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The nonlinear transmission problem with memory

D. Andrade1 and L. H. Fatori

abstract: In this work we study a nonlinear transmission problem for the wave
equation with boundary dissipation of memory type. The material is constituted
by two different elastic components. We have a transmission problem with damping
boundary condition of memory type. We prove the global existence and uniformly
decay of the solution to zero as time goes to infinity.
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1. Introduction

In this work we model the oscillation of a solid composed by two different elastic
materials, and we suppose that its external boundary is inside a viscoelastic fluid
producing a dissipative mechanism of memory type while its internal boundary is
clamped. The corresponding mathematical equations which model this situation
is called a transmission problem with boundary dissipation.

Boundary dissipation was studied for several authors, for example, [19,20,21,22,
24,25,26,30] and the references therein, all of them dealing with frictional damping.
Models with memory dissipation are physically and mathematically more interest-
ing, physically because our model follows the constitutive equations for materials
with memory and Mathematically because the estimates we need to show the ex-
ponential decay are more delicate and depends on the relaxation function, see for
example [2] and the references therein.

Memory dissipation is produced by the interaction of materials with memory.
Such types of dissipation are subtle and their analysis are more delicate than the
frictional damping, because introduce another type of technical difficulties. So, we
have only a few works in this direction.

1 Partly supported by Araucária Foundation
2000 Mathematics Subject Classification: 35B40, 35L70.
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In this work we show the existence of solutions of a nonlinear transmission prob-
lem with boundary dissipation of memory type. Moreover we will prove that under
suitable conditions on the relaxation functions the solution will decay uniformly as
time goes to infinity. The transmission problem we consider here is the following

ρ1utt − γ1∆u + f(u) = 0, in Ω1×]0, T [, (1.1)
ρ2vtt − γ2∆v + g(v) = 0, in Ω2×]0, T [, (1.2)

with boundary condition

u(x, t) +
∫ t

0

k(t− τ)
∂u

∂ν
dτ = 0 on Γ (1.3)

and satisfying the transmission condition

u = v, and γ1
∂u

∂ν
= γ2

∂v

∂ν
on Γ1. (1.4)

Additionally we assume that v satisfies Dirichlet boundary condition over Γ2, that
is

v(x, t) = 0, on Γ2×]0, T [, (1.5)

Ω1

Ω2

Γ

Γ1
Γ2

sx0

and verifies the following initial conditions

u(x, 0) = u0(x), and ut(x, 0) = u1(x) in Ω1

v(x, 0) = v0(x), and vt(x, 0) = v1(x) in Ω2.

2. Existence of solutions

Lemma 2.1 For any function α ∈ C1 and for any ϕ ∈ W 1,2(0, T ) we have that
∫ t

0

α(t− τ)ϕ(τ)dτϕt = −1
2
α(t)|ϕ(t)|2 +

1
2
α′2ϕ

−1
2

d

dt

{
α2ϕ−

(∫ t

0

α

)
|ϕ|2

}
. (2.1)
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Let us denote by a a function satisfying

k(0)a + k′ ∗ a = − k′

k(0)
. (2.2)

By ∗ we are denoting the convolution product, that is k ∗ g(·, t) =
∫ t

0
k(t −

τ)g(·, τ) dτ. The function a is called the resolvent kernel of k. Using the Volterra’s
resolvent, we have

∂u

∂ν
= − 1

k(0)
ut − a ∗ ut

after performing an integration by parts, the above identity is equivalent to

∂u

∂ν
= − 1

k(0)
ut − a(0)u− a′ ∗ u + a(t)u0. (2.3)

The hypotheses we use on a are the following

a(t) > 0, a′(t) < 0, a′′(t) > 0, ∀t ≥ 0 (2.4)
−c0a

′(t) ≤ a′′(t) ≤ −c1a
′(t), ∀t ≥ 0, (2.5)

where ci are positive constants. To facilitate our calculation we introduce the
following notations

