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Slightly γ-Continuous Functions

Erdal Ekici∗ and Miguel Caldas

abstract: The purpose of this paper is to give a new weak form of some types
of continuity generalizing strongly α-irresoluteness, α-irresoluteness, α-continuity,
precontinuity, semi-continuity, γ-continuity and slightly continuity. In this paper,
slightly γ-continuity is introduced and studied. Furthermore, basic properties and
preservation theorems of slightly γ-continuous functions are investigated and rela-
tionships between slightly γ-continuous functions and graphs are investigated.
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1. Introduction and Preliminaries

Functions and of course continuous functions stand among the most important
and most researched points in the whole of the Mathematical Science. Many dif-
ferent forms of continuous functions have been introduced over the years. Some of
them are strongly α-irresoluteness [9], α-irresoluteness [13], α-continuity [14,15],
precontinuity [2,13], semi-continuity [11], γ-continuity [7] and slightly continu-
ity [10,17]. Various interesting problems arise when one considers continuity. Its
importance is significant in various areas of mathematics and related sciences.

The aim of this paper is to give a new weaker form of some types of conti-
nuity including strongly α-irresoluteness, α-irresoluteness, α-continuity, preconti-
nuity, semi-continuity, γ-continuity and slightly continuity. In this paper, slightly
γ-continuity is introduced and studied. Moreover, basic properties and preserva-
tion theorems of slightly γ-continuous functions are investigated and relationships
between slightly γ-continuous functions and graphs are investigated.
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In Section 2, the notion of slightly γ-continuous functions is introduced and
characterizations and some relationships of γ-continuous functions and basic prop-
erties of slightly γ-continuous functions are investigated and obtained. The re-
lationships between slightly γ-continuity and connectedness are investigated. In
Section 3 and in Section 4, the relationships between slightly γ-continuity and com-
pactness and the relationships between slightly γ-continuity and separation axioms
and graphs are obtained. In Section 5, the relationships slightly γ-continuity and
the other types of continuity are investigated.

Throughout the present paper, X and Y are always topological spaces. Let A
be a subset of X. We denote the interior and the closure of a set A by int(A) and
cl(A), repectively.

A subset A of a space X is said to be preopen [13] (resp. semi-open [11],
α-open [15], b-open [1] or γ-open [7] or sp-open [6]) if A ⊂ int(cl(A)) (resp.
A ⊂ cl(int(A)), A ⊂ int(cl(int(A))), A ⊂ cl(int(A)) ∪ int(cl(A))).

The complement of a γ-open set is said to be γ-closed [7]. The intersection of
all γ-closed sets of X containing A is called the γ-closure [7] of A and is denoted
by γcl(A). The union of all γ-open sets of X contained A is called γ-interior of A
and is denoted by γint(A).

The family of all α-open (resp. γ-open, γ-closed, clopen, γ-clopen) sets of X is
denoted by αO(X) (resp. γO(X), γC(X), CO(X), γCO(X)).

Definition 1 A function f : X → Y is γ-continuous [7] if f−1(V ) is γ-open set
in X for each open set V of Y .

Definition 2 A function f : X → Y is slightly continuous [10] if f−1(V ) is open
set in X for each clopen set V of Y .

2. Slightly γ-continuous functions

In this section, the notion of slightly γ-continuous functions is introduced and
characterizations and some relationships of γ-continuous functions and basic prop-
erties of slightly γ-continuous functions are investigated and obtained.

Definition 3 A function f : X → Y is called:
(1) slightly γ-continuous at a point x ∈ X if for each clopen subset V in Y contain-
ing f(x), there exists a γ-open subset U in X containing x such that f(U) ⊂ V .
(2) slightly γ-continuous if it has this property at each point of X.

