On a Transmission Problem for Dissipative Klein-Gordon-Shrödinger Equations

J. A. Soriano ${ }^{1}$ and A. M. Lobeiro

Abstract

In this paper we consider a transmission problem for the Cauchy problem of coupled dissipative Klein-Gordon-Shrödinger equations and we prove the existence of global solutions.

Contents

1 Introduction 79
2 Notation 80
3 Existence of solutions 81

1. Introduction

Let $] 0, L_{3}\left[\right.$ be a bounded open interval of \mathbb{R} such that $\left.L_{1}, L_{2} \in\right] 0, L_{3}[$. We denote by Ω the set $] 0, L_{1}[\cup] L_{2}, L_{3}[$.

In this work we prove the existence of strong and weak solutions of a transmission problem for the coupled Klein-Gordon-Shrödinger equations with dissipative term, given by the following system:

$$
\begin{array}{rll}
i \psi_{t}+\psi_{x x}+i \alpha \psi+\phi \psi=0 & \text { in } & \Omega \times] 0, \infty[\\
\phi_{t t}-\phi_{x x}+\phi+\beta \phi_{t}=|\psi|^{2} & \text { in } & \Omega \times] 0, \infty[\\
\theta_{t t}-\theta_{x x}=0 & \text { in } &] L_{1}, L_{2}[\times] 0, \infty[\tag{1.3}
\end{array}
$$

where α and β are positive constants.
The system is subjected to the following boundary conditions.

$$
\begin{align*}
\psi(0, t)=\psi\left(L_{3}, t\right)=\phi(0, t)=\phi\left(L_{3}, t\right)=0 & \tag{1.4}\\
\phi\left(L_{i}, t\right)=\theta\left(L_{i}, t\right) ; \phi_{x}\left(L_{i}, t\right)=\theta_{x}\left(L_{i}, t\right) & ; i=1,2 \tag{1.5}\\
\psi_{x}\left(L_{i}, t\right)=0 & ; i=1,2 \tag{1.6}
\end{align*}
$$

and initial conditions

$$
\begin{align*}
\psi(x, 0)=\psi_{0}(x) & ; x \in \Omega \tag{1.7}\\
\phi(x, 0)=\phi_{0}(x) & ; \phi_{t}(x, 0)=\phi_{1}(x) \tag{1.8}
\end{align*} ; x \in \Omega,
$$

[^0]Controllability for transmission problems has been studied by several authors, and we mention a few works. The transmission problem for the wave equation was studied by Lions [7], where he applied the Hilbert Uniqueness Method (HUM) to show exact controllability. Latter, Lagnese [6], also applying HUM, extended this result; he showed the exact controllability for a class of hyperbolic systems which include the transmission problem for homogeneous anisotropic materials. The exact controllability for the plate equation was proved by Liu and Williams [9]. Some results about existence, uniqueness and regularity for elliptic stationary transmission problem can be found in Athanasiadis and Stratis [1] and Ladyzhenskaya and Ural'tseva [5].

Concerning stability, Liu and Williams [8] studied a transmission problem for the wave equation and showed exponential decay of the energy provided a linear feedback velocity is applied at the boundary. Marzocchi et al.[10] proved that the solution of a semi-linear transmission problem between an elastic a thermoelastic material, decays exponentially to zero.

Let us mention some works related with the Klein-Gordon -Schrödinger equations. Fukuda and Tsutsumi[4] studied the initial-boundary value problem for the coupled Klein-Gordon -Schrödinger equations in three space dimensions. In the case of one space dimension, the existence of global smooth solutions has been established by the authors [3]. Boling and Yongsheng [2] considerer the Cauchy problem of coupled dissipative proved a existence Klein-Gordon -Schrödinger equations in \mathbb{R}^{3} and prove the existence of the maximal attractor.

The objective of this paper is to prove the existence of strong and weak solutions to problem (1.1)-(1.9). The proof of the existence is based on the Galerkin method and employed techniques in [2].

2. Notation

For brevity, we denote the space of complex-valued functions and real-valued functions and real-valued functions by the same symbols.

Let $L^{p}(\Omega)$ be the usual Lebesgue space of complex-valued or real-valued functions whose p-times powers are integrable with norm:

$$
\begin{array}{r}
|u|_{p}=\left(\int_{\Omega}|u(x)|^{p} d x\right)^{1 / p}<+\infty \quad(1 \leq p<+\infty) \tag{2.1}\\
|u|_{\infty}=e s s \sup _{x \in \Omega}|u(x)|<+\infty \quad(p=+\infty)
\end{array}
$$

In particular, $L^{2}(\Omega)$ is the Hilbert space with inner product and norm:

$$
\begin{equation*}
(u, v)=\int_{\Omega} u(x) \overline{v(x)} d x, \quad|u|_{2}=\|u\|=(u, u)^{1 / 2} \tag{2.2}
\end{equation*}
$$

$H^{m}(\Omega) \quad(m$ is an interger $\geq 1)$ denote the complex or real Sobolev spaces whose distributional derivatives of order $\leq m$ lie in $L^{2}(\Omega)$ equipped with inner product and norm:

$$
\begin{equation*}
(u, v)_{m}=\sum_{j=0}^{m} \int_{\Omega} D^{j} u(x) \overline{D^{j} v(x)} d x, \quad\|u\|_{m}=(u, u)_{m}^{1 / 2} \tag{2.3}
\end{equation*}
$$