(α2f)(t) =
∫ t

0

α(t− τ) |f(t)− f(τ)|2 dτ, (2.6)

(α♦f)(t) =
∫ t

0

g(t− τ) [f(t)− f(τ)] dτ. (2.7)

We easily see that

(α ∗ f)(t) =
(∫ t

0

α(s)ds

)
f(t)− (α♦f)(t). (2.8)

About the hypothesis (2.2) we known that the behavior of a is similar as the
behavior of k. We can find the following lemma in [33]. If b and α satisfy

b + α = −b ∗ α,

then

Lemma 2.2 (i) Let us suppose that

|α(t)| ≤ cαe−γt, ∀t > 0

for some γ > 0 and cα > 0, then for any 0 < ε < γ and cα < γ − ε we have

|b(t)| ≤ cα(γ − ε)
γ − ε− cα

e−εt, ∀t > 0.
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(ii) If α satisfies
|α(t)| ≤ cα(1 + t)−p,

for some p > 1, cα > 0 and

1
cα

> cp := sup
0≤t<∞

∫ t

0

(1 + t)p(1 + t− τ)−p(1 + τ)−pdτ,

then we have
|b(t)| ≤ cα

1− cαcp
(1 + t)−p, ∀ t > 0.

Let us introduce the following vector spaces

W =
{
w ∈ H1(Ω2); w(x) = 0 on Γ2

}

and
V = {(u, v) ∈ H1(Ω1)×W ; u = v on Γ1}.

let us consider f, g ∈ C1(R) satisfying

|f(s)| ≤ C1|s|ρ + C2 and |g(s)| ≤ C1|s|ρ + C2, (2.9)
|f ′(s)| ≤ C1|s|ρ−1 + C2 and |g′(s)| ≤ C1|s|ρ−1 + C2, (2.10)

where C1 and C2 are positive constants and 1 ≤ ρ < ∞ when the space dimension
n ≤ 2 and we take 1 ≤ ρ ≤ n

n−2 when n ≥ 3. We also assume that for any s ∈ R,

F (s) =
∫ s

0

f(σ) dσ ≥ 0 and G(s) =
∫ s

0

g(σ) dσ ≥ 0. (2.11)

Let us introduce the definition of weak solution to system (1.1)–(1.5).

Definition 2.3 We say that the couple (u, v) is a weak solution of (1.1)–(1.5)
when

(u, v) ∈ L∞(0, T ; V ) and (ut, vt) ∈ L∞(0, T ; L2(Ω1)× L2(Ω2)),

and satisfies the following identity
∫ T

0

∫

Ω1

[ρ1uφtt + γ1∇u∇φ + f(u)φ] dxdt

+
∫ T

0

∫

Ω2

[ρ2vψtt + γ2∇v∇ψ + g(v)ψ] dxdt

=
∫

Ω1

u1φ(0)dx−
∫

Ω1

u0φt(0)dx +
∫

Ω2

v1ψ(0)dx−
∫

Ω2

v0ψt(0)dx

−
∫

Γ

(
1

k(0)
ut + a(0)u + a′ ∗ u− a(t)u0

)
φdΓ,

for any (φ, ψ) ∈ C2(0, T ;V ) such that

φ(T ) = φt(T ) = ψ(T ) = ψt(T ) = 0.
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In order to show the existence of strong solutions we need a regularity result for the
elliptic system associated to the problem (1.1)–(1.5). For the reader’s convenience
we recall the following result whose proof can be found in the book by O. A.
Ladyzhenskaya and N. N. Ural’tseva ( [34], Theorem 16.2).

Lemma 2.4 For any given functions F ∈ L2(Ω1) and G ∈ L2(Ω2) and g ∈ H
1
2 (Γ)

and γ1, γ2 ∈ R+, there exists only one solution (u, v) of

−γ1∆u = F in Ω1,

−γ2∆v = G in Ω2,

v(x) = 0 on Γ2

∂u

∂ν
= g, on Γ,

u(x) = v(x) on Γ1 and γ1
∂u

∂ν
= γ2

∂v

∂ν
on Γ1,

satisfying
u ∈ H2(Ω1) and v ∈ H2(Ω2).

