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1. Introduction

We consider the problem of classification of bounded positive solutions to

(P ) −∇ · (A(|x|)∇u) = B(|x|)|u|q−2u, x ∈ Rn.

Here q > 2, and A, B are weight functions, i.e., a.e. positive measurable functions.
Many authors have dealt with the non weighted case, i.e., with positive solutions
to the equation

(E) −∆u = |u|q−2u, x ∈ Rn,

where q > 2, see for instance [4].
In this case, when n > 2, the critical number

2∗ =
2n

n− 2

appears, and it is known that

if 1 < q < 2∗, all bounded solutions have a first positive zero,

and if q ≥ 2∗, then the solutions are positive in (0,∞).

More recently, in 1993, the case of (E) with a weight in the right hand side,
B(r) = 1

1+rγ , γ > 0, that is the Matukuma equation, was studied by Ni-Yotsutani
[10], Li-Ni [7], [8], [9], and Kawano-Yanagida-Yotsutani [5], where the problem
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−(rn−1u′)′ =
rn−1

1 + rγ
(u+)q−1

u(0) = α > 0
(1.1)

is studied. The following result is due to Kawano-Yanagida-Yotsutani, [5], 1993:
Theorem A. Let γ > 0 and n > 2. Then

(i) If 2 < q ≤ max{2, 2(n−γ)
n−2 }, then for any α > 0, the solution u(·, α) of (1.1)

has a first positive zero in (0,∞).

(ii) If q ≥ 2n
n−2 , then for any α > 0, the solution u(·, α) of (1.1) is positive in

(0,∞) and lim
r→∞

rn−2u(r, α) = ∞.

(iii) If max{p, 2(n−γ)
n−2 } < q < 2n

n−2 , then there exists a unique α∗ > 0 such that
the solution u(·, α) of (1.1) satisfies

- u(r, α) > 0 for all r > 0 with lim
r→∞

rn−2u(r, α) = ∞ whenever α ∈
(0, α∗).

- u(r, α∗) > 0 for all r > 0 with lim
r→∞

rn−2u(r, α∗) = ` ∈ (0,∞).

- u(·, α) has a first zero for any α ∈ (α∗,∞).

Later, in 1995, Yanagida and Yotsutani [11] considered the case of a more
general weight in the right hand side, and they studied the problem

−(rn−1u′)′ = rn−1K(r)(u+)q−1

u(0) = α > 0,
(1.2)

for K satisfying

(K1) K ∈ C1(0,∞), K > 0, rK(r) ∈ L1(0, 1),

(K2)
rK ′(r)
K(r)

decreasing and nonconstant in (0,∞).

They defined the critical numbers −∞ ≤ ` < σ ≤ ∞

σ := lim
r→0

rK ′(r)
K(r)

, ` := lim
r→∞

rK ′(r)
K(r)

, σ > −2, σ > `.

From (K1) σ > −2, and then they set

qσ :=
2(n + σ)

n− 2
, q` := max{2,

2(n + `)
n− 2

},

and proved the following:
Theorem B. Let n > 2 and assume that the weight K satisfies (K1) and (K2).
Then
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(i) If 2 < q ≤ q`, then for any α > 0, the solution u(·, α) of (1.2) has a first
positive zero in (0,∞).

(ii) If q ≥ qσ, then for any α > 0, the solution u(·, α) of (1.2) is positive in (0,∞)
and lim

r→∞
rn−2u(r, α) = ∞.

(iii) If q` < q < qσ, then there exists a unique α∗ > 0 such that the solution u(·, α)
of (1.2) satisfies

- u(r, α) > 0 for all r > 0 with lim
r→∞

rn−2u(r, α) = ∞ whenever α ∈
(0, α∗).

- u(r, α) > 0 for all r > 0 with lim
r→∞

rn−2u(r, α) = ` ∈ (0,∞) whenever
α = α∗.

- u(·, α) has a first zero for any α ∈ (α∗,∞).

Clearly, the result in Theorem A is a particular case of that of Theorem B, since
K(r) = 1

1+rγ satisfies all the assumptions with σ = 0 and ` = −γ.
We will deal here with the case A = B in (P ) when the solutions are radially

symmetric:

(Pr)

{
−(b(r)u′)′ = b(r)|u|q−2u(r), r ∈ (0,∞),

lim
r→0

b(r)u′(r) = 0,

where |x| = r and now the function b(r) := rN−1B(r) is a positive function satis-
fying some regularity and growth conditions. We will see in section 3 that under
some extra assumption on the weight K in (1.2), the problem considered in [11] is
a particular case of ours.

Since we are interested only in positive solutions, we will study the initial value
problem

(IV P )

{
−(b(r)u′)′ = b(r)(u+)q−1, r ∈ (0,∞),
u(0) = α > 0, lim

r→0
b(r)u′(r) = 0.

Our note is organized as follows: in section 2 we will introduce some necessary
conditions to deal with with our problem and we will state our main results which
are a particular case of the work in [2]. Finally, in section 3 we compare our result
with the one given in Theorem B.

