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1. Introduction

The goal of this paper is to prove the existence, uniqueness and the energy decay
of global regular solutions of the KdV equation in a bounded domain approximating
it by the Kuramoto-Sivashinsky equations.

In Q = (0, 1) × (0, T ) ; x ∈ (0, 1), t ∈ (0, T ) we consider the generalized
Kuramoto-Sivashinsky equation,

ut + uux + µuxxx + ν(uxx + uxxxx) = 0, (1.1)

where µ, ν are positive constants.
This equation, in the case µ = 0, was derived independently by Sivashinsky

[1] and Kuramoto [2] with the purpose to model amplitude and phase expansion
of pattern formations in different physical situations, for example, in the theory
of a flame propagation in turbulent flows of gaseous combustible mixtures, see
Sivashinsky [1], and in the theory of turbulence of wave fronts in reaction-diffusion
systems, Kuramoto [2]. The generalized KdV-KS equation (1.1) arises in modeling
of long waves in a viscous fluid flowing down on an inclined plane. When ν = 0,
we have the KdV equation studied by various authors [6-12].

From the mathematical point of a view, the history of the KdV equation is
much longer than the one of the KS equation. Well-posedness of the Cauchy
problem for the KdV equation in various classes of solutions was studied in [6-9].
Solvability of mixed problems for the KdV equation and for the KdV equation
with dissipation in bounded domains studied Bubnov [11], Hublov [12], see also

∗ The author was partially supported by a grant from CNPq-Brazil.



KdV equation in bounded domains 31

[19]. In [10], Bui An Ton proved well-posedness of the mixed problem for the
KdV equation in (0,∞) × (0, T ) approximating the KdV equation by the KS
type equations. Mixed problems for some classes of third order equations studied
Kozhanov [13] and Larkin [18]. The Cauchy problem for (1.1) was considered by
Biagioni et al [6]. They proved the existence of a unique strong global solution
and studied asymptotic behaviour of solutions as ν tends to zero. This gave a
solution to the Cauchy problem for the KdV equation as a limit of a sequence of
solutions to the Cauchy problem for the KdV-KS equations. The Cauchy problem
for the KS equation considered Tadmor [3] and Guo [5]. In [5], Guo studied also
solvability of the mixed problem for the KS equation in bounded domains in one-
dimensional and multi-dimensional cases. Cousin and Larkin [4] proved global
well-posedness of the mixed problem for the KS equation in classes of regular
solutions in bounded domains with moving boundaries. The exponential decay of
L2− norms of solutions as t → ∞ was proved.

In the present paper we study asymptotics of solutions to a mixed problem for
(1.1) when ν tends to zero in order to prove therewith that solutions to a mixed
problem for the KdV equation may be obtained as singular limits of solutions to a
corresponding mixed problem for the KS equation. The passage to the limit as ν
tends to zero is singular because we loose one boundary condition in x = 0.

We consider in the rectangle Q the mixed problem for (1.1) which is different
from the one considered in [4,5,10]. In Section 2, we state our main results. In
Section 3, exploiting the Faedo-Galerkin method with a special basis, we prove
solvability of the mixed problem for (1.1) when ν > 0. In Section 4, we prove the
existence and uniqueness of a strong solution to the mixed problem for the KdV
equation letting ν tend to zero. It must be noted that the Fourier transform,
commonly used to solve the Cauchy problem, see [ 6-9], is not suitable in the
case of the mixed problem. Instead, we use the Faedo-Galerkin method to solve
the mixed problem for (1.1) and weighted estimates to pass to the limit as ν
tends to zero. In Section 5, we show that if ‖u0‖L2(0,1) is sufficiently small, then
‖u(t)‖L2(0,1) decreases exponentially in time and no dissipativity on the boundaries
of the domain is needed for this.

2. Notations and results

We use standard notations, see Lions-Magenes [16], some special cases will be
given below. We denote

Q = (0, 1)× (0, T ), (u, v)(t) =
∫ 1

0

u(x, t)v(x, t)dx, ‖u(t)‖2 = (u, u)(t),

Dj = ∂j

∂xj , ‖u‖2 = ‖u‖2L2(Q), Hm(D) denotes the Sobolev space Wm
2 (D).

