Korteweg-de Vries Equation in Bounded Domains

Nikolai A. Larkin *

Contents

1 Introduction 30
2 Notations and results 31
3 Solvability of the problem (2.1)-(2.3) 32
4 Solvability of the KdV equation 33
5 Stability 36

1. Introduction

The goal of this paper is to prove the existence, uniqueness and the energy decay of global regular solutions of the KdV equation in a bounded domain approximating it by the Kuramoto-Sivashinsky equations.

In $Q=(0,1) \times(0, T) ; x \in(0,1), t \in(0, T)$ we consider the generalized Kuramoto-Sivashinsky equation,

$$
\begin{equation*}
u_{t}+u u_{x}+\mu u_{x x x}+\nu\left(u_{x x}+u_{x x x x}\right)=0 \tag{1.1}
\end{equation*}
$$

where μ, ν are positive constants.
This equation, in the case $\mu=0$, was derived independently by Sivashinsky [1] and Kuramoto [2] with the purpose to model amplitude and phase expansion of pattern formations in different physical situations, for example, in the theory of a flame propagation in turbulent flows of gaseous combustible mixtures, see Sivashinsky [1], and in the theory of turbulence of wave fronts in reaction-diffusion systems, Kuramoto [2]. The generalized KdV-KS equation (1.1) arises in modeling of long waves in a viscous fluid flowing down on an inclined plane. When $\nu=0$, we have the KdV equation studied by various authors [6-12].

From the mathematical point of a view, the history of the KdV equation is much longer than the one of the KS equation. Well-posedness of the Cauchy problem for the KdV equation in various classes of solutions was studied in [6-9]. Solvability of mixed problems for the KdV equation and for the KdV equation with dissipation in bounded domains studied Bubnov [11], Hublov [12], see also

* The author was partially supported by a grant from CNPq-Brazil.
[19]. In [10], Bui An Ton proved well-posedness of the mixed problem for the KdV equation in $(0, \infty) \times(0, T)$ approximating the KdV equation by the KS type equations. Mixed problems for some classes of third order equations studied Kozhanov [13] and Larkin [18]. The Cauchy problem for (1.1) was considered by Biagioni et al [6]. They proved the existence of a unique strong global solution and studied asymptotic behaviour of solutions as ν tends to zero. This gave a solution to the Cauchy problem for the KdV equation as a limit of a sequence of solutions to the Cauchy problem for the KdV-KS equations. The Cauchy problem for the KS equation considered Tadmor [3] and Guo [5]. In [5], Guo studied also solvability of the mixed problem for the KS equation in bounded domains in onedimensional and multi-dimensional cases. Cousin and Larkin [4] proved global well-posedness of the mixed problem for the KS equation in classes of regular solutions in bounded domains with moving boundaries. The exponential decay of $L^{2}-$ norms of solutions as $t \rightarrow \infty$ was proved.

In the present paper we study asymptotics of solutions to a mixed problem for (1.1) when ν tends to zero in order to prove therewith that solutions to a mixed problem for the KdV equation may be obtained as singular limits of solutions to a corresponding mixed problem for the KS equation. The passage to the limit as ν tends to zero is singular because we loose one boundary condition in $x=0$.

We consider in the rectangle Q the mixed problem for (1.1) which is different from the one considered in $[4,5,10]$. In Section 2, we state our main results. In Section 3, exploiting the Faedo-Galerkin method with a special basis, we prove solvability of the mixed problem for (1.1) when $\nu>0$. In Section 4, we prove the existence and uniqueness of a strong solution to the mixed problem for the KdV equation letting ν tend to zero. It must be noted that the Fourier transform, commonly used to solve the Cauchy problem, see [6-9], is not suitable in the case of the mixed problem. Instead, we use the Faedo-Galerkin method to solve the mixed problem for (1.1) and weighted estimates to pass to the limit as ν tends to zero. In Section 5, we show that if $\left\|u_{0}\right\|_{L^{2}(0,1)}$ is sufficiently small, then $\|u(t)\|_{L^{2}(0,1)}$ decreases exponentially in time and no dissipativity on the boundaries of the domain is needed for this.

