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1. Introduction

The goal of this paper is to prove the existence, uniqueness and the energy decay
of global regular solutions of the KdV equation in a bounded domain approximating
it by the Kuramoto-Sivashinsky equations.

In @ = (0,1) x (0,7); =z € (0,1),t € (0,T) we consider the generalized
Kuramoto-Sivashinsky equation,

Up + Uy + PUgge T V(uxx + Uaca:xac) =0, (11)

where p, v are positive constants.

This equation, in the case p = 0, was derived independently by Sivashinsky
[1] and Kuramoto [2] with the purpose to model amplitude and phase expansion
of pattern formations in different physical situations, for example, in the theory
of a flame propagation in turbulent flows of gaseous combustible mixtures, see
Sivashinsky [1], and in the theory of turbulence of wave fronts in reaction-diffusion
systems, Kuramoto [2]. The generalized KdV-KS equation (1.1) arises in modeling
of long waves in a viscous fluid flowing down on an inclined plane. When v = 0,
we have the KdV equation studied by various authors [6-12].

From the mathematical point of a view, the history of the KdV equation is
much longer than the one of the KS equation. Well-posedness of the Cauchy
problem for the KdV equation in various classes of solutions was studied in [6-9].
Solvability of mixed problems for the KdV equation and for the KdV equation
with dissipation in bounded domains studied Bubnov [11], Hublov [12], see also

* The author was partially supported by a grant from CNPg-Brazil.



KDV EQUATION IN BOUNDED DOMAINS 31

[19]. In [10], Bui An Ton proved well-posedness of the mixed problem for the
KdV equation in (0,00) x (0,7) approximating the KdV equation by the KS
type equations. Mixed problems for some classes of third order equations studied
Kozhanov [13] and Larkin [18]. The Cauchy problem for (1.1) was considered by
Biagioni et al [6]. They proved the existence of a unique strong global solution
and studied asymptotic behaviour of solutions as v tends to zero. This gave a
solution to the Cauchy problem for the KdV equation as a limit of a sequence of
solutions to the Cauchy problem for the KdV-KS equations. The Cauchy problem
for the KS equation considered Tadmor [3] and Guo [5]. In [5], Guo studied also
solvability of the mixed problem for the KS equation in bounded domains in one-
dimensional and multi-dimensional cases. Cousin and Larkin [4] proved global
well-posedness of the mixed problem for the KS equation in classes of regular
solutions in bounded domains with moving boundaries. The exponential decay of
L?— norms of solutions as t — oo was proved.

In the present paper we study asymptotics of solutions to a mixed problem for
(1.1) when v tends to zero in order to prove therewith that solutions to a mixed
problem for the KdV equation may be obtained as singular limits of solutions to a
corresponding mixed problem for the KS equation. The passage to the limit as v
tends to zero is singular because we loose one boundary condition in x = 0.

We consider in the rectangle @ the mixed problem for (1.1) which is different
from the one considered in [4,5,10]. In Section 2, we state our main results. In
Section 3, exploiting the Faedo-Galerkin method with a special basis, we prove
solvability of the mixed problem for (1.1) when v > 0. In Section 4, we prove the
existence and uniqueness of a strong solution to the mixed problem for the KdV
equation letting v tend to zero. It must be noted that the Fourier transform,
commonly used to solve the Cauchy problem, see [ 6-9], is not suitable in the
case of the mixed problem. Instead, we use the Faedo-Galerkin method to solve
the mixed problem for (1.1) and weighted estimates to pass to the limit as v
tends to zero. In Section 5, we show that if |[ug| z2(0,1) is sufficiently small, then
llu(t)]|L2(0,1) decreases exponentially in time and no dissipativity on the boundaries
of the domain is needed for this.

2. Notations and results

We use standard notations, see Lions-Magenes [16], some special cases will be
given below. We denote

1
Q= (0,1) x(0,T), (u,v)(t) :/0 u(@, tyo(z, t)dz, [lu(t)l* = (u,u)(t),

D; = 2 lul|?> = Hu||%2(Q), H™(D) denotes the Sobolev space WJ*(D).

~ 9xI»

We consider in @ the following problem,
Lu = up + vty + Uggr + V(Upz + Ugzer) =0 in Q, (2.1)

u(z,0) = uo(x), z € (0,1), (2.2)
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w(0,t) = Uz (0,8) = w(1,t) = uzp(1,t) + vy, (1,¢) =0, t > 0. (2.3)
Our result on solvability of (2.1)-(2.3) is the following.

Theorem 1 Let v > 0 and wug € H*(0,1) N HL(0,1); upsx(0) = ugx(1) +
Ve (1) = 0.
Then there exists a unique solution to (2.1)-(2.3) from the class,

u € C(0,T; H*(0,1) N Hy(0,1)) N L*(0,T; H*(0,1) N HJ(0,1)),
up € L(0,T; L2(0,1)) N L*(0, T; H*(0,1) N Hy (0, 1)),
ug € L*(0,T; H2(0,1)).
When v tends to zero, we obtain the following result.