We consider in Q the following problem,

Lu = ut + uux + uxxx + ν(uxx + uxxxx) = 0 in Q, (2.1)

u(x, 0) = u0(x), x ∈ (0, 1), (2.2)
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u(0, t) = uxx(0, t) = u(1, t) = ux(1, t) + νuxx(1, t) = 0, t > 0. (2.3)

Our result on solvability of (2.1)-(2.3) is the following.

Theorem 1 Let ν > 0 and u0 ∈ H4(0, 1) ∩ H1
0 (0, 1); u0xx(0) = u0x(1) +

νu0xx(1) = 0.
Then there exists a unique solution to (2.1)-(2.3) from the class,

u ∈ C(0, T ; H2(0, 1) ∩H1
0 (0, 1)) ∩ L2(0, T ; H4(0, 1) ∩H1

0 (0, 1)),

ut ∈ L∞(0, T ; L2(0, 1)) ∩ L2(0, T ;H2(0, 1) ∩H1
0 (0, 1)),

utt ∈ L2(0, T ; H−2(0, 1)).

When ν tends to zero, we obtain the following result.

Theorem 2 Let u0 ∈ H4(0, 1) ∩H1
0 (0, 1), u0x(1) = 0.

Then there exists a unique solution to the problem,

ut + uux + uxxx = 0, in Q, (2.4)

u(x, 0) = u0(x), x ∈ (0, 1), (2.5)

u(0, t) = u(1, t) = ux(1, t) = 0 (2.6)

from the class,

u ∈ L∞(0, T ;H3(0, 1) ∩H1
0 (0, 1)), ut ∈ L∞(0, T ; L2(0, 1)).

In reality, the sharper result is true.

Theorem 3 Let u0 ∈ H3(0, 1)∩H1
0 (0, 1), u0x(1) = 0. Then all the assertions of

Theorem 2 are true.

3. Solvability of the problem (2.1)-(2.3)

Lemma 1 For every ν > 0 there exist eigenfunctions of the following problem,

νD4wj = λjwj ,

wj(0) = wj(1) = wjxx(0) = wjx(1) + νwjxx(1) = 0 (3.1)

which create a basis in H4(0, 1) orthonormal in L2(0, 1).

Proof: It is easy to see that if u, v ∈ H4(0, 1) and satisfy boundary conditions of
Lemma 1, then

ν(D4u, v) = ν(u,D4v) and ν(D4u, u) = ν‖D2u‖2 + u2
x(1).

This means that the operator corresponding to the problem above is selfadjoint
and positive. Hence, assertions of Lemma 1 follow from the well-known facts, see
Coddington and Levinson [15], Mikhailov [14]. 2
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We construct approximate solutions to (2.1)-(2.3) in the form,

uN (x, t) =
N∑

j=1

gN
j (t)wj(x),

where wj(x) are defined in Lemma 1 and gN
j (t) are to be found as solutions to

the Cauchy problem for the system of N ordinary differential equations,

(LuN , wj)(t) = (uN
t , wj)(t) + (uNuN

x , wj)(t)

+(D3u
N , wj)(t) + ν(uN

xx, wj)(t) + ν(D4u
N , wj)(t) = 0, (3.2)

gN
j (0) = (u0, wj), j = 1, ..., N. (3.3)

System (3.2) is a normal nonlinear ODE system, hence, there exist on some
interval 0, TN ) functions gN

1 (t), ..., gN
N (t). To extend them to any T < ∞ and

to pass to the limit as N → ∞ , we prove the following estimates:

‖uN (t)‖2 +
∫ t

0

uN2
x (0, s)ds + ν

∫ t

0

‖uN
xx(s)‖2ds ≤ C1‖u0‖2, (3.4)

where C1 does not depend on N, t ∈ (0, T ), ν > 0.