Theorem 2.1 Let (X, τ) and (Y, υ) be topological spaces. The following statements
are equivalent for a function f : X → Y :
(1) f is slightly γ-continuous;
(2) for every clopen set V ⊂ Y , f−1(V ) is γ-open;
(3) for every clopen set V ⊂ Y , f−1(V ) is γ-closed;
(4) for every clopen set V ⊂ Y , f−1(V ) is γ-clopen.
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Proof. (1) ⇒ (2) : Let V be a clopen subset of Y and let x ∈ f−1(V ). Since f(x) ∈
V , by (1), there exists a γ-open set Ux in X containing x such that Ux ⊂ f−1(V ).
We obtain that f−1(V ) =

⋃
x∈f−1(V )

Ux. Thus, f−1(V ) is γ-open.

(2) ⇒ (3) : Let V be a clopen subset of Y . Then, Y \V is clopen. By (2),
f−1(Y \V ) = X\f−1(V ) is γ-open. Thus, f−1(V ) is γ-closed.

(3) ⇒ (4) : It can be shown easily.
(4) ⇒ (1) : Let V be a clopen subset in Y containing f(x). By (4), f−1(V ) is

γ-clopen. Take U = f−1(V ). Then, f(U) ⊂ V . Hence, f is slightly γ-continuous.

Lemma 2.2 Let A and X0 be subsets of a space (X, τ). If A ∈ γO(X) and X0 ∈
αO(X), then A ∩X0 ∈ γO(X0) [1,7].

Theorem 2.3 If f : X → Y is slightly γ-continuous and A ∈ αO(X), then the
restriction f |A: A → Y is slightly γ-continuous.

Proof. Let V be a clopen subset of Y . We have (f |A)−1(V ) = f−1(V ) ∩ A.
Since f−1(V ) is γ-open and A is α-open, it follows from the previous lemma that
(f |A)−1(V ) is γ-open in the relative topology of A. Thus, f |A is slightly α-
continuous.

Lemma 2.4 Let A ⊂ X0 ⊂ X, A ∈ γO(X0) and X0 ∈ αO(X), then A ∈ γO(X)
[7].

Theorem 2.5 Let f : X → Y be a function and Σ = {Ui : i ∈ I} be a cover of
X such that Ui ∈ αO(X) for each i ∈ I. If f |Ui is slightly γ-continuous for each
i ∈ I, then f is a slightly γ-continuous function.

Proof. Suppose that V is any clopen set of Y . Since f |Ui is slightly γ-continuous
for each i ∈ I, it follows that (f |Ui)

−1(V ) ∈ γ(Ui). We have
f−1(V ) =

⋃
i∈I

(f−1(V ) ∩ Ui) =
⋃
i∈I

(f |Ui)
−1(V ). Then, Lemma 2.4 we obtain

f−1(V ) ∈ γO(X) which means that f is slightly γ-continuous.

Theorem 2.6 Let f : X → Y be a function and x ∈ X. If there exists U ∈ αO(X)
such that x ∈ U and the restriction of f to U is a slightly γ-continuous function at
x, then f is slightly γ-continuous at x.

Proof. Suppose that F ∈ CO(Y ) containing f(x). Since f |U is slightly γ-
continuous at x, there exists V ∈ γO(U) containing x such that f(V ) = (f |U
)(V ) ⊂ F . Since U ∈ αO(X) containing x, it follows from Lemma 2.4 that
V ∈ γO(X) containing x. This shows clearly that f is slightly γ-continuous at
x.

Theorem 2.7 Let f : X → Y be a function and let g : X → X × Y be the graph
function of f , defined by g(x) = (x, f(x)) for every x ∈ X. Then g is slightly
γ-continuous if and only if f is slightly γ-continuous.
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Proof. Let V ∈ CO(Y ), then X×V ∈ CO(X×Y ). Since g is slightly γ-continuous,
then f−1(V ) = g−1(X × V ) ∈ γO(X). Thus, f is slightly γ-continuous.