The existence result is summarized in the following theorem.

Theorem 2.5 Let us suppose that f and g are C1-functions verifying conditions
(2.9)–(2.10) and let us take initial data such that

(u0, v0) ∈ V and (u1, v1) ∈ L2(Ω1)× L2(Ω2), u0 = 0 on Γ.

Then, there exists a solution (u, v) of system (1.1)–(1.5) satisfying

(u, v) ∈ C(0, T ;V ) ∩ C1(0, T ; L2(Ω1)× L2(Ω2)).

In addition, if

(u0, v0) ∈ H2(Ω1)×H2(Ω2) and (u1, v1) ∈ V,

satisfying the compatibility conditions

∂u0

∂ν
= − 1

k(0)
u1 − au0 onΓ

u0 = v0 and γ1
∂u

∂ν
= γ2

∂v

∂ν
, on Γ1 then

(u, v) ∈ C(0, T ; H2(Ω1)×H2(Ω2)) ∩ C1(0, T ; V ) ∩ C2(0, T ;L2(Ω1)× L2(Ω2)).

Proof: To show the existence of solutions we use the Galerkin methods. 2
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3. Asymptotic behavior

In this section we prove that the solution decay exponentially as time go to
infinity. First of all we need some preliminaries results.

Lemma 3.1 Under above notation we have that

d

dt
E(t) = − 1

k(0)

∫

Γ

|ut|2 dΓ +
a′(t)

2

∫

Γ

|u|2 dΓ− 1
2

∫

Γ

a′′2u dΓ,

where

E(t) =
1
2

∫

Ω1

ρ1|ut|2 + γ1|∇u|2 + 2F (u)dx + γ1

∫

Γ

a(t)|u|2 − a′2u dΓ

+
1
2

∫

Ω2

ρ2|vt|2 + γ2|∇v|2 + 2G(v)dx. (3.1)

Proof: Multiply by ut equation (1.1) and by vt equation (1.2), summing up and
using identity (2.3) and Lemma 2.1 we get the result. 2 Let us

take f and g such that

0 ≤ F (s) :=
∫ s

0

f(t)dt ≤ 1
m + 1

sf(s), (3.2)

0 ≤ G(s) :=
∫ s

0

g(t)dt ≤ 1
l + 1

sg(s), (3.3)

F (s) ≤ G(s) (3.4)

where l, m > 1, and let us consider

δ < min
{

l − 1
l + 1

n,
m− 1
m + 1

n, 1
}

. (3.5)

Let us denote by

J0(t) =
∫

Ω1

ρ1utq · ∇u dx +
∫

Ω2

ρ2vtq · ∇v dx.

Lemma 3.2 Let us consider q(x) = x − x0 ∈ C1(Ω), γ1 > γ2 and ρ1 > ρ2. Then
any strong solution of (1.1)–(1.5) satisfies:

d

dt
J0(t) ≤ γ1

∫

Γ

∂u

∂ν
q · ∇u dx− γ1

2

∫

Γ

q · ν|∇u|2 dx +
ρ1

2

∫

Γ

q · ν|ut|2 dΓ

−n

2

∫

Ω1

ρ1|ut|2 − γ1|u|2dx + n

∫

Ω1

F (u)dx− γ1

∫

Ω1

|∇u|2 dx

−n

2

∫

Ω2

ρ2|vt|2 − γ2|∇v|2 dx + n

∫

Ω2

G(v) dx− γ2

∫

Ω2

|∇v|2dx.
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Lemma 3.3 Under the above relations we have that

d

dt

{∫

Ω1

ρ1uutdx +
∫

Ω2

ρ2vtvdx

}
=

∫

Ω1

ρ1 |ut|2 − γ1|∇u|2dx + γ1

∫

Γ

∂u

∂ν
udΓ−

∫

Ω1

f(u)udx

+
∫

Ω2

ρ2 |vt|2 − γ2|∇v|2dx−
∫

Ω2

g(v)vdx.