Let us define the subspace

$$
H_{L}^{1}(\Omega)=\left\{w \in H^{1}(\Omega) ; w(0)=w\left(L_{3}\right)=0\right\}
$$

It follows that $H_{L}^{1}(\Omega)$ is a Hilbert subspace of $H^{1}(\Omega)$. We can prove that in $H_{L}^{1}(\Omega)$ the norm

$$
\begin{equation*}
\|w\|^{2}=\int_{\Omega}\left|w_{x}(x)\right|^{2} d x \tag{2.4}
\end{equation*}
$$

and the $H_{L}^{1}(\Omega)$ norm are equivalents. Consequently, we consider $H_{L}^{1}(\Omega)$ equipped with the norm (2.4) and the scalar product

$$
\begin{equation*}
((v, w))=\int_{\Omega} v_{x}(x) \cdot w_{x}(x) d x \tag{2.5}
\end{equation*}
$$

Also let us define the subspace

$$
V=\left\{\{u, v\} \in H_{L}^{1}(\Omega) \times H^{1}(] L_{1}, L_{2}[) ; u\left(L_{i}\right)=v\left(L_{i}\right), i=1,2\right\}
$$

Note that V is a closed subspace of $H_{L}^{1}(\Omega) \times H^{1}(] L_{1}, L_{2}[)$ which together with the norm

$$
\begin{equation*}
\|\{u, v\}\|_{V}^{2}=\int_{\Omega}\left|u_{x}(x)\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|v_{x}(x)\right|^{2} d x \tag{2.6}
\end{equation*}
$$

is a Hilbert space.

3. Existence of solutions

In this section we establish existence and uniqueness results for problem [(1.1) (1.9)].

First of all, we define what we will understand for strong and weak solution of the problem $[(\overline{1.1})-(\overline{1.9)}]$.

Definition 3.1 We say that (ψ, ϕ, θ) is a strong solution of $[(\overline{1.1})-(1.9)]$ when

$$
\begin{aligned}
\psi & \in L_{l o c}^{\infty}\left(0, \infty ; H^{2}(\Omega) \cap H_{L}^{1}(\Omega)\right) \\
\psi_{t} & \in L_{l o c}^{\infty}\left(0, \infty ; H_{L}^{1}(\Omega)\right) \\
\{\phi, \theta\} & \in L_{l o c}^{\infty}\left(0, \infty ;\left[H^{2}(\Omega) \times H^{2}(] L_{1}, L_{2}[)\right] \cap V\right) \\
\left\{\phi_{t}, \theta_{t}\right\} & \in L_{l o c}^{\infty}(0, \infty ; V) \\
\left\{\phi_{t t}, \theta_{t t}\right\} & \in L_{l o c}^{o}\left(0, \infty ; L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right)
\end{aligned}
$$

satisfying the identities

$$
\begin{array}{rll}
i \psi_{t}+\psi_{x x}+i \alpha \psi+\phi \psi=0 & \text { in } & L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \\
\phi_{t t}-\phi_{x x}+\phi+\beta \phi_{t}=|\psi|^{2} & \text { in } & L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \\
\theta_{t t}-\theta_{x x}=0 & \text { in } & L_{l o c}^{\infty}\left(0, \infty ; L^{2}(] L_{1}, L_{2}[)\right. \\
\psi(0, t)=\psi\left(L_{3}, t\right)=\phi(0, t)=\phi\left(L_{3}, t\right)=0 & ; & t>0 \\
\phi\left(L_{i}, t\right)=\theta\left(L_{i}, t\right) ; \phi_{x}\left(L_{i}, t\right)=\theta_{x}\left(L_{i}, t\right) & ; \quad t>0,(i=1,2) \\
\psi_{x}\left(L_{i}, t\right)=0 & ; \quad t>0,(i=1,2) \\
\psi(x, 0)=\psi_{0}(x) & ; & x \in \Omega \\
\phi(x, 0)=\phi_{0}(x) e \phi_{t}(x, 0)=\phi_{1}(x) & ; \quad x \in \Omega \\
\theta(x, 0)=\theta_{0}(x) e \theta_{t}(x, 0)=\theta_{1}(x) & ; \quad x \in] L_{1}, L_{2}[
\end{array}
$$

Definition 3.2 Let $T>0$ be real. We say that (ψ, ϕ, θ) is a weak solution of [(1.1) - (1.9)] when

$$
\begin{gathered}
\psi \in L^{\infty}\left(0, T ; H_{L}^{1}(\Omega)\right) \\
\{\phi, \theta\} \in L^{\infty}(0, T ; V) \quad, \quad\left\{\phi_{t}, \theta_{t}\right\} \in L^{\infty}\left(0, T ; L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right)
\end{gathered}
$$

satisfying the identities

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left[-i \psi \bar{\Psi}_{t}-\psi_{x} \bar{\Psi}_{x}+i \alpha \psi \bar{\Psi}+\phi \psi \bar{\Psi}\right] d x d t=\int_{\Omega} i \psi_{0}(x) \bar{\Psi}(x, 0) d x \\
& \quad \int_{0}^{T} \int_{\Omega}\left[\phi \Phi_{t t}+\phi_{x} \Phi_{x}+\phi \Phi-\beta \phi \Phi_{t}-|\psi|^{2} \Phi\right] d x d t \\
& \quad+\int_{0}^{T^{2}} \int_{L_{1}}^{L_{2}}\left[\theta \Theta_{t t}+\theta_{x} \Theta_{x}\right] d x d t \\
& =\int_{\Omega} \phi_{1}(x) \Phi(x, 0) d x-\int_{\Omega} \phi_{0}(x) \Phi_{t}(x, 0) d x+\beta \int_{\Omega} \phi_{0}(x) \Phi(x, 0) d x \\
& \quad+\int_{L_{1}}^{L_{2}} \theta_{1}(x) \Theta(x, 0) d x+\int_{L_{1}}^{L_{2}} \theta_{0}(x) \Theta_{t}(x, 0) d x
\end{aligned}
$$