Conversely, let x ∈ X and let W be a closed subset of X × Y containing g(x)..
Then W ∩ ({x} × Y ) is clopen in {x} × Y containing g(x).. Also {x} × Y is
homeomorphic to Y . Hence {y ∈ Y/(x, y) ∈ W} is a clopen subset of Y . Since f
is slightly γ-continuous ,

⋃{f−1(y)/(x, y) ∈ W} is a γ-open subset of X. Further
x ∈ ⋃{f−1(y)/(x, y) ∈ W} ⊂ g−1(W ). Hence g−1(W ) is γ-open . Then g is
slightly γ-continuous.

Definition 4 A function f : X → Y is called:
(i) f γ-irresolute if for every γ-open subset G of Y , f−1(G) is γ-open in Y .
(ii) f γ-open if for every γ-open subset A of X, f(A) is γ-open in Y .

Theorem 2.8 Let f : X → Y and g : Y → Z be functions. Then, the following
properties hold:
(1) If f is γ-irresolute and g is slightly γ-continuous, then g ◦ f : X → Z is slightly
γ-continuous.
(2) If f is γ-irresolute and g is γ-continuous, then g ◦ f : X → Z is slightly γ-
continuous.
(3) If f is γ-irresolute and g is slightly continuous, then g ◦ f : X → Z is slightly
γ-continuous.

Proof. (1) Let V be any clopen set in Z. Since g is slightly γ-continuous, g−1(V ) is
γ-open. Since f is γ-irresolute, f−1(g−1(V )) = (g ◦ f)−1(V ) is γ-open. Therefore,
g ◦ f is slightly γ-continuous.

(2) and (3) can be obtained smilarly.

Theorem 2.9 Let f : X → Y and g : Y → Z be functions. If f is γ-open and
surjective and g◦f : X → Z is slightly γ-continuous, then g is slightly γ-continuous.

Proof. Let V be any clopen set in Z. Since g ◦ f is slightly γ-continuous, (g ◦
f)−1(V ) = f−1(g−1(V )) is γ-open. Since f is γ-open, then f(f−1(g−1(V ))) =
g−1(V ) is γ-open. Hence, g is slightly γ-continuous.

Combining the previous two theorem, we obtain the following result.

Theorem 2.10 Let f : X → Y be surjective, γ-irresolute and γ-open and g : Y →
Z be a function. Then g ◦ f : X → Z is slightly γ-continuous if and only if g is
slightly γ-continuous.

Definition 5 (i) A filter base Λ is said to be γ-convergent to a point x in X if for
any U ∈ γO(X) containing x, there exists a B ∈ Λ such that B ⊂ U .
(ii) A filter base Λ is said to be co-convergent to a point x in X if for any U ∈
CO(X) containing x, there exists a B ∈ Λ such that B ⊂ U .

Theorem 2.11 If a function f : X → Y is slightly γ-continuous, then for each
point x ∈ X and each filter base Λ in X γ-converging to x, the filter base f(Λ) is
co-convergent to f(x).
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Proof. Let x ∈ X and Λ be any filter base in X γ-converging to x. Since f is
slightly γ-continuous, then for any V ∈ CO(Y ) containing f(x), there exists a
U ∈ γO(X) containing x such that f(U) ⊂ V . Since Λ is γ-converging to x, there
exists a B ∈ Λ such that B ⊂ U . This means that f(B) ⊂ V and therefore the
filter base f(Λ) is co-convergent to f(x).

Recall that, a space X is called γ-connected [7] provided that X is not the
union of two disjoint nonempty γ-open sets.

Theorem 2.12 If f : X → Y is slightly γ-continuous surjective function and X
is γ-connected space, then Y is connected space.

Proof. Suppose that Y is not connected space. Then there exists nonempty disjoint
open sets U and V such that Y = U ∪ V . Therefore, U and V are clopen sets in
Y . Since f is slightly γ-continuous, then f−1(U) and f−1(V ) are γ-closed and
γ-open in X. Moreover, f−1(U) and f−1(V ) are nonempty disjoint and X =
f−1(U) ∪ f−1(V ). This shows that X is not γ-connected. This is a contradiction.
Hence, Y is connected.