Proof: Multiply (1.1) by u and (1.2) by v and summing up the product the our
result follows. 2

Let us define the functional

Φ(t) = J0(t) +
(

n− δ

2

)[∫

Ω1

ρ1uutdx +
∫

Ω2

ρ2vtvdx

]

where we consider q(x) = x− x0 as before.

Lemma 3.4 Under the above hypothesis of Lemma 3.2 we have that there exist
positive constant δ0 such that

d

dt
Φ(t) ≤ C

∫

Γ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ +
(

n− δ

2

)
γ1

∫

Γ

u
∂u

∂ν
dΓ− δ0E0(t)

+
ρ1

2

∫

Γ

q · ν|ut|2dΓ,

where

E0(t) =
1
2

∫

Ω1

ρ1|ut|2 + γ1|∇u|2 + F (u)dx +
1
2

∫

Ω2

ρ2|vt|2 + γ2|∇v|2 + G(v)dx.

Finally we have,

Theorem 3.5 With the same hypotheses as Lemma 3.4 we have that there exists
a positive constants such that

E(t) ≤ CE(0) exp(−δ1t).

Proof: Note that from (1.3) and (2.8) we have

∂u

∂ν
= − 1

k(0)
ut − a(t)u− a′♦u

from where it follows

|∂u

∂ν
|2 ≤ 2

{
1

k2(0)
|ut|2 + a2(t)|u|2 + |a′♦u|2

}
.

Since

|a′♦u|2 =
∣∣∣∣
∫ t

0

a′(t− s){u(s)− u(t)}ds

∣∣∣∣
2

≤
(∫ t

0

|a′(t− s)|ds

)
|a′|2u.
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From where and (2.5) it follows that
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

≤ k0{|ut|2 + a(t)|u|2 + a′2u}. (3.6)

On the other hand,

∣∣∣∣
∫

Γ

u
∂u

∂ν
dΓ

∣∣∣∣ ≤
(∫

Γ

|u|2 dΓ
) 1

2
(∫

Γ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ

) 1
2

≤ δ1

∫

Γ

|u|2 dΓ + Cδ1

∫

Γ

{|ut|2 + a(t)|u|2 + a′2u
}

dΓ

≤ δ1

∫

Γ

|u|2dΓ + C

∫

Γ

{|ut|2 + |u|2 + a′2u
}

dΓ. (3.7)

Since ∫

Γ

|u|2 dΓ ≤ C

∫

Ω

|∇u|2 + |∇v|2 dx.

we have that
L(t) = NE(t) + Φ(t)

satisfies
d

dt
L(t) ≤ −Nγ1

k(0)

∫

Γ

|ut|2dΓ +
Nγ1a

′(t)
2

∫

Γ

|u|2dΓ− Nγ1

2

∫

Γ

a′′2udΓ

+C

∫

Γ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ +
(

n− δ

2

)
γ1

∫

Γ

u
∂u

∂ν
dΓ

−δ0

2
E0(t) + ρ1

∫

Γ

q · ν|ut|2dΓ.

Using (4.2) and (4.3) we conclude that

d

dt
L(t) ≤ −

(
Nγ1

k(0)
− C2

) ∫

Γ

|ut|2dΓ−
(

Nγ1

2
− C2

) ∫

Γ

a′′2udΓ− δ0

2
E0(t).

Then we have
d

dt
L(t) ≤ −δ0

2
E(t) ≤ −cL(t), (3.8)

from where our conclusion follows. 2

4. Polynomial rate of decay

Here our attention will be focused on the uniform rate of decay when k decays
polynomially like (1 + t)−p. In this case we will show that the solution also decays
polynomially with the same rate. Let us consider the following hypothesis,

0 < a(t) ≤ b0(1 + t)−p,

−b1a
1+ 1

p (t) ≤ a′(t) ≤ −b2a
1+ 1

p (t), (4.1)

b3[−a′(t)]1+
1

p+1 ≤ a′′(t) ≤ b4[−a′(t)]1+
1

p+1 ,
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where p > 1 and bi > 0 for i = 0, . . . , 4. The following lemmas will play an
important role in the sequel.