for all $\Psi \in C^{1}\left([0, T] ; H_{L}^{1}(\Omega)\right),\{\Phi, \Theta\} \in C^{2}([0, T] ; V)$ and a.e $t \in[0, T]$ such that

$$
\Psi(T)=\Phi(T)=\Phi_{t}(T)=\Theta(T)=\Theta_{t}(T)=0
$$

The existence of strong solution to system [(1.1) - (1.9)] is given in the following theorem:

Theorem 1 Given

$$
\begin{aligned}
\psi_{0} & \in H^{2}(\Omega) \cap H_{L}^{1}(\Omega) \\
\left\{\phi_{0}, \theta_{0}\right\} & \in\left[H^{2}(\Omega) \times H^{2}(] L_{1}, L_{2}[)\right] \cap V \\
\left\{\phi_{1}, \theta_{1}\right\} & \in V
\end{aligned}
$$

with

$$
\begin{aligned}
\psi_{0 x}\left(L_{i}\right) & =0 ;(i=1,2) \\
\phi_{0 x}(L i) & =\theta_{0 x}\left(L_{i}\right) ; \quad(i=1,2)
\end{aligned}
$$

there exists only a strong solution of $[(1.1)-(1.9)]$.
Proof. We follow a standard Faedo-Galerkin method and we divide the proof in four steps.

Step 1 (Approximate System). Let us denote by $\left\{u_{i} ; i \in \mathbb{N}\right\}$ a basis of $H^{2}(\Omega) \cap$ $H_{L}^{1}(\Omega)$ and by $\left\{\left\{v_{i}, w_{i}\right\} ; i \in \mathbb{N}\right\}$ a basis of $\left[H^{2}(\Omega) \times H^{2}(] L_{1}, L_{2}[)\right] \cap V$. We denote by

$$
\begin{gathered}
H_{\nu}=\operatorname{span}\left\{u_{1}, u_{2}, \cdots, u_{\nu}\right\} \\
V_{\nu}=\operatorname{span}\left\{\left\{v_{1}, w_{1}\right\},\left\{v_{2} \cdot w_{2}\right\}, \cdots,\left\{v_{\nu}, w_{\nu}\right\}\right\}
\end{gathered}
$$

Let

$$
\psi^{\nu}(x, t)=\sum_{i=1}^{\nu} a_{i \nu}(t) u_{i} \quad\left(a_{i \nu}(t): \text { Complex }- \text { valued }\right)
$$

and

$$
\left\{\phi^{\nu}(x, t), \theta^{\nu}(x, t)\right\}=\sum_{i=1}^{\nu} b_{i \nu}(t)\left\{v_{i}, w_{i}\right\} \quad\left(b_{i \nu}(t): \text { Real }- \text { valued }\right)
$$

be solutions of the system $(j=1,2, \cdots, \nu)$ of ordinary differential equations

$$
\begin{align*}
& \int_{\Omega}\left[i \psi_{t}^{\nu} \bar{u}_{j}-\psi_{x}^{\nu} \bar{u}_{j, x}+i \alpha \psi^{\nu} \bar{u}_{j}+\phi^{\nu} \psi^{\nu} \bar{u}_{j}\right] d x=0 \tag{3.1}\\
& \int_{\Omega}\left[\phi_{t t}^{\nu} v_{j}+\phi_{x}^{\nu} v_{j, x}+\phi^{\nu} v_{j}+\beta \phi_{t}^{\nu} v_{j}-\left|\psi^{\nu}\right|^{2} v_{j}\right] d x \\
&+\int_{L_{1}}^{L_{2}}\left[\theta_{t t}^{\nu} w_{j}+\theta_{x}^{\nu} w_{j, x}\right] d x=0 \tag{3.2}
\end{align*}
$$

which satisfy the initial data

$$
\psi^{\nu}(0)=\psi_{0} \quad, \quad\left\{\phi^{\nu}(0), \theta^{\nu}(0)\right\}=\left\{\phi_{0}, \theta_{0}\right\} \quad, \quad\left\{\phi_{t}^{\nu}(0), \theta_{t}^{\nu}(0)\right\}=\left\{\phi_{1}, \theta_{1}\right\}
$$

Standard theorems in the theory of ordinary differential equations ensure that this system has the solutions $\left\{\psi^{m}, \phi^{m}, \psi^{m}\right\}(m=1,2,3, \cdots)$ locally in time which are uniquely determined by initial data, for each m.