Definition 6 A topological space X is called hyperconnected [19] if every nonempty
open subset of X is dense in X. It is well-known that every hyperconnected space
is connected but not conversely.

Remark 2.13 The following example shows that slightly γ-continuous surjection
do not necessarily preserve hyperconnectedness.

Example 2.14 Let X = {a, b, c}, τ = {X, ∅, {a}} and σ = {X, ∅, {b}, {c}, {b, c}}.
Then the identity function f : (X, τ) → (X, σ) is slightly γ-continuous surjective.
(X, τ) is hyperconnected. But (X, σ) is not hyperconnected.

3. Covering properties

In this section, the relationships between slightly γ-continuous functions and
compactness are investigated.

Definition 7 A space X is said to be mildly compact [18] (respectively γ-compact
[7]) if every clopen cover (resp. γ-open cover) of X has a finite subcover.

A subset A of a space X is said to be mildly compact (respectively γ-compact)
relative to X if every cover of A by clopen (resp. γ-open) sets of X has a finite
subcover.

A subset A of a space X is said to be mildly compact (respectively γ-compact)
if the subspace A is mildly compact (resp. γ-compact).

Theorem 3.1 If a function f : X → Y is slightly γ-continuous and K is γ-
compact relative to X, then f(K) is mildly compact in Y .

Proof. Let {Hα : α ∈ I} be any cover of f(K) by clopen sets of the subspace f(K).
For each α ∈ I, there exists a clopen set Kα of Y such that Hα = Kα ∩ f(K).
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For each x ∈ K, there exists αx ∈ I such that f(x) ∈ Kαx and there exists
Ux ∈ γO(X) containing x such that f(Ux) ⊂ Kαx

. Since the family {Ux : x ∈ K}
is a cover of K by γ-open sets of K, there exists a finete subset K0 of K such that
K ⊂ {Ux : x ∈ K0}. Therefore, we obtain f(K) ⊂ ⋃{f(Ux) : x ∈ K0} which is a
subset of

⋃{Kαx
: x ∈ K0}. Thus f(K) =

⋃{Hαx
: x ∈ K0} and hence f(K) is

mildly compact.

Corollary 3.2 If f : X → Y is slightly γ-continuous surjection and X is γ-
compact, then Y is mildly compact.

Definition 8 A space X said to be:
(1) mildly countably compact [18] if every clopen countably cover of X has a finite
subcover.
(2) mildly Lindelof [18] if every cover of X by clopen sets has a countable subcover.
(3) countably γ-compact if every γ-open countably cover of X has a finite subcover.
(4) γ-Lindelof if every γ-open cover of X has a countable subcover.
(5) γ-closed-compact if every γ-closed cover of X has a finite subcover.
(6) countably γ-closed-compact if every countable cover of X by γ-closed sets has
a finete subcover.
(7) γ-closed-Lindelof if every cover of X by γ-closed sets has a countable subcover.

Theorem 3.3 Let f : X → Y be a slightly γ-continuous surjection. Then the
following statements hold:
(1) if X is γ-Lindelof, then Y is mildly Lindelof.
(2) if X is countably γ-compact, then Y is mildly countably compact.

Proof. We prove (1), the proof of (2) being entirely analogous.
Let {Vα : α ∈ I} be any clopen cover of Y . Since f is slightly γ-continuous,

then {f−1(Vα) : α ∈ I} is a γ-open cover of X. Since X is γ-Lindelof, there exists
a countable subset I0 of I such that X =

⋃{f−1(Vα) : α ∈ I0}. Thus, we have
Y =

⋃{Vα : α ∈ I0} and Y is mildly Lindelof.

Theorem 3.4 Let f : X → Y be a slightly γ-continuous surjection. Then the
following statements hold:
(1) if X is γ-closed-compact, then Y is mildly compact.
(2) if X is γ-closed-Lindelof, then Y is mildly Lindelof.
(3) if X is countably γ-closed-compact, then Y is mildly countably compact.

Proof. It can be obtained smilarly as Theorem 3.3.