2. Notations and results

We use standard notations, see Lions-Magenes [16], some special cases will be given below. We denote

$$
Q=(0,1) \times(0, T),(u, v)(t)=\int_{0}^{1} u(x, t) v(x, t) d x,\|u(t)\|^{2}=(u, u)(t)
$$

$D_{j}=\frac{\partial^{j}}{\partial x^{j}},\|u\|^{2}=\|u\|_{L^{2}(Q)}^{2}, H^{m}(D)$ denotes the Sobolev space $W_{2}^{m}(D)$.
We consider in Q the following problem,

$$
\begin{gather*}
L u=u_{t}+u u_{x}+u_{x x x}+\nu\left(u_{x x}+u_{x x x x}\right)=0 \text { in } Q, \tag{2.1}\\
u(x, 0)=u_{0}(x), x \in(0,1) \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
u(0, t)=u_{x x}(0, t)=u(1, t)=u_{x}(1, t)+\nu u_{x x}(1, t)=0, t>0 \tag{2.3}
\end{equation*}
$$

Our result on solvability of (2.1)-(2.3) is the following.
Theorem 1 Let $\nu>0$ and $u_{0} \in H^{4}(0,1) \cap H_{0}^{1}(0,1) ; u_{0 x x}(0)=u_{0 x}(1)+$ $\nu u_{0 x x}(1)=0$.

Then there exists a unique solution to (2.1)-(2.3) from the class,

$$
\begin{gathered}
u \in C\left(0, T ; H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \cap L^{2}\left(0, T ; H^{4}(0,1) \cap H_{0}^{1}(0,1)\right), \\
u_{t} \in L^{\infty}\left(0, T ; L^{2}(0,1)\right) \cap L^{2}\left(0, T ; H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) \\
u_{t t} \in L^{2}\left(0, T ; H^{-2}(0,1)\right)
\end{gathered}
$$

When ν tends to zero, we obtain the following result.
Theorem 2 Let $u_{0} \in H^{4}(0,1) \cap H_{0}^{1}(0,1), u_{0 x}(1)=0$.
Then there exists a unique solution to the problem,

$$
\begin{gather*}
u_{t}+u u_{x}+u_{x x x}=0, \quad \text { in } Q \tag{2.4}\\
u(x, 0)=u_{0}(x), x \in(0,1) \tag{2.5}\\
u(0, t)=u(1, t)=u_{x}(1, t)=0 \tag{2.6}
\end{gather*}
$$

from the class,

$$
u \in L^{\infty}\left(0, T ; H^{3}(0,1) \cap H_{0}^{1}(0,1)\right), u_{t} \in L^{\infty}\left(0, T ; L^{2}(0,1)\right)
$$

In reality, the sharper result is true.
Theorem 3 Let $u_{0} \in H^{3}(0,1) \cap H_{0}^{1}(0,1), u_{0 x}(1)=0$. Then all the assertions of Theorem 2 are true.

3. Solvability of the problem (2.1)-(2.3)

Lemma 1 For every $\nu>0$ there exist eigenfunctions of the following problem,

$$
\begin{gather*}
\nu D_{4} w_{j}=\lambda_{j} w_{j} \\
w_{j}(0)=w_{j}(1)=w_{j x x}(0)=w_{j x}(1)+\nu w_{j x x}(1)=0 \tag{3.1}
\end{gather*}
$$

which create a basis in $H^{4}(0,1)$ orthonormal in $L^{2}(0,1)$.
Proof: It is easy to see that if $u, v \in H^{4}(0,1)$ and satisfy boundary conditions of Lemma 1, then

$$
\nu\left(D_{4} u, v\right)=\nu\left(u, D_{4} v\right) \text { and } \nu\left(D_{4} u, u\right)=\nu\left\|D_{2} u\right\|^{2}+u_{x}^{2}(1)
$$

This means that the operator corresponding to the problem above is selfadjoint and positive. Hence, assertions of Lemma 1 follow from the well-known facts, see Coddington and Levinson [15], Mikhailov [14].