2. Main results

We introduce next some necessary assumptions to deal with (IV P ). We note
that if u is a solution to our problem, then

−b(r)u′(r) =
∫ r

0

b(s)(u+)q−1(s)ds > 0
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for all r > 0, and thus u′(r) < 0 for all r > 0. If for some positive R it happens
that u(R) = 0, u(r) > 0 for r ∈ (0, R), then for all r ≥ R and such that u(r) ≤ 0,
we have that

|u′(r)| = (b(r))−1

∫ R

0

b(s)(u+)q−1(s)ds

and thus

u(r) = −C

∫ r

R

(b(τ))−1dτ < 0 for some positive constant C.

implying that u remains negative for all r ≥ R. If on the contrary it holds that
u(r) > 0 for all r > 0, then

|u′(r)| = (b(r))−1

∫ r

0

b(s)(u+)q−1(s)ds,

and thus, for r ≥ s we have

|u′(r)| ≥ (b(r))−1

∫ s

0

b(τ)(u+)q−1(τ)dτ,

implying that

u(s) ≥
(∫ s

0

b(τ)(u+)q−1(τ)dτ
) ∫ r

s

(b(τ))−1dτ,

and we conclude that 1/b ∈ L1(s,∞) for all s > 0. Putting it in another way, if
1/b 6 ∈ L1(1,∞), then u must have a first positive zero. Therefore, keeping in mind
that we are interested in the positive solutions to (Pr), there is no loss of generality
in assuming that 1/b ∈ L1(s,∞) for all s > 0.

Moreover, if u is any solution to our problem, then for r ≥ s small enough it
holds that

b|u′|(r)− b|u′|(s)
(u+)q−1(r)

≥
∫ r

s

b(τ)dτ,

and thus
b ∈ L1(0, 1)

is a necessary condition for the existence of solutions to (IV P ). Finally, it can be
shown that (∫ r

0

b(τ)dτ
)
(1/b) ∈ L1(0, 1)

is necessary and sufficient for the existence and uniqueness of solutions to (IV P ).
Hence, our basic assumptions on the weight b will be:

(H1) b ∈ C1(R+,R+), (R+ = (0,∞))

(H2) b ∈ L1(0, 1), 1/b ∈ L1(1,∞)
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β(r) :=
∫ r

0

b(s)ds, h(r) =
∫ ∞

r

(b(s))−1ds,

(H3) (β/b) ∈ L1(0, 1).

By a solution to (IV P ) we understand an absolutely continuous function u
defined in the interval [0,∞) such that b(r)u′ is also absolutely continuous in the
open interval (0,∞) and satisfies the equation in (IV P ).

We will show that the behavior of function

r 7→ Bq(r) := β(r)hq/2(r), (2.1)

is crucial in the study of solutions to (IV P ). This function played a key role
when studying the problem of existence of positive solutions to the corresponding
Dirichlet problem associated to our equation, see [1]. The behavior at 0 of this
function is closely related to the inclusion

V 2
0 (b) ↪→ Lq(b)

of weighted Sobolev spaces. For a proper definition of these spaces we refer to
Kufner-Opic [6]. Now also the behavior at ∞ of this function will be crucial for
our classification results. Let us define

U := {s ≥ 2 | sup
0<r<1

Bs(r) < ∞}, W := {s ≥ 2 | sup
1≤r<∞

Bs(r) < ∞},

and put

ρ0 = supU , ρ∞ = infW, (2.2)

where we set ρ∞ = ∞ if W = ∅. It can be proved that condition (H3) implies that
2 ∈ U and thus U 6= ∅. Observe that

[2, ρ0) ⊆ U , (ρ∞,∞) ⊆ W.

We will prove in section 2 that these critical numbers can be computed as

ρ0 = max
{

2, 2 lim inf
r→0

| log(β(r))|
| log(h(r))|

}
, ρ∞ = max

{
2, 2 lim sup

r→∞
| log(β(r))|
| log(h(r))|

}
.

We will denote the unique solution to (IV P ) by u(r, α). As it is standard in
the literature, we will say that

- u(r, α) is a crossing solution if it has a zero in (0,∞).

- u(r, α) is a slowly decaying solution if lim
r→∞

u(r)
h(r) = ∞.

- u(r, α) is a rapidly decaying solution if lim
r→∞

u(r)
h(r) = ` ∈ (0,∞).
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In the case that u is a crossing solution, we will denote its (unique) zero by z(α).
Our main results consist of a classification of the solutions according to the

relative position of q with respect to the critical values ρ0 and ρ∞. In these results,
the function

r 7→ c(r) := 2
b2(r)

∫∞
r

(b(s))−1ds

β(r)

plays a fundamental role, the connection of this function with the critical values
follows since

lim inf
r→0

c(r) ≤ lim inf
r→0

2
| log(β(r))|
| log(h(r))| = ρ0,

and

ρ∞ = 2 lim sup
r→∞

| log(β(r))|
| log(h(r))| ≤ lim sup

r→∞
c(r).