4. Separation axioms

In this section, the relationships between slightly γ-continuous functions and
separation axioms are investigated.

Definition 9 A space X is said to be:
(i) γ-T1 [4,5] if for each pair of distinct points x and y of X, there exist γ-open
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sets U and V containing x and y respectively such that y /∈ U and x /∈ V .
(ii) A space X is said to be γ-T2 (γ-Hausdorff) [4,5] if for each pair of distinct
points x and y in X, there exist disjoint γ-open sets U and V in X such that x ∈ U
and y ∈ V .
(iii) A space X is said to be clopen T1 if for each pair of distinct points x and y of
X, there exist clopen sets U and V containing x and y respectively such that y /∈ U
and x /∈ V .
(iv) A space X is said to be clopen T2 (clopen Hausdorff or ultra-Hausdorff) [18]
if for each pair of distinct points x and y in X, there exist disjoint clopen sets U
and V in X such that x ∈ U and y ∈ V .

Remark 4.1 [4,5]
(i) A topological space (X, τ) is γ-T1 if and only if the singletons are γ-closed sets.
(ii) A topological space (X, τ) is γ-T2 if and only if the intersection of all γ-closed
γ-neighourhoods of each point of X is reduced to that point.

Remark 4.2 The following implications are hold for a topological space X:
(1) clopen T1 ⇒ T1,
(2) T1 ⇒ γ-T1.

None of these implications is reversible.

Example 4.3 Let R be the real numbers with the finite complements topology τ .
Then (R, τ) is T1 but not clopen T1.

Example 4.4 Let X = {a, b, c} with the topology τ = {X, ∅, {a}, {b, c}}. Then
(X, τ) is γ-T1 but not T1.

Theorem 4.5 If f : X → Y is a slightly γ-continuous injection and Y is clopen
T1, then X is γ-T1.

Proof. Suppose that Y is clopen T1. For any distinct points x and y in X, there
exist V , W ∈ CO(Y ) such that f(x) ∈ V , f(y) /∈ V , f(x) /∈ W and f(y) ∈ W .
Since f is slightly γ-continuous, f−1(V ) and f−1(W ) are γ-open subsets of X such
that x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ). This shows that X
is γ-T1.

Theorem 4.6 If f : X → Y is a slightly γ-continuous injection and Y is clopen
T2, then X is γ-T2.

Proof. For any pair of distinct points x and y in X, there exist disjoint clopen sets
U and V in Y such that f(x) ∈ U and f(y) ∈ V . Since f is slightly γ-continuous,
f−1(U) and f−1(V ) are γ-open in X containing x and y respectively. Therefore
f−1(U) ∩ f−1(V ) = ∅ because U ∩ V = ∅. This shows that X is γ-T2.

Lemma 4.7 The intersection of an open and a γ-open set is a γ-open set [1].
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Theorem 4.8 If f : X → Y is slightly continuous function and g : X → Y is
slightly γ-continuous function and Y is clopen Hausdorff, then E = {x ∈ X :
f(x) = g(x)} is γ-closed in X.

Proof. If x ∈ X\E, then it follows that f(x) 6= g(x). Since Y is clopen Hausdorff,
there exist f(x) ∈ V ∈ CO(Y ) and g(x) ∈ W ∈ CO(Y ) such that V ∩ W = ∅.
Since f is slightly continuous and g is slightly γ-continuous, then f−1(V ) is open
and g−1(W ) is γ-open in X with x ∈ f−1(V ) and x ∈ g−1(W ). Set O = f−1(V )∩
g−1(W ). By Lemma 4.7, O is γ-open. Therefore f(O) ∩ g(O) = ∅ and it follows
that x /∈ γcl(E). This shows that E is γ-closed in X.

Definition 10 A space is called clopen regular (respectively γ-regular) if for each
clopen (respectively γ-closed) set F and each point x /∈ F , there exist disjoint open
sets U and V such that F ⊂ U and x ∈ V .