We construct approximate solutions to (2.1)-(2.3) in the form,

$$
u^{N}(x, t)=\sum_{j=1}^{N} g_{j}^{N}(t) w_{j}(x)
$$

where $w_{j}(x)$ are defined in Lemma 1 and $g_{j}^{N}(t)$ are to be found as solutions to the Cauchy problem for the system of N ordinary differential equations,

$$
\begin{gather*}
\left(L u^{N}, w_{j}\right)(t)=\left(u_{t}^{N}, w_{j}\right)(t)+\left(u^{N} u_{x}^{N}, w_{j}\right)(t) \\
+\left(D_{3} u^{N}, w_{j}\right)(t)+\nu\left(u_{x x}^{N}, w_{j}\right)(t)+\nu\left(D_{4} u^{N}, w_{j}\right)(t)=0, \tag{3.2}\\
g_{j}^{N}(0)=\left(u_{0}, w_{j}\right), j=1, \ldots, N . \tag{3.3}
\end{gather*}
$$

System (3.2) is a normal nonlinear ODE system, hence, there exist on some interval $0, T_{N}$) functions $g_{1}^{N}(t), \ldots, g_{N}^{N}(t)$. To extend them to any $T<\infty$ and to pass to the limit as $N \rightarrow \infty$, we prove the following estimates:

$$
\begin{equation*}
\left\|u^{N}(t)\right\|^{2}+\int_{0}^{t} u_{x}^{N 2}(0, s) d s+\nu \int_{0}^{t}\left\|u_{x x}^{N}(s)\right\|^{2} d s \leq C_{1}\left\|u_{0}\right\|^{2} \tag{3.4}
\end{equation*}
$$

where C_{1} does not depend on $N, t \in(0, T), \nu>0$.

$$
\begin{gather*}
\nu\left|D_{2} u^{N}(1, t)\right|^{2}+\left\|D_{2} u^{N}(t)\right\|^{2}+\nu \int_{0}^{t}\left\|D_{4} u^{N}(s)\right\|^{2} d s \\
\leq C_{2}(\nu)\left(\nu\left|u_{0 x x}(1)\right|^{2}+\left\|u_{0}\right\|_{H^{2}(0,1)}^{2}\right) \tag{3.5}\\
\left\|u_{t}^{N}(t)\right\|^{2}+\nu \int_{0}^{t}\left\|u_{s x x}^{N}(s)\right\|^{2} d s \leq C_{3}\left\|u_{0}\right\|_{H^{4}(0,1) \cap H_{0}^{1}(0,1)}^{2} \tag{3.6}
\end{gather*}
$$

where C_{2}, C_{3} do not depend on $N, t \in(0, T)$.
Estimates (3.4), (3.5), (3.6) imply that $u^{N}(x, t)$ can be extended to all $T \in$ $(0, \infty)$ and that approximations $\left(u^{N}\right)$ converge as $N \rightarrow \infty$. Passing to the limit in (3.2), we prove the existence part of Theorem 1. Uniqueness can be proved by the standard methods, see [4]. Thus Theorem 1 is proved.

4. Solvability of the KdV equation

Theorem 1 guarantees well-posedness of the problem (2.1)-(2.3) for all $\nu>0$. Our aim now is to pass to the limit as ν tends to zero. For this purpose we need a priori estimates of solutions to (2.1)-(2.3) independent of $\nu>0$. First we observe that estimate (3.4) does not depend on ν, but (3.5), (3.6) do depend.

Due to Theorem 1, for all $\nu>0$ we have the integral identity,

$$
\begin{gather*}
\left(u_{\nu t}, v\right)(t)+\left(u_{\nu} u_{\nu x}, v\right)(t)+\left(D_{3} u_{\nu}, v\right)(t) \\
+\nu\left(D_{2} u_{\nu}, v\right)(t)+\nu\left(D_{4} u_{\nu}, v\right)(t)=0 \tag{4.1}
\end{gather*}
$$

which is true for any $v \in L^{2}(0,1)$.
It can be shown that u_{ν} satisfy uniformly in $\nu>0$ the following inclusions:

$$
\begin{aligned}
& u_{\nu} \in L^{\infty}\left(0, T ; L^{2}(0,1)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \subset L^{2}\left(0, T ; C^{1 / 2}[0,1]\right), \\
& u_{\nu t} \in L^{\infty}\left(0, T ; L^{2}(0,1)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \subset L^{2}\left(0, T ; C^{1 / 2}[0,1]\right), \\
& \nu^{1 / 2} u_{\nu} \in L^{2}\left(0, T ; H^{2}(0,1)\right) ; \nu^{1 / 2} u_{\nu t} \in L^{2}\left(0, T ; H^{2}(0,1)\right)
\end{aligned}
$$

Proof of Theorem 2

Proof: Letting $\nu \rightarrow 0$, we have a sequence of functions u_{ν} satisfying (4.1). The last inclusions imply that there exists a subsequence of u_{ν}, which we denote also by u_{ν}, and a function U such that

$$
\begin{aligned}
& u_{\nu} \rightarrow U \text { strongly in } C(\bar{Q}) \\
& u_{\nu} \rightarrow U \text { weakly }- \text { star in } L^{\infty}\left(0, T ; H_{0}^{1}(0,1)\right) \\
& u_{\nu t} \rightarrow U_{t} \text { weakly }- \text { star in } L^{\infty}\left(0, T ; L^{2}(0,1)\right) \\
& u_{\nu t} \rightarrow U_{t} \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \\
& \left.\nu u_{\nu x x} \rightarrow 0 \text { weakly }- \text { star in } L^{\infty}\left(0, T ; L^{2}(0, t)\right)\right) .
\end{aligned}
$$

Using these convergences, we prove
Theorem 4 There exists at least one weak solution of the problem (2.4)-(2.6): $U \in C\left(0, T ; H_{0}^{1}(0,1)\right), U_{t} \in L^{\infty}\left(0, T ; L^{2}(0,1)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(0,1)\right)$, satisfying the following identity,

$$
\left(U_{t}, v\right)(t)+\left(U U_{x}, v\right)(t)+\left(U_{x}, v_{x x}\right)(t)=0
$$

where $v(x, t)$ is an arbitrary function from $W=\left\{v \in L^{2}\left(0, T ; H^{2}(0,1) \cap H_{0}^{1}(0,1)\right) ; v_{x}(0, t)=\right.$ $0 ; t \in(0, T)\}$.

Proof: Due to Theorem 1, for all $\nu \in(0,1 / 2)$ the following identity is valid

$$
\begin{gathered}
\int_{0}^{T}\left\{\left(u_{\nu t}, v\right)(t)+\left(u_{\nu} u_{\nu x}, v\right)(t)+\left(D_{3} u_{\nu}, v\right)(t)\right. \\
\left.\nu\left(D_{2} u_{\nu}, v\right)(t)+\nu\left(D_{4} u_{\nu}, v\right)(t)\right\} d t=0
\end{gathered}
$$

where v is an arbitrary function from $L^{2}\left(0, T ; L^{2}(0,1)\right)$, in particularly, we can take v an arbitrary function from W. Then, taking into account boundary conditions (2.3), we can rewrite the last identity in the form,

$$
\begin{aligned}
& \int_{0}^{T}\left\{u_{\nu t}, v\right)(t)+\left(u_{\nu} u_{\nu x}, v\right)(t)+\left(u_{\nu x}, v_{x x}\right)(t) \\
& \left.\quad \nu\left(D_{2} u_{\nu}, v\right)(t)+\nu\left(D_{2} u_{\nu}, D_{2} v\right)(t)\right\} d t=0
\end{aligned}
$$

Passing to the limit as $\nu \rightarrow 0$, we obtain

$$
\left(U_{t}, v\right)(t)+\left(U U_{x}, v\right)(t)+\left(U_{x}, v_{x x}\right)(t)=0
$$

for a.e. $t \in(0, T)$ and for all $v \in W$. The boundary conditions $U(0, t)=U(1, t)=$ 0 obviously are fulfilled and the boundary condition $U_{x}(1, t)=0$ is fulfilled in a weak sense. It is clear that functions U and v have conjugate boundary conditions.