Step 2 (Estimate I). Multiplying (3.1) by $\overline{a_{j \nu}(t)}$, summing over j and taking imaginary parts, we have

$$
\frac{1}{2} \frac{d}{d t}\left\|\psi^{\nu}(t)\right\|^{2}+\alpha\left\|\psi^{\nu}(t)\right\|^{2}=0
$$

It follows that

$$
\begin{equation*}
\left\|\psi^{\nu}(t)\right\|^{2}+\alpha \int_{0}^{t}\left\|\psi^{\nu}(s)\right\|^{2} d s=\left\|\psi_{0}\right\|^{2} \tag{3.3}
\end{equation*}
$$

From (3.3) it follows that:

$$
\begin{equation*}
\psi^{\nu} \text { is bounded in } L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.4}
\end{equation*}
$$

Step 3 (Estimate II). Multiplying (3.1) by $-\overline{a_{j}^{\prime}(t)}$ and summing over j, we have

$$
\begin{align*}
&-i\left\|\psi_{t}^{\nu}(t)\right\|^{2}+\left(\psi_{x}^{\nu}(t), \psi_{x t}^{\nu}(t)\right) \\
&-i \alpha\left(\psi^{\nu}(t), \psi_{t}^{\nu}(t)\right)-\int_{\Omega}^{\nu} \phi^{\nu} \psi^{\nu} \overline{\psi_{t}^{\nu}} d x=0 \tag{3.5}
\end{align*}
$$

Multiplying (3.1) by $-\alpha \overline{a_{j}(t)}$ and summing over j, we have

$$
\begin{align*}
& -i \alpha\left(\psi_{t}^{\nu}(t), \psi^{\nu}(t)\right)+\alpha\left\|\psi_{x}^{\nu}(t)\right\|^{2} \\
+ & i \alpha^{2}\left\|\psi^{\nu}(t)\right\|^{2}-\alpha \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x=0 \tag{3.6}
\end{align*}
$$

Taking real parts in $[(\overline{3.5)}-(\overline{3.6})]$, we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\psi_{x}^{\nu}(t)\right\|^{2}-\operatorname{Re}\left(i \alpha\left(\psi^{\nu}(t), \psi_{t}^{\nu}(t)\right)\right) \\
& -\operatorname{Re}\left(\int_{\Omega} \phi^{\nu} \psi^{\nu} \overline{\psi_{t}^{\nu}} d x\right)=0 \tag{3.7}\\
& -\operatorname{Re}\left(i \alpha\left(\psi_{t}^{\nu}, \psi^{\nu}(t)\right)\right)+\alpha\left\|\psi_{x}^{\nu}(t)\right\|^{2}-\alpha \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x=0 \tag{3.8}
\end{align*}
$$

Summing (3.7) and (3.8), we obtain

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\psi_{x}^{\nu}(t)\right\|^{2}+\alpha\left\|\psi_{x}^{\nu}(t)\right\|^{2} \tag{3.9}\\
&-\operatorname{Re}\left(\phi^{\nu} \psi^{\nu}, \psi_{t}^{\nu}\right)-\alpha\left(\phi^{\nu} \psi^{\nu}, \psi^{\nu}\right)=0
\end{align*}
$$

Noticing that

$$
\begin{equation*}
-\operatorname{Re}\left(\phi^{\nu} \psi^{\nu}, \psi_{t}^{\nu}\right)=-\frac{1}{2} \frac{d}{d t}\left(\phi^{\nu},\left|\psi^{\nu}\right|^{2}\right)+\frac{1}{2}\left(\phi_{t}^{\nu},\left|\psi^{\nu}\right|^{2}\right) \tag{3.10}
\end{equation*}
$$

We infer from (3.9) that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left(\left\|\psi_{x}^{\nu}(t)\right\|^{2}-\int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x\right)+\alpha\left\|\psi_{x}^{\nu}\right\|^{2} \tag{3.11}\\
&+\frac{1}{2} \int_{\Omega} \phi_{t}^{\nu}\left|\psi^{\nu}\right|^{2} d x-\alpha \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x=0
\end{align*}
$$

or

$$
\begin{align*}
\frac{d}{d t}\left(2\left\|\psi_{x}^{\nu}(t)\right\|^{2}-2 \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x\right)+4 \alpha\left\|\psi_{x}^{\nu}\right\|^{2} & \tag{3.12}\\
\quad+2 \int_{\Omega} \phi_{t}^{\nu}\left|\psi^{\nu}\right|^{2} d x-4 \alpha \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x & =0
\end{align*}
$$

We introduce the transformations

$$
\eta^{\nu}(t)=\phi_{t}^{\nu}(t)+\delta \phi^{\nu}(t)
$$

and

$$
\gamma^{\nu}(t)=\theta_{t}^{\nu}(t)+\delta \theta^{\nu}(t)
$$

where $\delta=\min \left\{\frac{\beta}{2}, \frac{1}{2 \beta}\right\}$. Them (3.2) is equivalent to.

$$
\begin{align*}
&\left(\eta_{t}^{\nu}(t), v_{j}\right)+(\beta-\delta)\left(\eta^{\nu}(t), v_{j}\right)+(1-\delta(\beta-\delta))\left(\phi^{\nu}(t), v_{j}\right) \\
&+\left(\phi_{x}^{\nu}(t), v_{j, x}\right)+\int_{L_{1}}^{L_{2}} \gamma_{t}^{\nu} w_{j} d x+\delta^{2} \int_{L_{1}}^{L_{2}} \theta^{\nu} w_{j} d x+\int_{L_{1}}^{L_{2}} \theta_{x}^{\nu} w_{j} d x= \tag{3.13}\\
&+\int_{\Omega}\left|\psi^{\nu}\right|^{2} v_{j} d x+\delta \int_{L_{1}}^{L_{2}} \gamma^{\nu} w_{j} d x
\end{align*}
$$

Multiplying (3.13) by $b_{j}^{\prime}(t)+\delta b_{j}(t)$ and summing over j, we have.