Definition 11 A space is said to be clopen normal (respectively γ-normal) if for
every pair of disjoint clopen (respectively γ-closed) subsets F1 and F2 of X, there
exist disjoint open sets U and V such that F1 ⊂ U and F2 ⊂ V .

Theorem 4.9 If f is slightly γ-continuous injective open function from a γ-regular
space X onto a space Y , then Y is clopen regular.

Proof. Let F be clopen set in Y and be y /∈ F . Take y = f(x). Since f is slightly
γ-continuous, f−1(F ) is a γ-closed set. Take G = f−1(F ). We have x /∈ G. Since
X is γ-regular, there exist disjoint open sets U and V such that G ⊂ U and x ∈ V .
We obtain that F = f(G) ⊂ f(U) and y = f(x) ∈ f(V ) such that f(U) and f(V )
are disjoint open sets. This shows that Y is clopen regular.

Theorem 4.10 If f is slightly γ-continuous injective open function from a γ-
normal space X onto a space Y , then Y is clopen normal.

Proof. Let F1 and F2 be disjoint clopen subsets of Y . Since f is slightly γ-
continuous, f−1(F1) and f−1(F2) are γ-closed sets. Take U = f−1(F1) and V =
f−1(F2). We have U ∩ V = ∅. Since X is γ-normal, there exist disjoint open sets
A and B such that U ⊂ A and V ⊂ B. We obtain that F1 = f(U) ⊂ f(A) and
F2 = f(V ) ⊂ f(B) such that f(A) and f(B) are disjoint open sets. Thus, Y is
clopen normal.

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} ⊂ X × Y
is called the graph of f and is denoted by G(f).

Definition 12 A graph G(f) of a function f : X → Y is said to be strongly γ-co-
closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ γCO(X) containing x
and V ∈ CO(Y ) containing y such that (U × V ) ∩G(f) = ∅.

Lemma 4.11 A graph G(f) of a function f : X → Y is strongly γ-co-closed in
X × Y if and only if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ γCO(X)
containing x and V ∈ CO(Y ) containing y such that f(U) ∩ V = ∅.
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Theorem 4.12 If f : X → Y is slightly γ-continuous and Y is clopen T1, then
G(f) is strongly γ-co-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y )\G(f), then f(x) 6= y and there exists a clopen
set V of Y such that f(x) ∈ V and y /∈ V . Since f is slightly γ-continuous,
then f−1(V ) ∈ γCO(X) containing x. Take U = f−1(V ). We have f(U) ⊂ V .
Therefore, we obtain f(U) ∩ (Y \V ) = ∅ and Y \V ∈ CO(Y ) containing y. This
shows that G(f) is strongly γ-co-closed in X × Y .

Corollary 4.13 If f : X → Y is slightly γ-continuous and Y is clopen Hausdorff,
then G(f) is strongly γ-co-closed in X × Y .

Theorem 4.14 Let f : X → Y has a strongly γ-co-closed graph G(f). If f is
injective, then X is γ-T1.

Proof. Let x and y be any two distinct points of X. Then, we have (x, f(y)) ∈
(X×Y )\G(f). By Lemma 4.11, there exist a γ-clopen set U of X and V ∈ CO(Y )
such that (x, f(y)) ∈ U × V and f(U)∩ V = ∅. Hence U ∩ f−1(V ) = ∅ and y /∈ U .
This implies that X is γ-T1.

Theorem 4.15 Let f : X → Y has a strongly γ-co-closed graph G(f). If f is
surjective γ-open function, then Y is γ-T2.

Proof. Let y1 and y2 be any distinct points of Y . Since f is surjective f(x) = y1 for
some x ∈ X and (x, y2) ∈ (X × Y )\G(f). By Definition 12, there exist a γ-clopen
set U of X and V ∈ CO(Y ) such that (x, y2) ∈ U × V and (U × V ) ∩ G(f) = ∅.
Then, we have f(U) ∩ V = ∅. Since f is γ-open, then f(U) is γ-open such that
f(x) = y1 ∈ f(U). This implies that Y is γ-T2.

