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The Stabilization Theorems For Parabolic Systems With Analytic
Nonlinearity And Ljapunov Functional

Mikhail Vishnevskii

abstract: Let u(x, t) denote the solution of a boundary value problem for
parabolic system . We say the solution u(x, t) stabilizes as t tends to plus infin-
ity (minus infinity) if the set of all partial limits as t tends to plus infinity (menus
infinity) of the solution u(x, t) consists of a single stationary solution. In this com-
munication we consider the nonlinear parabolic system with analytic dependence of
u(x, t) and gradient of u(x, t) on the space variable and with Liapunov functional.
It is shown that any solution of the problem uniformly bounded for positive t (or for
negative t) stabilizes. In particular the global attractor of this kind of problem con-
sists of stationary solution and connected orbits. The flow on global attractor is a
gradient-like flow. The similar result obtained also for the Canh - Hilliard equation.
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1. Introduction

This is a paper on recent progress in our outstanding of certain dynamical
systems with Ljapunov functional. A class of parabolic systems with variational
structure is a main example. As a principal topic, here, we will study the dynamical
systems with particulary simple dynamic. We will have to determine just how
”simple” the dynamic are. The dynamic of autonomous of ordinary differential
equation d

dtu = f(u), u ∈ Rn is simple in dimensions n = 1, 2. Let ω(u0) denote the
ω-limit set of solution u(t) through u0 = u(0), i.e. the set of accumulation points
of u(t) as t → +∞. The α-limit set is defined analogously with t → −∞. If u(t)
is uniformly bounded, then we know that α(u0), ω(u0) are nonempty, connected
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compact and invariant in both directors subsets of Rn. For n ≤ 2, of course, we
know much more. For n = 2 the Poincare-Bendixson theorem holds. For n = 1 both
α(u0) and ω(u0) consist entirely of stationary solution. Even if 2 ≤ n ≤ ∞ that
statement holds for gradient systems: f(u) = ∇uF (u), because F (u(t)) decreases
strictly along solution, except stationary solution. But there are also substantial
differences.

We say that boundary solution u(t) quasi-stabilizes if the set ω(u0) consists
only stationary solution. If the set ω(u0) consists just one stationary solution we
say that solution u(t) stabilizes or converges. Consequently, if u(t) is bounded
solution of gradient system u(t) quasi-stabilizes. There are in [8], [13] examples
of gradient systems with bounded nonconvergent solutions. In [8] is proved that
every bounded solution stabilizes if F (u) is real analytic function.

Let u(x, t;u0) denote the solution of boundary value problem for parabolic
system with initial date u0. In this paper we assume that u0 ∈ C1 and satisfy
boundary condition. Parabolic system with boundary conditions defines a strongly
continuous for t ≥ 0 semigroup on this subspace. If u(x, t; u0) is bounded in
C1 solution the ω-limit set and the α-limit set can be defined as for ordinary
differential equation above, with the same properties. In [23] (see also [4], [22],
[24], [12]) T.Zelenjak proved the stabilization theorem for quasi-linear parabolic
equation with one space variable and separated nonlinear boundary conditions.
The proof of this theorem is based on continuous Ljapunov functional. T.Zelenjak
construct this functional as a solution of a certain hyperbolic equation.

The stabilization theorem for parabolic equation with one space variable in [11],
[12], [7] are proved by other method: a discrete Ljapunov functional. An extensive
bibliography on discrete Ljapunov functional can be found in [7].

In this paper we consider the parabolic systems with continuous Ljapunov func-
tional (or with variational structure) and analytic dependence of function u and
of ∇u. For such type systems we proved the stabilization theorems. The analytic
dependence of nonlinearity of u,∇u is important. In [14], [15] there are examples
of semi-linear boundary value problem for one parabolic equation with nonlinearity
of class C∞, with Ljapunov functional with space variable ≥ 2 and with bounded
nonconvergent solution.

An important technical part of our arguments, is that investigation of nonlinear
evolution problem was based on a’priori estimates of linear parabolic systems in
weight Hlder classes. This estimates were obtained in [4], [5]. Use of this estimates
helped us to avoid an additional restriction on nonlinear terms.