ν | D2u
N (1, t) |2 +‖D2u

N (t)‖2 + ν

∫ t

0

‖D4u
N (s)‖2ds

≤ C2(ν)(ν | u0xx(1) |2 +‖u0‖2H2(0,1)), (3.5)

‖uN
t (t)‖2 + ν

∫ t

0

‖uN
sxx(s)‖2ds ≤ C3‖u0‖2H4(0,1)∩H1

0 (0,1), (3.6)

where C2, C3 do not depend on N, t ∈ (0, T ).
Estimates (3.4), (3.5), (3.6) imply that uN (x, t) can be extended to all T ∈

(0,∞) and that approximations (uN ) converge as N → ∞. Passing to the limit
in (3.2), we prove the existence part of Theorem 1. Uniqueness can be proved by
the standard methods, see [ 4 ]. Thus Theorem 1 is proved.

4. Solvability of the KdV equation

Theorem 1 guarantees well-posedness of the problem (2.1)-(2.3) for all ν > 0.
Our aim now is to pass to the limit as ν tends to zero. For this purpose we need a
priori estimates of solutions to (2.1)-(2.3) independent of ν > 0. First we observe
that estimate (3.4) does not depend on ν, but (3.5), (3.6) do depend.

Due to Theorem 1, for all ν > 0 we have the integral identity,

(uνt, v)(t) + (uνuνx, v)(t) + (D3uν , v)(t)

+ν(D2uν , v)(t) + ν(D4uν , v)(t) = 0 (4.1)
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which is true for any v ∈ L2(0, 1).
It can be shown that uν satisfy uniformly in ν > 0 the following inclusions:

uν ∈ L∞(0, T ; L2(0, 1)) ∩ L2(0, T ; H1
0 (0, 1)) ⊂ L2(0, T ; C1/2[0, 1]),

uνt ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ; H1
0 (0, 1)) ⊂ L2(0, T ; C1/2[0, 1]),

ν1/2uν ∈ L2(0, T ; H2(0, 1)); ν1/2uνt ∈ L2(0, T ;H2(0, 1)).

Proof of Theorem 2

Proof: Letting ν → 0, we have a sequence of functions uν satisfying (4.1). The
last inclusions imply that there exists a subsequence of uν , which we denote also
by uν , and a function U such that

uν → U strongly in C(Q̄)
uν → U weakly − star in L∞(0, T ; H1

0 (0, 1))
uνt → Ut weakly − star in L∞(0, T ; L2(0, 1))
uνt → Ut weakly in L2(0, T ; H1

0 (0, 1))
νuνxx → 0 weakly − star in L∞(0, T ;L2(0, t))).

Using these convergences, we prove

Theorem 4 There exists at least one weak solution of the problem (2.4)-(2.6):
U ∈ C(0, T ; H1

0 (0, 1)), Ut ∈ L∞(0, T ; L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1)), satisfying the

following identity,

(Ut, v)(t) + (UUx, v)(t) + (Ux, vxx)(t) = 0,

where v(x, t) is an arbitrary function from W = { v ∈ L2(0, T ;H2(0, 1)∩H1
0 (0, 1)); vx(0, t) =

0; t ∈ (0, T )}.

Proof: Due to Theorem 1, for all ν ∈ (0, 1/2) the following identity is valid
∫ T

0

{(uνt, v)(t) + (uνuνx, v)(t) + (D3uν , v)(t)

ν(D2uν , v)(t) + ν(D4uν , v)(t)} dt = 0,

where v is an arbitrary function from L2(0, T ; L2(0, 1)), in particularly, we can
take v an arbitrary function from W. Then, taking into account boundary condi-
tions (2.3), we can rewrite the last identity in the form,

∫ T

0

{uνt, v)(t) + (uνuνx, v)(t) + (uνx, vxx)(t)

ν(D2uν , v)(t) + ν(D2uν , D2v)(t)}dt = 0.