Lemma 4.1 Let m and h be integrable functions, 0 ≤ r < 1 and q > 0. Then, for
t ≥ 0

∫ t

0

|m(t− s)h(s)|ds ≤
(∫ t

0

|m(t− s)|1+ 1−r
q |h(s)|ds

) q
q+1

(∫ t

0

|m(t− s)|r|h(s)|ds

) 1
q+1

.

Proof: In fact, let us take

v(s) := |m(t− s)|1− r
q+1 |h(s)| q

q+1 , w(s) := |m(t− s)| r
q+1 |h(s)| 1

q+1 .

Applying Hölder’s inequality to |m(s)h(s)| = v(s)w(s) with exponents δ = q
q+1 for

v and δ∗ = q + 1 for w our conclusion follows. 2

Lemma 4.2 Let us denote by φ ∈ L∞(0, T ; L2(Γ)). Then, for p > 1, 0 ≤ r < 1
and t ≥ 0, we have

(∫

Γ

|a′|2φdΓ
) 1+(1−r)(p+1)

(1−r)(p+1)

≤ 2
(∫ t

0

|a′(s)|rds||φ||2L∞(0,t;L2(Γ))

) 1
(1−r)(p+1)

∫

Γ

|a′|1+ 1
p+1 2φdΓ,

while for r = 0 we get

(∫

Γ1

|a′|2φdΓ
) p+2

p+1

≤ 2
(∫ t

0

||φ(s, .)||2L2(Γ)ds + t||φ(s, .)||2L2(Γ)

)p+1∫

Γ

|a′|1+ 1
p+1 2φdΓ.

Proof: The above inequalities are a immediate consequence of Lemma 4.1 taking

m(s) := |a′(s)|, h(s) :=
∫

Γ

|φ(t, x)− φ(s, x)|2dΓ, q := (1− r)(p + 1).

This concludes our assertion. 2

Theorem 4.3 Let us suppose that the initial data (u0, u1) ∈ H2(Ω) × V . If the
resolvent kernel a(t) satisfies condition (4.1), then there is a positive constant c
such that

E(t) ≤ c

(1 + t)p+1
E(0).

Proof: Note that from (1.3) and (2.8) we have

∂u

∂ν
= − 1

k(0)
ut − a(t)u− a′♦u

from where it follows

|∂u

∂ν
|2 ≤ 2

{
1

a2(0)
|ut|2 + a2(t)|u|2 + |a′♦u|2

}
.
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Since

|a′♦u|2 =
∣∣∣∣
∫ t

0

a′(t− s){u(s)− u(t)}ds

∣∣∣∣
2

≤
(∫ t

0

|a′(t− s)|1− 1
p ds

)
[−a′]1+

1
p 2u.

From where and (2.5) it follows that

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

≤ k0{|ut|2 + [−a′]1+
1
p (t)|u|2 + [−a′]1+

1
p 2u}. (4.2)

On the other hand,

∣∣∣∣
∫

Γ

u
∂u

∂ν
dΓ

∣∣∣∣ ≤
(∫

Γ

|u|2 dΓ
) 1

2
(∫

Γ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ

) 1
2

≤ δ1

∫

Γ

|u|2 dΓ + δ1

∫

Γ

{
|ut|2 + [−a′]1+

1
p (t)|u|2 + [−a′]1+

1
p 2u

}
dΓ

≤ C

∫

Γ

{
|ut|2 + |u|2 + [−a′]1+

1
p 2u

}
dΓ. (4.3)