Theorem 2 Let uy € H*(0,1) N H(0,1), upx(1) = 0.
Then there exists a unique solution to the problem,

Up + Uy + Ugee = 0, 0 Q, (2.4)
u(x,0) = up(x), z € (0,1), (2.5)
uw(0,t) = u(l,t) = uy(1,¢) =0 (2.6)

from the class,
u € L*(0,T; H*(0,1) N H(0,1)), us € L>=(0,T; L*(0,1)).
In reality, the sharper result is true.

Theorem 3 Let ug € H?(0,1) N H(0,1), uos(1) = 0. Then all the assertions of
Theorem 2 are true.

3. Solvability of the problem (2.1)-(2.3)
Lemma 1 For every v > 0 there exist eigenfunctions of the following problem,
VD4wj = )\j’w]‘,
w;(0) = w;(1) = 10 (0) = wya (1) + vaen (1) = 0 (3.1)

which create a basis in H*(0,1) orthonormal in L?(0,1).

Proof: It is easy to see that if u,v € H*(0,1) and satisfy boundary conditions of
Lemma 1, then

v(Dyu,v) = v(u, Dyv) and v(Dyu,u) = v||Doul)® + u2(1).

This means that the operator corresponding to the problem above is selfadjoint
and positive. Hence, assertions of Lemma 1 follow from the well-known facts, see
Coddington and Levinson [15], Mikhailov [14]. O
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We construct approximate solutions to (2.1)-(2.3) in the form,
N
uN(xv t) = Zg;v(t)wj(x)v
j=1

where w;(z) are defined in Lemma 1 and g} (t) are to be found as solutions to
the Cauchy problem for the system of N ordinary differential equations,

(Lu®, w;)(t) = (uf,w;)(£) + (uNug,wy)(¢)
+(D3u®  w;) (1) + v(ul,, w;) (t) + v(Dyu, w;) (t) = 0, (3.2)

g (0) = (uo,w;), j=1,...,N. (3.3)

System (3.2) is a normal nonlinear ODE system, hence, there exist on some
interval 0,Ty) functions g (t),...,gN(t). To extend them to any T < oo and
to pass to the limit as N — oo, we prove the following estimates:

t t
HuN(t)||2+/0 UiVQ(O,S)dSHJ/O luz(s)1ds < Ciluoll?, (3-4)

where C; does not depend on N,t € (0,T), v > 0.
t

v | Dau® (1,8) 2 +|| Dau™ (1) +V/ [Dau™ (s)[|*ds
0

< Co(V)(v | woaw (1) [ +luollFr20.1)); (3.5)

t
la O + v / a2 (9)Pds < ClluolZao.nymmms 0.1y (3.6)

where Cs, C5 do not depend on N,t € (0,7).

Estimates (3.4), (3.5), (3.6) imply that ™ (z,t) can be extended to all T €
(0,00) and that approximations (u’) converge as N — oo. Passing to the limit
in (3.2), we prove the existence part of Theorem 1. Uniqueness can be proved by
the standard methods, see [ 4 |. Thus Theorem 1 is proved.

4. Solvability of the KdV equation

Theorem 1 guarantees well-posedness of the problem (2.1)-(2.3) for all v > 0.
Our aim now is to pass to the limit as v tends to zero. For this purpose we need a
priori estimates of solutions to (2.1)-(2.3) independent of v > 0. First we observe
that estimate (3.4) does not depend on v, but (3.5), (3.6) do depend.

Due to Theorem 1, for all ¥ > 0 we have the integral identity,

(tpt, 0)(t) + (Up Uy, v)(t) + (Dauy,v)(t)

+v(Dauy,v)(t) + v(Dauy,v)(t) =0 (4.1)
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which is true for any v € L?(0,1).
It can be shown that u, satisfy uniformly in v > 0 the following inclusions:

u, € L=(0,T;L*(0,1)) N L3(0,T; H}(0,1)) c L*(0,T;C"?[0,1]),
uy,, € L(0,T; L%(0,1)) N L0, T; HL(0,1)) ¢ L*(0,T;CY?[0,1]),
v'2u, e L*(0,T; H*(0,1)); v'/?u,, € L*(0,T; H*(0,1)).
Proof of Theorem 2

Proof: Letting v — 0, we have a sequence of functions u, satisfying (4.1). The
last inclusions imply that there exists a subsequence of w,, which we denote also
by wu,, and a function U such that

u, — U strongly in C(Q)

u, — Uweakly — star in L*°(0,T; H}(0,1))
Uyt — Uy weakly — star in L>(0,T; L?(0,1))
uy; — Upweakly in L2(0,T; HY(0,1))

Vg — Oweakly — star in L>=(0,T; L?(0,t))).