Also, we note that in the non weighted case, that is, b(r) = rn−1, n > 2, we have

β(r) =
rn

n
, h(r) =

r2−n

n− 2
,

and thus
c(r) ≡ 2n

n− 2
.

Our first classification result generalizes the non weighted case:

Theorem 2.1 Let the weight b satisfy assumptions (H1), (H2) and (H3). Let

q > 2 be fixed and assume that c(r) = 2 b2(r)
∫∞

r
(b(s))−1ds

β(r) ≡ ρ∗ . Then h(0) = ∞,
ρ∗ > 2 and

(i) If q < ρ∗, then u(r, α) a crossing solution for any α > 0.

(ii) If q = ρ∗, then u is the rapidly decaying solution given by

u(r, α) =
( C

Cα1− ρ∗
2 + h1− ρ∗

2

)2/(ρ∗−2)

, (2.3)

where C is a positive constant.

(iii) If q > ρ∗, then u(r, α) a slowly decaying solution for any α > 0.

Finally, we generalize Theorem 2 in [11].

Theorem 2.2 Let the weight b satisfy assumptions (H1), (H2) and (H3), and
assume that they also satisfy

the function r 7→ c(r) is decreasing on (0,∞).

If q ≤ ρ∗∞, then any solution of (IV P ) is crossing.
If q ≥ ρ∗0, then any solution of (IV P ) is slowly decaying.
If ρ∗∞ < q < ρ∗0, then there exists α∗ such that
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- u(·, α) is crossing for any α > α∗.

- u(·, α∗) is rapidly decaying.

- u(·, α) is slowly decaying for any α < α∗.

This result, as well as some very strong generalizations will appear in [2].

3. Final remarks

In this section, we will compare our result in Theorem 2.2 with Theorem B
stated in the introduction. To this end, we will show that if in addition to (K1)
and (K2), we assume that

K1/2 ∈ L1(0, 1) and K1/2 6∈ L1(1,∞), (3.1)

then the assumptions in Theorem 2.2 are satisfied. Indeed, as in [3], we make the
change of variable

r = r(t) :=
∫ t

0

K1/2(τ)dτ, u(r) = v(t),

and the problem

−(tn−1v′)′ = tn−1K(t)(v+)q−1, t ∈ (0,∞),
(
′ =

d

dt

)
,

v(0) = α > 0,

is transformed into

−(b(r)u′)′ = b(r)(u+)q−1, r ∈ (0,∞),
(
′ =

d

dr

)
,

u(0) = α > 0,

where
b(r) = tn−1K1/2(t).

By (3.1), r(0) = 0 and r(∞) = ∞. Next, we will see that assumptions (H1), (H2),
and (H3) are satisfied for this b. Clearly, we only need to check that the first in
(H2) and (H3) are satisfied. We begin by showing that b ∈ L1(0, 1). Indeed, by
making the change of variable r =

∫ t

0
K1/2(τ)dτ , we find that

∫ 1

0

b(r)dr =
∫ t1

0

tn−1K(t)dt

≤ tn−2
1

∫ t1

0

tK(t)dt,
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where here and in the rest of this note t1 is defined by 1 =
∫ t1
0

K1/2(τ)dτ , and thus
b ∈ L1(0, 1). Also,
∫ 1

0

(b(r))−1
(∫ r

0

b(τ)dτ
)
dr =

∫ t1

0

t1−n
(∫ t

0

sn−1K(s)ds
)
dt

=
t2−n

2− n

∫ t

0

sn−1K(s)ds
∣∣∣
t1

0
+

1
n− 2

∫ t1

0

tK(t)dt

≤ lim
t→0

t2−n

n− 2

∫ t

0

sn−1K(s)ds +
1

n− 2

∫ t1

0

tK(t)dt

≤ lim
t→0

1
n− 2

∫ t

0

sK(s)ds +
1

n− 2

∫ t1

0

tK(t)dt

=
1

n− 2

∫ t1

0

tK(t)dt,

implying that (H3) holds.
Finally, we will see that under (K2), c is decreasing, and thus our theorem

applies: Indeed, it can be seen that in the variable t,

c(r) = 2
b2(r)

∫∞
r

(b(s))−1ds

β(r)
=

2
n− 2

tnK(t)∫ t

0
sn−1K(s)ds

,

and
tc′(t)
c(t)

+
n− 2

2
c(t) = n +

tK ′(t)
K(t)

,

hence, if (K2) holds, it must be that

tc′(t)
c(t)

+
n− 2

2
c(t) is decreasing.

Hence, if c′(t) > 0 for t ∈ (0, t0), then tc′(t)
c(t) must decrease in (0, t0). This, together

with the fact that

lim
t→0

tc′(t)
c(t)

= 0,

implies that c′(t) < 0 in (0, t0), a contradiction. Hence, there are points t > 0 in
every interval (0, t0) where c′(t) < 0, implying that if c is not always decreasing, it
must have a minimum, which is not possible.
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