2. Preliminaries

Let Ω be a bounded domain in Rn with boundary ∂Ω of class C3. Consider the
problem:

ρj(x, u,∇u)uj
t = Lj(u) (1)

x ∈ Ω, t > 0; j = 1, ...,m; u = (u1, ..., um);∇u = (u1
x1

, ..., um
xn

);
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Lj(u) =
∂F (x, u,∇u)

∂uj
−

n∑

i=1

d

dxi

∂F (x, u,∇u)
∂uj

xi

with boundary condition:

Bj(u) = 0, x ∈ ∂Ω, t > 0, j = 1, ..., m (2)

Bj(u) = γjuj + (1− γj)(
n∑

i

∂F (x, u,∇u)
∂uj

xi

cos(n, xi)− gj(x, u))

with γj = 0 or γj = 1 and with initial date:

uj(x, 0) = uj
0(x), x ∈ ∂Ω, j = 1, ..., m. (3)

In (2) n is unit normal vector on ∂Ω, the functions ρj(x, u, p), F (x, u, p), gj(x, u)
are smooth with respect to the space variable and real analytic with respect to
(u, p) ∈ Rm ×Rmn, j = 1, ...,m;

ρj(x, u, p) ≥ ρ > 0, j = 1, ...,m (4)

n∑

i,k=1

m∑

j,l=1

∂2F (x, u, p)
∂uj

xi∂ul
xk

πj
i π

l
k ≥ ν|π|2 (5)

ρ, ν > 0, for every p, π ∈ Rmn, u ∈ Rm.

3. Local and global existence theorem

Denote the E the subset of (C1)m consisting of functions u0(x) = (u1
0(x), ..., um

0 (x)),
which satisfy the boundary conditions (2) Bj(u0(x)) = 0 for x ∈ ∂Ω.

Here we consider the classic solution to the problem (1) - (3). This means the
following: the vector-function u(x, t) is twice continuosly diferentiable by x and
one time by t in QT = Ω× (0, T ) or Q = Ω× (0,∞). The vector function u(x, t) is
continuos together with partial derivatives by xi, i = 1, ..., n in QT . The vector-
function u(x, t) satisfaz in QT to the system (1), the boundary contition (2) on
ΓT = ∂Ω× (0, T ) (or on Γ = ∂Ω× (0,∞ )and the initial data (3)).

Theorem 1 (The local in time existence and continuous dependence of initial data
theorem)

Suppose that problem (1)-(3) satisfies all the above-made assumptions above
hold and u0(x) ∈ E. Then there exists a positive T depending only the problem
(1) - (3) and ||u0||1 such that the problem (1)-(3) has a unique classical solution
u(x, t; u0) in the cylinder QT .

Moreover exist C > 0, δ > 0 such as for all v0 ∈ E, |u0 − v0|Ω1 < δ the
solution u(x, t; v0) be classical solution to the problem (1)-(3) with initial data v0

in the cylinder QT and

|u(x, t; u0)− u(x, t; v0)|QT

1,2+α < C|u0 − v0|Ω1



The Stabilization Theorem 69

|.|QT

1,2+α, α ∈ (0, 1) is the norm in weight Hlder class (see [4], [5]).

Proof.
The theorem is proved in [1], [23].

In such case local in time existence of classic solution of the boundary value
problem (1) -(3) proved by [2], [9], [6], [1], [23].

Theorem 2 (The global existence theorem)
Let the conditions of theorem 1 hold. If in addition

|u(x, t; u0|Ω1 ≤ M1, t ∈ [0, T ]

then u(x, t;u0) ∈ C2+α(Ω), t ∈ [ε, T ], 0 < ε < T and

|u(x, ; u0)|Ω2+α ≤ M2, t ∈ [ε, T ]

Moreover if M1 is bounded for t → +∞, then M2 is also bounded for t → +∞.

Proof.
The theorem is proved in [1], [23].

We note that for the special case of L and n = 2 and with Dirichlet boundary
conditions A.Arkipova constructed global in time solution in [3].