Taking into account properties of U, we can write

$$
\begin{equation*}
\left(U_{x}, v_{x x}\right)(t)=(F, v)(t) \tag{4.2}
\end{equation*}
$$

where

$$
F=-U_{t}-U U_{x} \in L^{2}(0,1)
$$

It means that U is a weak solution to the following boundary value problem,

$$
\begin{align*}
& U_{x x x}=F(x), x \in(0,1) \tag{4.3}\\
& U(0)=U(1)=U_{x}(1)=0 \tag{4.4}
\end{align*}
$$

Now we must prove that a weak solution is regular. To prove this fact, we use the following

Lemma 2 A weak solution to (4.2)-(4.4) is uniquely defined.
On the other hand, it is easy to verify that the function

$$
U_{0}(x)=K_{1} x+K_{2} x^{2}+\frac{1}{2} \int_{0}^{x} z^{2} F(z) d z-x \int_{0}^{x} z F(z) d z+\frac{x^{2}}{2} \int_{0}^{x} F(z) d z
$$

belongs to $H^{3}(0,1), U_{0}(0)=0$ for any $F \in L^{2}(0,1)$, and satisfies the equation,

$$
\begin{equation*}
U_{0 x x x}=F(x) \tag{4.5}
\end{equation*}
$$

Given $F(x)$, the constants K_{1}, K_{2} can be found to satisfy the boundary conditions,

$$
\begin{equation*}
U_{0}(1)=U_{0 x}(1)=0 \tag{4.6}
\end{equation*}
$$

Multiplying (4.5) by any $v \in W$ and integrating by parts, we come to the identity,

$$
\left(U_{0 x}, v_{x x}\right)(t)=(F, v)(t) \text { for a.e. } t \in(0, T)
$$

Substracting this from (4.2), we get

$$
\left(\left(U-U_{0}\right)_{x}, v_{x x}\right)(t)=0
$$

By Lemma $2, U-U_{0}=0$, hence, $U=U_{0}$ a.e. in $(0,1)$, It implies that $U \in$ $H^{3}(0,1)$.

Returning to (4.2), we rewrite it as

$$
\begin{gather*}
U_{t}+U U_{x}+U_{x x x}=0 \text { a.e. in } Q, \\
U(0)=U(1)=U_{x}(1)=0 \\
U(x, 0)=u_{0}(x) \tag{4.7}
\end{gather*}
$$

This proves the existence part of Theorem 2.

Uniqueness

Let u_{1}, u_{2} be two distinct solutions to (4.7). Then for $z=u_{1}-u_{2}$ we have

$$
\begin{gather*}
z_{t}+\frac{1}{2}\left[\left(u_{1}+u_{2}\right) z\right]_{x}+z_{x x x}=0 \tag{4.8}\\
z(0)=z(1)=z_{x}(1)=0 \tag{4.9}\\
z(x, 0)=0 \tag{4.10}
\end{gather*}
$$

Multiplying (4.8) by $e^{\lambda x} z$, integrating over (0,1), putting $\lambda=1$ and taking into account properties of U,

$$
\max _{\bar{Q}}\left|u_{1}(x, t)+u_{2}(x, t)\right| \leq M \leq \infty
$$

we obtain

$$
\left(e^{x}, z^{2}\right)(t) \leq C \int_{0}^{t}\left(e^{x}, z^{2}\right)(s) d s
$$

By the Gronwall lemma, $\left(e^{x}, z^{2}\right)(t)=0$, consequently, $\|z(t)\|=0$ for all $t \in(0, T)$. The proof of Theorem 2 is completed.