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left[\left\|\eta^{\nu}(t)\right\|^{2}+(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+\left\|\phi_{x}^{\nu}(t)\right\|^{2}\right] \\
+\frac{1}{2} \frac{d}{d t}\left[\int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\delta^{2} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x\right] \\
+(\beta-\delta)\left\|\eta^{\nu}(t)\right\|^{2}+\delta(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}
\end{aligned}
$$

or

$$
\begin{align*}
& \frac{d}{d t} {\left[\left\|\eta^{\nu}(t)\right\|^{2}+(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+\left\|\phi_{x}^{\nu}(t)\right\|^{2}\right] } \\
&+\frac{d}{d t}\left[\int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\delta^{2} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x\right] \\
&+2(\beta-\delta)\left\|\eta^{\nu}(t)\right\|^{2}+2 \delta(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2} \\
&+ 2 \delta\left\|\phi_{x}^{\nu}(t)\right\|^{2}+2 \delta^{3} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+2 \delta \int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x= \tag{3.14}\\
&+2 \int_{\Omega} \eta^{\nu}\left|\psi^{\nu}\right|^{2} d x+2 \delta \int_{L_{2}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x= \\
&+2 \int_{\Omega} \phi_{t}^{\nu}\left|\psi^{\nu}\right|^{2} d x+2 \delta \int_{L_{2}} \phi\left|\psi^{\nu}\right|^{2} d x+2 \delta \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x
\end{align*}
$$

then $(3.12)+(3.14)$ implies that

$$
\begin{equation*}
\frac{d}{d t} H^{\nu}(t)+I^{\nu}(t)=0 \tag{3.15}
\end{equation*}
$$

where

$$
\begin{align*}
H^{\nu}(t)= & 2\left\|\psi_{x}^{\nu}(t)\right\|^{2}-2 \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x+\left\|\eta^{\nu}(t)\right\|^{2} \\
& +(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+\left\|\phi_{x}^{\nu}(t)\right\|^{2} \tag{3.16}\\
& +\int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\delta^{2} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x, \\
I^{\nu}(t)= & +4 \alpha\left\|\psi_{x}^{\nu}\right\|^{2}-2(2 \alpha+\delta) \int_{\Omega} \phi^{\nu}\left|\psi^{\nu}\right|^{2} d x+2(\beta-\delta)\left\|\eta^{\nu}(t)\right\|^{2} \\
& +2 \delta(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+2 \delta\left\|\phi_{x}^{\nu}(t)\right\|^{2} \tag{3.17}\\
+ & 2 \delta^{3} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+2 \delta \int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x-2 \delta \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x
\end{align*}
$$

For arbitrary $\epsilon_{1}, \epsilon_{2}>0$,

$$
\begin{equation*}
\left.\left|\int_{\Omega} \phi^{\nu}\right| \psi^{\nu}\right|^{2} d x \mid \leq \epsilon_{1}\left\|\psi_{x}^{\nu}(t)\right\|^{2}+\epsilon_{2}\left\|\phi_{x}^{\nu}(t)\right\|^{2}+c\left(\epsilon_{1}, \epsilon_{2}\right)\left\|\psi^{\nu}(t)\right\|^{6} \tag{3.18}
\end{equation*}
$$

Taking $\epsilon_{1}=\frac{1}{2}, \epsilon_{2}=\frac{1}{4}$ in (3.18), we deduce that

$$
\begin{align*}
H^{\nu}(t) \geq & \left\|\psi_{x}^{\nu}(t)\right\|^{2}+\left\|\eta^{\nu}(t)\right\|^{2}+(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+\frac{1}{2}\left\|\phi_{x}^{\nu}(t)\right\|^{2} \\
& +\int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\delta^{2} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x-c\left\|\psi^{\nu}(t)\right\|^{6} \tag{3.19}\\
H^{\nu}(t) \leq & 3\left\|\psi_{x}^{\nu}(t)\right\|^{2}+\left\|\eta^{\nu}(t)\right\|^{2}+(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2}+\frac{3}{2}\left\|\phi_{x}^{\nu}(t)\right\|^{2} \\
& +c\left\|\psi^{\nu}(t)\right\|^{6}+\int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\delta^{2} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x \tag{3.20}
\end{align*}
$$

Taking $\epsilon_{1}=\frac{\alpha}{2 \alpha+\delta}, \epsilon_{2}=\frac{\delta}{2(2 \alpha+\delta)}$ in (3.18), we see that

$$
\begin{align*}
I^{\nu}(t) \geq & +2 \alpha\left\|\psi_{x}^{\nu}\right\|^{2}+2(\beta-\alpha)\left\|\eta^{\nu}(t)\right\|^{2}+2 \delta(1-\delta(\beta-\delta))\left\|\phi^{\nu}(t)\right\|^{2} \\
& +\delta\left\|\phi_{x}^{\nu}(t)\right\|^{2}-c\left\|\psi^{\nu}(t)\right\|^{6}+2 \delta^{3} \int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x \tag{3.21}\\
& +2 \delta \int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x-2 \delta \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x
\end{align*}
$$

Thus from (3.20) and (3.21) we find a $\beta_{1}>0$ such that

$$
\begin{equation*}
\beta_{1} H^{\nu}(t) \leq I^{\nu}(t)+C\left\|\psi^{\nu}(t)\right\|^{6}+C \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x \tag{3.22}
\end{equation*}
$$