4. Stabilization Theorems

Let u(x, t;u0) be the classic solution of the problem (1)-(3) and

|u(x, t; u0)|Ω1 < M1, t ∈ [0,+∞)

from theorem 2 we obtain

|u(x, t;u0)|Ω2+α < M2, t ∈ [ε,+∞), ε > 0.

Therefore ω-limit set ω(u0) of solution u(x, t;u0) or the set of partial limits for
t → +∞ in the norm C2+β(Ω), 0 < β < α < 1 of solution u(x, t;u0) is nonempty
conneted set.

It is well known that the problem (1) - (3) is gradient like with respect to the
Liapunov (energy) functional

V (u) =
∫

Ω

F (x, u,∇u)dx +
∫

∂Ω

G(x, u), Gu(x, u) = g(x, u)

which is to say that V (u(x, t; u0) decreasing along any non-stationary solution of
the problem (1)-(3):

dV (u(x, t; u0)
dt

=
∫

Ω

m∑

j=1

ρj(x, u(x, t;u0),∇u(x, t; u0))(u
j
t (x, t;u0))2dx
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Consequently the set ω(u0) consists of the stationary solutions v(x) of the problem
(1)-(3):

0 = Lj(v), x ∈ Ω, 0 = Bj(v), x ∈ ∂Ω, j = 1, ...,m.

We denote the set of all stationary solution of the problem (1)-(3) by S.
If the set ω(u0) consists of just one stationary solution v(x), the solution

u(x, t, ;u0) is stabilized (or convergent) and

|u(x, t;u0)− v(x)|Ω2+α → 0, as t → +∞.

Let the solution u(x, t;u0) to be extended for all t < 0 and |u(x, t;u0)|Ω1 < M1

for all t < 0. The α-limit set α(u0) or the set of all partial limits of solution
u(x, t; u0) as t → +∞ in C2+β(Ω) of solution u(x, t;u0) is also nonempty, con-
neted, and consists of stationary solutions of the problem (1)-(3). If the set α(u0)
consists of just one stationary solutionv(x), the solution u(x, t; u0) is stabilized (or
convergent) in backward time.

Theorem 3 Assume that all assumption above hold and

|u(x, t; u0)|Ω1 < M1, t ∈ [0,+∞)

then u(x, t;u0) is stabilized. If

|u(x, t; u0)|Ω1 < M1, t ∈ [0,−∞)

then u(x, t;u0) is stabilized in backward time.
If

|u(x, t; u0)|Ω1 < M1, t ∈ [+∞,−∞)

there are v1, v2 ∈ S, v1 6= v2, such as

|u(x, t;u0)− v1(x)|Ω2+β → 0 t → +∞
|u(x, t; u0)− v2(x)|Ω2+β → 0 t → −∞)

.

Proof.
Idea of the proof of this theorem suggested by [17]. According to the result

of Lojasievicz [10] concerning the real analytic functions and for any real analytic
function G(y) in the neighborhood of 0 with ∇G(0) = 0 there exist the constants
k ∈ (0, 1/2), l > 2, K > 0 such that

C|∇G(γ)| ≥ d(γ, W )l, C|G(γ)| > |∇G(γ)|1−k

|γ| < K, W = {γ ∈ Rn, ∇G(γ) = 0},
For the proof of the main result we extend the result of Lojasievics for parabolic

systems. This estention is concerning in the theorem 4 and 5 below.
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Theorem 4 There are constants k ∈ (0, 1/2), l > 2, K > 0, such that for
arbitrary function u(x) ∈ E and v(x) the staedy state solution to the problem (1) -
(3) |u(x)− v(x)|2+α < K we obtain

||L(u)|| > infv(x)∈S ||u(x)− v(x)||l, ||L(u)|| ≥ ||V (u)− V (v)||1−k

here ||.|| is the norm in the space L2(Ω).