5. Stability

We have the following result.
Theorem 5 There exist positive constants $\lambda \in(0,1)$ and K such that if $\left\|u_{0}\right\| \leq$ $3 / e$, then

$$
\|u(t)\|_{L^{2}(0,1)}^{2} \leq K\left\|u_{0}\right\|_{L^{2}(0,1)}^{2} e^{-\chi t}
$$

where $\chi=\frac{\lambda}{2 e^{\lambda}}$.
Proof: By Theorem 2 and by the arguments similar to those used by Browder [17], for all $t>0 u(x, t)$ is a strong solution to the following problem,

$$
\begin{gather*}
L u=u_{t}+u u_{x}+u_{x x x}=0 \text { in } Q=(0,1) \times(0, \infty), \tag{5.1}\\
u(x, 0)=u_{0}(x) \text { in }(0,1) \tag{5.2}\\
u(0, t)=u(1, t)=u_{x}(1, t)=0, t>0 \tag{5.3}
\end{gather*}
$$

Multiplying (5.1) by u and using (5.3), we get

$$
\frac{d}{d t}\|u(t)\|^{2}+u_{x}^{2}(0, t)=0
$$

This implies

$$
\begin{equation*}
\|u(t)\| \leq\left\|u_{0}\right\| \text { for all } t>0 \tag{5.4}
\end{equation*}
$$

From the identity $\left(e^{\lambda x} u, L u\right)(t)=0$, for some $\lambda \in(0,1)$ we obtain

$$
\frac{d}{d t}\left(e^{\lambda x}, u^{2}\right)(t)+\frac{\lambda}{2 e^{\lambda}}\left(e^{\lambda x}, u^{2}\right)(t) \leq 0
$$

This implies the assertion of Theorem 5.

References

1. G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astronautica, 4 (1977), 1177-1206.
2. Y. Kuramoto \& T.Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Progr. Theor. Phys., 54 (1975), 687-699.
3. E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J.Math. Anal., 17 (1986), 884-893.
4. A.T. Cousin \& N.A. Larkin, Initial boundary value problem for the Kuramoto-Sivashinsky equation, Matematica Contemporanea, 18 (2000), 97-100.
5. Guo, Boling, The existence and nonexistence of a global solution for the initial value problem of generalized Kuramoto-Svashinsky equations, J. Math. Research and Exposition, 11 (1991), 57-69.
6. H.A. Biagioni, J.L. Bona, R.J.Iorio jr. \& M. Scialom, On the Korteweg-de-Vries-KuramotoSivashinsky equation, Adv. Diff. Equats, 1 (1996), 1-29.
7. J.L. Bona \& R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Royal Soc. London, A 278 (1975), 555-604.
8. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations, Studies in Appl. Math., Advances in Math. Suppl. Studies, 8 (1983), 93-128.
9. C. Kenig, G. Ponce \& L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, SIAM J. Math. Anal., 4 (1991), 323-347.
10. Bui An Ton, Initial boundary value problems for the Korteweg-de Vries equation, J. Diff. Equats., 25 (1977), 288-309.
11. B.A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domains, Diff. Equats., 15 (1979), 17-21.
12. V.V. Hublov, On a boundary value problems for the Korteweg-de Vries equation in bounded regions, "Application of the Methods of Functional Analysis to Problems of Mathematical Physics and Computational Mathematics", Institute of Mathematics, Novosibirsk, (1979), 137-141.
13. A.I. Kozhanov, "Composite Type Equations and Inverse Problems," VSP, Utrecht, The Netherlands, 1999.
14. V.P. Mikhailov, "Parial Differential Equations", Nauka, Moscow, 1976.
15. E.A. Coddington \& N. Levinson, "Theory of Ordinary Differential Equations," Tata McGrowHill Publishing Co., LTD, New Delhi, 1977.
16. J.-L. Lions \& E.Magenes, "Problemes aux Limites Non Homogenes e Application. Tom 1," Dunod, Paris, 1968.
17. F.E. Browder, On the non-linear wave equations, Math. Zeitschrift, 80 (1962), 249-264.
18. N.A.Larkin, "Smooth Solutions of Transonic Gas Dynamics", Nauka, Novosibirsk, 1991.
19. Wei-Jiu Liu \& Miroslav Kristic, Global boundary stabilization of the Korteweg-de VriesBurgers equation, Comput. and Appl. Math., 21 (2002), 315-354.

Nikolai A. Larkin
Department of Mathematics,
Maringá State University,
Maringá 87020-900, Brazil
E-mail:nlarkine@uem.br