5. Relationships

Definition 13 A function f : X → Y is semi-continuous [11] if f−1(V ) is semi-
open set in X for each open set V of Y .

Definition 14 A function f : X → Y is called precontinuous [2,13] if f−1(V ) is
preopen set in X for each open set V of Y .

Definition 15 A function f : X → Y is said to be α-continuous [14] if f−1(V ) is
α-open in X for every open set V of Y .

Definition 16 A function f : X → Y is called α-irresolute [12] if f−1(V ) is
α-open set in X for each α-open set V of Y .

Definition 17 A function f : X → Y is said to be strongly α-irresolute [9] if for
each x ∈ X and each α-open subset V of Y containing f(x), there exists a open
subset U of X containing x such that f(U) ⊂ V .
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Remark 5.1 The following diagram holds:
slightlycontinuous

⇓
precontinuous ⇒ γ − continuous ⇒ slightlyγ − continuous

⇑ ⇑
α− continuous ⇒ semi− continous

⇑
α− irresolute

⇑
stronglyα− irresolute

None of these implications is reversible.

Example 5.2 Let R and N be the real numbers and natural numbers, respectively.
Take two topologies on R as τ = {R, ∅, N} and υ = {R, ∅, R\N}. Let f : (R, τ) →
(R, υ) be an identity function. Then, f is slightly γ-continuous, but it is not γ-
continuous.

Example 5.3 Let R be the real numbers. Take two topologies on R as τu and τD

where τu is usual topology and τD is discrete topology. Let f : (R, τu) → (R, τD)
be an identity function. Then, f is slightly γ-continuous, but it is not slightly
continuous.

The other implications are not reversible as shown in several papers [6,7,9,11,
12,13,14].

Recall that a space is 0-dimensional if its topology has a base consisting of
clopen sets.

Theorem 5.4 If f : X → Y is slightly γ-continuous and Y is a 0-dimensional
space, then f is γ-continuous.

Proof. Let x ∈ X and let V be an open subset of Y containing f(x). Since Y is a
0-dimensional, there exists a clopen set U containing f(x) such that U ⊂ V . Since
f is slightly γ-continuous, then there exists an γ-open subset G in X containing x
such that f(G) ⊂ U ⊂ V . Thus, f is γ-continuous.

Recall that a space X is said to be:
(1) submaximal [3] if each dense subset of X is open in X,
(2) extremally disconnected [3] if the closure of each open set of X is open in X.

Theorem 5.5 If (X, τ) a submaximal extremally disconnected space, then the fol-
lowing are equivalent for a function f : (X, τ) → (Y, σ):
(1) f is slightly γ-continuous;
(2) f is slightly continuous.

Proof. (1)⇒(2): This follows from the fact that if (X, τ) is a submaximal extremally
disconnected space, then τ = γO(X).

(2)⇒(1): Obvious.
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Theorem 5.6 If X is a submaximal extremally disconnected space and Y is a 0-
dimensional space, then the following are equivalent for a function f : (X, τ) →
(Y, σ):
(1) f is slightly γ-continuous;
(2) f is α-continuous.

Proof. (1)⇒(2): Let x ∈ X and let V be an open subset of Y containing f(x).
Since Y is 0-dimensional, there exists a clopen set U containing f(x) such that
U ⊂ V . Since f is slightly γ-continuous, then there exists a γ-open subset G in
X containing x such that f(G) ⊂ U ⊂ V . Since X is a submaximal extremally
disconnected space, then γO(X) = αO(X). Hence, f is α-continuous.

(2)⇒(1): Obvious.

Corollary 5.7 Let Y be a 0-dimensional space and X be a submaximal extremally
disconnected space. The following statements are equivalent for a function f :
(X, τ) → (Y, σ):
(1) f is slightly γ-continuous;
(2) f is slightly continuous;
(3) f is α-continuous;
(4) f is precontinuous;
(5) f is semi-continuous;
(6) f is γ-continuous.
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