Since ∫

Γ

|u|2 dΓ ≤ C

∫

Ω

|∇u|2 + |∇v|2 dx.

we have that
L(t) = NE(t) + Φ(t)

satisfies

d

dt
L(t) ≤ −Nγ1

k(0)

∫

Γ

|ut|2dΓ +
Nγ1a

′(t)
2

∫

Γ

|u|2dΓ− Nγ1

2

∫

Γ

[−a′]1+
1
p 2udΓ

+C

∫

Γ

[−a′]1+
1
p 2udΓ + C

∫

Γ

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dΓ +
(

n− δ

2

)
γ1

∫

Γ

u
∂u

∂ν
dΓ

−δ0

2
E0(t) + ρ1

∫

Γ

q · ν|ut|2dΓ.

Using (4.2) and (4.3) we conclude that

d

dt
L(t) ≤ −

(
Nγ1

k(0)
− C2

) ∫

Γ

|ut|2dΓ−
(

Nγ1

2
− C2

) ∫

Γ

[−a′]1+
1
p 2udΓ

−δ0

2
E0(t), (4.4)

from where we have that for N large enough we get

d

dt
L(t) ≤ − Nγ1

2k(0)

∫

Γ

|ut|2dΓ− Nγ1

4

∫

Γ

[−a′]1+
1
p 2udΓ− δ0

2
E0(t). (4.5)
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Let us fix 0 < r < 1 such that 1
p+1 < r < p

p+1 . In this condition from hypothesis
(4.1) we have

∫ ∞

0

[−a′]r ≤ c

∫ ∞

0

1
(1 + t)r(p+1)

< ∞ for i = 1, 2, 3, 4.

Using this estimate in Lemma 4.2 we get

∫

Γ

[−a′]1+
1

p+1 2udΓ ≥ cE(0)−
1

(1−r)(p+1)

(∫

Γ

[−a′]2udΓ
)1+ 1

(1−r)(p+1)

, (4.6)

On the other hand, since the energy is bounded we have

E(t)1+
1

(1−r)(p+1) ≤ cE(0)
1

(1−r)(p+1) E(t). (4.7)

Substitution of (4.6)-(4.7) into (4.5) we arrive to

d

dt
L(t) ≤ −cE(0)−

1
(1−r)(p+1) E(t)1+

1
(1−r)(p+1)

− cE(0)−
1

(1−r)(p+1)

(∫

Γ

[−a′]2udΓ
)1+ 1

(1−r)(p+1)

.

Since there exists positive constants satisfying

c0E(t) ≤ L(t) ≤ c1E(t) (4.8)

We get

d

dt
L(t) ≤ − c

L(0)
1

(1−r)(p+1)
L(t)1+

1
(1−r)(p+1) . (4.9)

Therefore, using a Gronwall’s type argument we conclude that

L(t) ≤ c

(1 + t)(1−r)(p+1)
L(0). (4.10)

Since (1− r)(p + 1) > 1 we get, for t ≥ 0, the following bounds

t‖u(t, .)‖2L2(Γ) ≤ ctL(t) ≤ ∞,
∫ t

0

‖u(s, .)‖2L2(Γ) ≤ c

∫ ∞

0

L(t) ≤ ∞.

Using the above estimates in Lemma 4.2 with r = 0, we get

∫

Γ

[−a′]1+
1

p+1 2udΓ ≥ c

E(0)
1

p+1

(∫

Γ

[−a′]2udΓ
)1+ 1

p+1

.
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Using these inequalities and the same arguments as in the derivation of (4.9), we
have

d

dt
L(t) ≤ − c

L(0)
1

p+1
L(t)1+

1
p+1 .

So we obtain

L(t) ≤ c

(1 + t)p+1
L(0),

using inequality (4.8) we conclude that

E(t) ≤ c

(1 + t)p+1
E(0),

which completes the proof. 2
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