provides the sought-after closed-loop boundary feedback
control for the original N-S equations (1.1) [or its projected version (2.2)], which
exponentially stabilizes the stationary solution ye of (1.1) in a neighborhood of ye.
The stabilizing feedback control that we shall find is ‘robust,’ as it is expressed in
terms of a Riccati operator R, which arises in an associated corresponding Optimal
Control Problem. To state our (local) stabilizing result, we need to introduce the
set

Vρ ≡
{

y0 ∈ W ≡ (H
1
2+ε(Ω))3 ∩H : |y0 − ye|W < ρ

}
(2.5)
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Theorem 2.2 (Main Theorem) Let d = 3 and assume further that Ω is simply
connected. If ρ > 0 in (2.5) is sufficiently small, then: for each y0 ∈ Vρ, there
exists a unique fixed-point, mild, semigroup solution y of the following closed-loop
problem: 




yt(x, t)− ν0∆y(x, t) + (y · ∇)y(x, t)
= fe(x) +∇p(x, t) in G;

∇ · y = 0 in G;

y = ye + ν0
∂

∂ν
R(y − ye) on Σ;

y(x, 0) = y0(x) in Ω.

(2.6a)

(2.6b)

(2.6c)

(2.6d)

obtained from (1.1) by replacing u with the boundary feedback control u = ye +
ν0

∂
∂ν R(y − ye) having the following regularity and asymptotic properties:
(i)

(y − ye) ∈ C([0,∞); W ) ∩ L2(0,∞; (H
3
2+ε(Ω))3 ∩H) (2.7)

continuously in y0 ∈ W ≡ (H
1
2+ε(Ω))3 ∩H:

|y(t)− ye|2W +
∫ ∞

0

|y(t)− ye|2
(H

3
2 +ε(Ω))3∩H

dt ≤ C|y0 − ye|2W , t ≥ 0. (2.8)

[This follows from Theorem 5.1 and Corollary 5.5 of [3], via the translation y → ye,
etc., performed above problem (2.1).]

(ii) there exist constants M ≥ 1, ω > 0 (independent of ρ > 0) such that such
solution y(t) satisfies

|y(t)− ye|W ≤ Me−ωt|y0 − ye|W , t ≥ 0. (2.9)

[This follows from Theorem 6.1(i) of [3], via the translation y → y − ye, etc.,
performed above problem (2.1).]

Here R is a Riccati operator, in the sense that it [arises in the Optimal Control
Problem of Section 4.1 and] satisfies the Algebraic Riccati Equation (4.5.1) of [3].
The operator R is positive self-adjoint on H and, moreover, R ∈ L(W ; W ′) where
W ′ is the dual of W with respect to H as a pivot space. In addition [Proposition
4.1.4 of [3]],

c|x|2W ≤ (Rx, x)H ≤ C|x|2W , 0 < c < C < ∞, ∀ x ∈ W,

so that the |R 1
2 x|-norm is equivalent to the W -norm. By a solution to Eqn. (2.8),

we mean, of course, a weak solution (see, e.g., [6], [15]). (This part is Theorem
5.1 of [3].)
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