5. Some examples

1.Let us consider the boundary value problem for one parabolic equation with
one space variable:

ut = a(x, u, ux)uxx + b(x, u, ux), x ∈ (0, 1), t > 0

γju(j, t) + (1− γj)(ux(j, t)− gj(u(j, t)) = 0, j = 0, 1, t > 0.

u(x, 0) = u0(x), x ∈ (0, 1)

We assume here that all functions a, b, gj are sufficiently smooth and a(x, u, p) ≥
a0 > 0

For this problem condition (B) holds if the solution ϕ(x0, x, y0, y1) of the Cauchy
problem:

y′′ =
b(x, y, y′)
a(x, y, y′

), y(x0) = y0, y′(x0) = y1.

is determined and regular for all data (x0, y0, y1) ∈ [0, 1]×R×R.

Theorem 5 Let the equation above satisfy (B). Then there exists a pair of func-
tions ρ(x, u, p), F (x, u, p), ϕ(x, u) such that for each solution of problem we also
have:

ρ(x, u, ux)ut = Fu(x, u, ux)− d

dx
Fux(x, u, ux), x ∈ (0, 1), t > 0

γju(j, t)+(1−γj)(F (j, u(j, t), ux(j, t))−ϕj(u(j, t)) = 0, j = 0, 1, t > 0, j = 0, 1.

u(x, o) = u0(x)

ρ(x, u, p) > ρ > 0, Fuxux > ν > 0.

Proof.
The theorem is proved in [23], [22], [4], [24].
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Theorem 6 All bounded in C1([0, 1]) solutions of the problem are stabilized.

Proof.
The theorem is proved in [23], [22], [4], [24].

2. Let us consider the parabolic equation with many space variable of the form:

ρ(x, u,∇u)ut = Fu(x, u,∇u)−
n∑

i=1

d

dxi
Fuxi

(x, u,∇u), x ∈ Ω, t > 0

u(x, t) = 0, (x, t) ∈ Γ = ∂Ω× (0,∞)

or
n∑

i=1

Fuxi
(x, u,∇u) cos(n, xi)− g(x, u) = 0, (x, t) ∈ Γ

u(x, 0) = u0(x)

All bounded solutions of this problem are stabilized.
3. Let us consider the semi-linear parabolic system:

ρj(x, u,∇u)uj
t =

n∑

i,k=1

∂

∂xi
(aj

ik(x)
∂uj

∂xk
0 + fuj , (x, t) ∈ Q, j = 1, ...,m

γju(x, t) + (1− γj)(
n∑

i,k=1

aj
ik(x)

∂uj

∂xk
cos(n, xi)− gj(x, u)) = 0, (x, t) ∈ Γ,

j = 1, ..., m, γj = 1, 0

uj(x, o) = uj
0(x), x ∈ Ω, j = 1, ..., m

All bounded solutions of this problem are stabilized.
In particular to this result is true for Henon - Heilis type system:

ut = uxx + u + n2 − v2, vt = vxx + v − 2uv, x ∈ (0, 1), t > 0

u(i, t) = v(i, t) = 0, i = 0, 1, u(x, 0) = u0(x), v(x, 0) = x0(x), x ∈ (0, 1).

6. Generalization of the results

1. Consider the Canh-Hilliard equation in bounded domain with smooth bound-
ary:

ut = −γ42u+div(∇pa(∇u))+f(x, u), (x, t) ∈ Q∇pa(p) = (ap1 , ..., apn), γ > 0

−γ4∇u(x, t) + (∇pa(∇u), n) = 0, u(x, t) = 0; (x, t) ∈ Γ
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u(x, 0) = u0(x), x ∈ Ω

If the functions a,f are analytic the stabilization theorems are true for this
problem too. (See [18], [19]).

2. Let us consider the semi-linear parabolic equation with nonlocal terms:

µut = M(
∫

Ω

(∇u(x, t))2dx)4u + f(x, u). (x, t) ∈ Q

u(x, t) = 0, (x, t) ∈ Γ

u(x, 0) = u0(x), x ∈ Ω.

If n ≥ 2, the functions M,f are analytic the stabilization theorems are true for
this problem too. (See [16]). If n = 1 and the functions are sufficiently smooth the
stabilization theorems are true for this problem.
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