Therefore we derive from (3.15) and (3.22) that

$$
\begin{equation*}
\frac{d}{d t} H^{\nu}(t)+\beta_{1} H^{\nu}(t) \leq C\left\|\psi^{\nu}(t)\right\|^{6}+C \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x \tag{3.23}
\end{equation*}
$$

From (3.4) and (3.23) we obtain

$$
\begin{equation*}
\frac{d}{d t} H^{\nu}(t)+\beta_{1} H^{\nu}(t) \leq C+C \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x \tag{3.24}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
H^{\nu}(t) \leq C\left|H^{\nu}(0)\right|+C \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x \tag{3.25}
\end{equation*}
$$

From (3.25) and observing that $\left|H_{\nu}(0)\right|$ is bounded, we have

$$
\begin{equation*}
H^{\nu}(t) \leq C+C \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x . \tag{3.26}
\end{equation*}
$$

From (3.19), (3.26) and using Gronwall inequality we obtain

$$
\begin{align*}
& \left\|\psi_{x}^{\nu}(t)\right\|^{2}+\left\|\eta^{\nu}(t)\right\|^{2}+\left\|\phi^{\nu}(t)\right\|^{2}+\left\|\phi_{x}^{\nu}(t)\right\|^{2} \\
+ & \int_{L_{1}}^{L_{2}}\left|\gamma^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}\right|^{2} d x \leq C(T) . \tag{3.27}
\end{align*}
$$

From (3.27) it follows that:

$$
\begin{gather*}
\psi^{\nu} \text { is bounded in } L^{\infty}\left(0, T ; H_{L}^{1}(\Omega)\right) \tag{3.28}\\
\left(\phi^{\nu}, \theta^{\nu}\right) \text { is bounded in } L^{\infty}(0, T ; V) \tag{3.29}\\
\left(\phi_{t}^{\nu}, \theta_{t}^{\nu}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right) \tag{3.30}
\end{gather*}
$$

Step 4 (Estimate III) First, we are going to estimate $\left\|\psi_{t}^{\nu}(0)\right\|,\left\|\phi_{t t}^{\nu}(0)\right\|$ and $\left\|\theta_{t t}^{\nu}(0)\right\|$. Indeed, from (16)-(17) and observing that

$$
\begin{gathered}
\psi_{0 x}\left(L_{i}\right)=0 ; \quad(i=1,2) \\
\phi_{0 x}(L i)=\theta_{0 x}\left(L_{i}\right) \quad ; \quad(i=1,2)
\end{gathered}
$$

we have

$$
\begin{align*}
\left\|\psi_{t}^{\nu}(0)\right\|^{2}+\left\|\phi_{t t}^{\nu}(0)\right\|^{2}+\left\|\theta_{t t}^{\nu}(0)\right\|^{2}= & i\left(\psi_{0 x x}^{\nu}, \psi_{t}^{\nu}(0)\right)-\alpha\left(\phi_{0}, \psi_{t}^{\nu}(0)\right) \\
& +i\left(\phi_{0} \psi_{0}, \psi_{t}^{\nu}(0)\right)+\left(\phi_{0 x x}, \phi_{t t}^{\nu}(0)\right) \tag{3.31}\\
& -\left(\psi_{0}, \phi_{t t}^{\nu}(0)\right)-\beta\left(\phi_{1}, \phi_{t t}^{\nu}(0)\right) \\
& +\left(\left|\psi_{0}\right|^{2}, \phi_{t t}^{\nu}(0)\right)+\left(\theta_{0 x x}, \theta_{t t}^{\nu}(0)\right)
\end{align*}
$$

If follows that

$$
\begin{equation*}
\left\|\psi_{t}^{\nu}(0)\right\|+\left\|\phi_{t t}^{\nu}(0)\right\|+\left\|\theta_{t t}^{\nu}(0)\right\| \leq C ; \forall \nu \in \mathbb{N} \tag{3.32}
\end{equation*}
$$

Now, taking the derivate of (3.1) and (3.2) with respect to t and, using arguments of step 3, we get that

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left[\left\|\psi_{t}^{\nu}(t)\right\|^{2}+\left\|\phi_{t t}^{\nu}(t)\right\|^{2}+\left\|\phi_{x t}^{\nu}(t)\right\|^{2}+\left\|\phi_{t}^{\nu}(t)\right\|^{2}\right] \\
& +\frac{1}{2} \frac{d}{d t}\left[\int_{L_{1}}^{L_{2}}\left|\theta_{t t}^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x t}^{\nu}\right|^{2} d x\right]+\alpha\left\|\psi_{t}^{\nu}\right\|^{2}+\beta\left\|\phi_{t t}^{\nu}\right\|^{2} \tag{3.33}\\
= & -I m \int_{\Omega}\left(\phi_{t}^{\nu} \psi^{\nu} \overline{\psi_{t}^{\nu}}\right) d x+2 \int_{\Omega} \psi^{\nu} \overline{\psi_{t}^{\nu}} \phi^{\nu} d x \\
\leq & C\left[\left\|\psi_{t}^{\nu}(t)\right\|^{2}+\left\|\phi_{x t}^{\nu}(t)\right\|^{2}+\left\|\phi_{x t}^{\nu}(t)\right\|^{2}\right]
\end{align*}
$$