Passing to the limit as ν → 0, we obtain

(Ut, v)(t) + (UUx, v)(t) + (Ux, vxx)(t) = 0
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for a.e. t ∈ (0, T ) and for all v ∈ W. The boundary conditions U(0, t) = U(1, t) =
0 obviously are fulfilled and the boundary condition Ux(1, t) = 0 is fulfilled in a
weak sense. It is clear that functions U and v have conjugate boundary conditions.
2

Taking into account properties of U, we can write

(Ux, vxx)(t) = (F, v)(t), (4.2)

where
F = −Ut − UUx ∈ L2(0, 1).

It means that U is a weak solution to the following boundary value problem,

Uxxx = F (x), x ∈ (0, 1), (4.3)

U(0) = U(1) = Ux(1) = 0. (4.4)

Now we must prove that a weak solution is regular. To prove this fact, we use the
following

Lemma 2 A weak solution to (4.2)-(4.4) is uniquely defined.

On the other hand, it is easy to verify that the function

U0(x) = K1x + K2x
2 +

1
2

∫ x

0

z2F (z)dz − x

∫ x

0

zF (z)dz +
x2

2

∫ x

0

F (z)dz

belongs to H3(0, 1), U0(0) = 0 for any F ∈ L2(0, 1), and satisfies the equation,

U0xxx = F (x). (4.5)

Given F (x), the constants K1, K2 can be found to satisfy the boundary conditions,

U0(1) = U0x(1) = 0. (4.6)

Multiplying (4.5) by any v ∈ W and integrating by parts, we come to the
identity,

(U0x, vxx)(t) = (F, v)(t) for a.e. t ∈ (0, T ).

Substracting this from (4.2), we get

((U − U0)x, vxx)(t) = 0.

By Lemma 2, U − U0 = 0, hence, U = U0 a.e. in (0, 1), It implies that U ∈
H3(0, 1).

Returning to (4.2), we rewrite it as

Ut + UUx + Uxxx = 0 a.e. in Q,

U(0) = U(1) = Ux(1) = 0,

U(x, 0) = u0(x). (4.7)

This proves the existence part of Theorem 2.
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Uniqueness

Let u1, u2 be two distinct solutions to (4.7). Then for z = u1 − u2 we have

zt +
1
2
[(u1 + u2)z]x + zxxx = 0, (4.8)

z(0) = z(1) = zx(1) = 0, (4.9)

z(x, 0) = 0. (4.10)

Multiplying (4.8) by eλxz, integrating over (0,1), putting λ = 1 and taking
into account properties of U,

max
Q̄

| u1(x, t) + u2(x, t) | ≤ M ≤ ∞,

we obtain

(ex, z2)(t) ≤ C

∫ t

0

(ex, z2)(s)ds.

By the Gronwall lemma, (ex, z2)(t) = 0, consequently, ‖z(t)‖ = 0 for all
t ∈ (0, T ). The proof of Theorem 2 is completed. 2

5. Stability

We have the following result.

Theorem 5 There exist positive constants λ ∈ (0, 1) and K such that if ‖u0‖ ≤
3/e, then

‖u(t)‖2L2(0,1) ≤ K‖u0‖2L2(0,1)e
−χt,

where χ = λ
2eλ .

Proof: By Theorem 2 and by the arguments similar to those used by Browder
[17], for all t > 0 u(x, t) is a strong solution to the following problem,

Lu = ut + uux + uxxx = 0 in Q = (0, 1)× (0,∞), (5.1)

u(x, 0) = u0(x) in (0, 1), (5.2)

u(0, t) = u(1, t) = ux(1, t) = 0, t > 0. (5.3)

Multiplying (5.1) by u and using (5.3), we get

d

dt
‖u(t)‖2 + u2

x(0, t) = 0.

This implies
‖u(t)‖ ≤ ‖u0‖ for all t > 0. (5.4)

From the identity (eλxu, Lu)(t) = 0, for some λ ∈ (0, 1) we obtain

d

dt
(eλx, u2)(t) +

λ

2eλ
(eλx, u2)(t) ≤ 0.

This implies the assertion of Theorem 5. 2
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