Using these convergences, we prove

Theorem 4 There exists at least one weak solution of the problem (2.4)-(2.6):
U € C(0,T;H(0,1)), Uy € L*=(0,T;L(0,1)) N L*(0,T; HL(0,1)), satisfying the
following identity,

(U, 0)(t) + (UUg, ) (t) + (Ug, vgz)(t) = 0,

where v(z,t) is an arbitrary function from W = {v € L?(0,T; H*(0, 1)NHZ(0,1)); v,(0,t) =
0;t € (0,7)}.

Proof: Due to Theorem 1, for all v € (0,1/2) the following identity is valid

T
/O {(utys0) () + (ty i, 0)(E) + (Dt v)(8)

v(Dauy,, v)(t) + v(Dyu,,v)(t)} dt = 0,

where v is an arbitrary function from L?(0,7T;L?(0,1)), in particularly, we can
take v an arbitrary function from W. Then, taking into account boundary condi-
tions (2.3), we can rewrite the last identity in the form,

/O {uwe, v) (1) + (Uptya, 0) () + (Upa, Vaa ) ()

v(Dauy,,v)(t) + v(Dauy,, Dav)(t)}dt = 0.

Passing to the limit as ¥ — 0, we obtain

(U, 0)(t) + (UUsz, 0)(t) + (U, v22)(t) = 0
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for a.e.t € (0,T) and for all v € W. The boundary conditions U(0,t) = U(1,t) =
0 obviously are fulfilled and the boundary condition U,(1,¢) = 0 is fulfilled in a
weak sense. It is clear that functions U and v have conjugate boundary conditions.
O

Taking into account properties of U, we can write

Uz, vza)(t) = (F0)(1), (4.2)
where
F = -U; — UU, € L*0,1).

It means that U is a weak solution to the following boundary value problem,
Upew = F(x), x € (0,1), (4.3)
U0)=U(1) =U,(1)=0. (4.4)

Now we must prove that a weak solution is regular. To prove this fact, we use the
following

Lemma 2 A weak solution to (4.2)-(4.4) is uniquely defined.
On the other hand, it is easy to verify that the function

1 T T 2 T
Uo(z) = Kiz + Koa? + 5/0 22F(2)dz — x/o zF(z)dz + %/0 F(z)dz

belongs to H?(0,1), Up(0) = 0 for any F € L?(0,1), and satisfies the equation,
Uowwa = F(2). (4.5)

Given F(x), the constants K, K5 can be found to satisfy the boundary conditions,
Up(1) = U (1) = 0. (4.6)

Multiplying (4.5) by any v € W and integrating by parts, we come to the
identity,
(Uoz, vzz)(t) = (F,v)(t) for a.e.t € (0,T).

Substracting this from (4.2), we get
(U = Ub)as vaz)(t) = 0.

By Lemma 2, U — Uy = 0, hence, U = Uy a.e. in (0,1), It implies that U €
H3(0,1).
Returning to (4.2), we rewrite it as

U +UU, +Ugpe =0a.e.in Q,
U(0) = U(1) = U, (1) =0,
U(z,0) = up(x). (4.7)

This proves the existence part of Theorem 2.
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Uniqueness

Let wui, us be two distinct solutions to (4.7). Then for z = u; — ua we have

z(0) = 2(1) = z,(1) =0, (4.9)
z(z,0) = 0. (4.10)

Multiplying (4.8) by e**z, integrating over (0,1), putting A = 1 and taking
into account properties of U,

max | up(x,t) +ug(z,t) |[< M < oo,
Q

we obtain .
et 22 e®, 2% (s)ds.
(.20 < € [ (e

By the Gronwall lemma, (e%,22%)(t) = 0, consequently, |z(¢)| = 0 for all
t € (0,T). The proof of Theorem 2 is completed. O

5. Stability
We have the following result.

Theorem 5 There exist positive constants A € (0,1) and K such that if |Juo|l <
3/e, then

lu@)Z20.) < KlluollZao,1e™",
A

where x = 3ox.

Proof: By Theorem 2 and by the arguments similar to those used by Browder
[17], for all t > 0 w(z,t) is a strong solution to the following problem,

Lu = uy + wty + Uzpe =0 in Q = (0,1) x (0,00), (5.1)
u(z,0) = uo(z) in (0, 1),
u(0,t) = u(l,t) = uy(1,t) =0,t > 0.
Multiplying (5.1) by u and using (5.3), we get
d
Do) + 420, =0,

This implies

lu(®)l < [luoll for all ¢ > 0. (5.4)
From the identity (e*u, Lu)(t) =0, for some A € (0,1) we obtain
d Az 2 A Az 2
= Z <0.
L 02) (1) + o (€ 02)(1) < 0

This implies the assertion of Theorem 5. O
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