Integration (3.33) from zero to t, for $0 \leq t \leq T, T>0$ any real number and observing the estimate (3.32), we have

$$
\begin{align*}
& \left\|\psi_{t}^{\nu}(t)\right\|^{2}+\left\|\phi_{t t}^{\nu}(t)\right\|^{2}+\left\|\phi_{x t}^{\nu}(t)\right\|^{2}+\left\|\phi_{t}^{\nu}(t)\right\|^{2} \\
& +\int_{L_{1}}^{L_{2}}\left|\theta_{t t}^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x t}^{\nu}\right|^{2} d x \tag{3.34}\\
\leq & C+C \int_{0}^{T}\left[\left\|\psi_{t}^{\nu}(s)\right\|^{2}+\left\|\phi_{x t}^{\nu}(s)\right\|^{2}+\left\|\phi_{t t}^{\nu}(s)\right\|^{2}\right] d s
\end{align*}
$$

Applying Gronwall inequality to (3.34), we obtain:

$$
\begin{gather*}
\left\|\psi_{t}^{\nu}(t)\right\|^{2}+\left\|\phi_{t t}^{\nu}(t)\right\|^{2}+\left\|\phi_{x t}^{\nu}(t)\right\|^{2} \\
+\left\|\phi_{t}^{\nu}(t)\right\|^{2}+\int_{L_{1}}^{L_{2}}\left|\theta_{t t}^{\nu}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x t}^{\nu}\right|^{2} d x \leq C \tag{3.35}
\end{gather*}
$$

independent of ν, for all t in $[0, T]$.
From (3.35) it follows that:

$$
\begin{equation*}
\psi_{t}^{\nu} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{3.36}
\end{equation*}
$$

$$
\begin{equation*}
\left(\phi_{t}^{\nu}, \theta_{t}^{\nu}\right) \text { is bounded in } L^{\infty}(0, T ; V) \tag{3.37}
\end{equation*}
$$

$$
\begin{equation*}
\left(\phi_{t t}^{\nu}, \theta_{t t}^{\nu}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right) \tag{3.38}
\end{equation*}
$$

The rest of the proof of the existence of strong solution is a matter routine.
The existence of weak solution to system $[(\overline{1.1})-(1.9)]$ is given in the following theorem:

Theorem 2 Given

$$
\psi_{0} \in H_{L}^{1}(\Omega), \quad\left\{\phi_{0}, \theta_{0}\right\} \in V \text { and }\left\{\phi_{1}, \theta_{1}\right\} \in L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)
$$

there exists only a weak solution of $[(\overline{1.1})-(\overline{1.9})]$.

Proof. Given $\psi_{0} \in H_{L}^{1}(\Omega),\left\{\phi_{0}, \theta_{0}\right\} \in V$ and $\left\{\phi_{1}, \theta_{1}\right\} \in L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)$, there exists $\psi_{0}^{\nu} \in H^{2}(\Omega) \cap H_{L}^{1}(\Omega),\left\{\phi_{0}^{\nu}, \theta_{0}^{\nu}\right\} \in\left[H^{2}(\Omega) \times H^{2}(] L_{1}, L_{2}[)\right] \cap V$ and $\left\{\phi_{1}, \theta_{1}\right\} \in V$ such that

$$
\left.\begin{array}{rlccl}
\psi_{0}^{\nu} & \longrightarrow & \psi_{0} & \text { strongly } & \text { in } H_{L}^{1}(\Omega) \\
\left\{\phi_{0}^{\nu}, \theta_{0}^{\nu}\right\} & \longrightarrow & \left\{\phi_{0}, \theta_{0}\right\} & \begin{array}{l}
\text { strongly } \\
\text { in } V \\
\left\{\phi_{1}^{\nu}, \theta_{1}^{\nu}\right\}
\end{array} & \longrightarrow
\end{array} \phi_{1}, \theta_{1}\right\} \quad \begin{array}{ll}
\text { strongly } & \text { in } L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[) \tag{3.39}
\end{array}
$$

and

$$
\begin{array}{r}
\psi_{0 x}\left(L_{i}\right)=0 ;(i=1,2) \\
\phi_{0 x}(L i)=\theta_{0 x}\left(L_{i}\right) ;(i=1,2)
\end{array}
$$

With $\psi_{0}^{\nu},\left\{\phi_{0}^{\nu}, \theta_{0}^{\nu}\right\}$ and $\left\{\phi_{1}^{\nu}, \theta_{1}^{\nu}\right\}$, above defined, we determine an unique strong solution $\left\{\psi, \phi^{\nu}, \theta^{\nu}\right\}$ satisfying all conditions of Theorem (1).

Using similar arguments of step 3 of Theorem (1). we have

$$
\begin{array}{rll}
\psi^{\nu} \text { is bounded in } & L^{\infty}\left(0, T, H_{L}^{l}(\Omega)\right) \\
\left\{\phi^{\nu}, \theta^{\nu}\right\} \text { is bounded in } & L^{\infty}(0, T, V) \\
\left\{\phi_{t}^{\nu}, \theta_{t}^{\nu}\right\} \text { is bounded in } & L^{\infty}\left(0, T, L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right)
\end{array}
$$

If follows that

$$
\begin{array}{rcccl}
\psi^{\nu} & \stackrel{*}{*} & \psi & \text { in } & L^{\infty}\left(0, T, H_{L}^{1}(\Omega)\right) \\
\left\{\phi^{\nu}, \theta^{\nu}\right\} & \stackrel{*}{*} & \{\phi, \theta\} & \text { in } & L^{\infty}(0, T, V) \\
\left\{\phi_{t}^{\nu}, \theta_{t}^{\nu}\right\} & \stackrel{*}{\rightarrow} & \left\{\phi_{t}, \theta_{t}\right\} & \text { in } & L^{\infty}\left(0, T, L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right)
\end{array}
$$

We suppose that $\left\{\psi^{\nu}, \phi^{\nu}, \theta^{\nu}\right\}$ and $\left\{\psi^{\sigma}, \phi^{\sigma}, \theta^{\sigma}\right\}$ are two strong solutions of $[(\overline{1.1)}-(\overline{1.9)}]$ with initial data

$$
\left\{\psi_{0}^{\nu}, \phi_{0}^{\nu}, \theta_{0}^{\nu}\right\} \quad \text { and }\left\{\psi^{\sigma}, \phi^{\sigma}, \theta^{\sigma}\right\}
$$

After direct calculations, we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} E^{\nu \sigma}(t)+\alpha\left\|\psi^{\nu}-\psi^{\sigma}\right\|^{2}+\beta\left\|\phi_{t}^{\nu}-\phi_{t}^{\sigma}\right\|^{2} \tag{3.40}\\
\leq & \stackrel{C}{C}\left[\left\|\psi^{\nu}(t)-\psi^{\sigma}(t)\right\|^{2}+\left\|\phi_{t}^{\nu}(t)-\phi_{t}^{\sigma}(t)\right\|^{2}+\left\|\phi^{\nu}(t)-\phi^{\sigma}(t)\right\|^{2}\right]
\end{align*}
$$

where

$$
\begin{align*}
E^{\nu \sigma}(t)= & \left\|\psi^{\nu}(t)-\psi^{\sigma}(t)\right\|^{2}+\left\|\phi_{t}^{\nu}(t)-\phi_{t}^{\sigma}(t)\right\|^{2}+\left\|\phi_{x}^{\nu}(t)-\phi_{x}^{\sigma}(t)\right\|^{2} \\
& +\left\|\phi^{\nu}(t)-\phi^{\sigma}(t)\right\|^{2}+\int_{L_{1}}^{L_{2}}\left|\theta_{t}^{\nu}-\theta_{t}^{\sigma}\right|^{2} d x+\int_{L_{1}}^{L_{2}}\left|\theta_{x}^{\nu}-\theta_{x}^{\sigma}\right|^{2} d x \tag{3.41}
\end{align*}
$$

By Gronwall inequality, we have

$$
\begin{equation*}
E^{\nu \sigma}(t) \leq C(T) E^{\nu \sigma}(t) \tag{3.42}
\end{equation*}
$$

From (3.39) and (3.42), we obtain

$$
\begin{array}{rcccc}
\psi^{\nu} & \longrightarrow & \psi & \text { in } & C\left([0, T] ; L^{2}(\Omega)\right) \tag{3.43}\\
\left\{\phi^{\nu}, \theta^{\nu}\right\} & \longrightarrow & \{\phi, \theta\} & \text { in } & C([0, T] ; V) \\
\left\{\phi_{t}^{\nu}, \theta_{t}^{\nu}\right\} & \longrightarrow & \left\{\phi_{t}, \theta_{t}\right\} & \text { in } & C\left([0, T] ; L^{2}(\Omega) \times L^{2}(] L_{1}, L_{2}[)\right)
\end{array}
$$

The rest of the proof of the existence of weak solution is a matter routine.

REFERENCES

1. C. Athanasiadis and I. G. Stratis, On some elliptic transmission problems, Annales Polonici Mathematici, 63 (1996), 137-154.
2. G. Boling and L. Yongsheng, Attractor for Dissipative Klein-Gordon-Shrödinger Equations in \mathbb{R}^{3}, Journal of Differential Equations 136, 356-377 (1997).
3. I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations, I, Bull. Sci. Engrg. Res. Lab. Waseda Univ. 69 (1975), 51-62.
4. I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger Equations, II, J. Math. Anal. Appl. 66 (1978), 358-378.
5. O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear e Quaselinear Elliptic Equations, (1968), London: Academic Press.
6. J. Lagnese, Boundary controllability in problems for a class of second order hyperbolic systems, ESAIM Control Optm. Calc. Var. 2 (1997), 343-357.
7. J. L. Lions, Contrôlabilité Exact Perturbations et Stabilisation de Systèmes Distribués, tome 1, Collection RMA, (1988), Paris: Masson.
8. W. Liu and G. Williams, The exponential decay of non-linear of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.
9. W. Liu and G. Williams, Exact controlability for problems of transmission of the plate equation with lower-order terms, Quart. Appl. Math., 58 (2000), 37-68.
10. A. Marzocchi, J. E. Muñoz Rivera and M. G. Naso, Asymptotic Behavior and Exponential Stability for a Transmission Problem in Thermoelasticity, Math. Meth. Appl. Sci. 25 (2002), 955-980.
[^1]
[^0]: 1 Partially supported by a grant of CNPq, Brazil.
 2000 Mathematics Subject Classification: 35F30, 35L70.

[^1]: Juan A. Soriano and A. M. Lobeiro
 Department of Mathematics,
 Maringá State University,
 Maringá 87020-900, Brazil
 jaspalomino@uem.br and amlobeiro@uem.br

