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Nonexistence of Global Solutions to an Elliptic Equation with a
Dynamical Boundary Condition

Mokhtar KIRANE, Eric NABANA and Stanislav I. POHOZAEV

abstract: We consider the equation ∆u = 0 posed in Q := (0, +∞) × Ω, Ω :=
{x = (x′, xN )/x′ ∈ RN−1, xN > 0}, with the dynamical boundary condition
B(t, x′, 0)utt + A(t, x′, 0)ut − uxN ≥ D(t, x′, 0)|u|q on Σ := (0,∞) × RN−1 × {0}
and give conditions on the coefficient functions A(t, x′, 0), B(t, x′, 0) and D(t, x′, 0)
for the nonexistence of global solutions.
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1. Introduction

In this paper, we consider the problem (EI)
{

∆u = 0, on Q,
B utt + Aut − uxN ≥ D |u|q, on Σ,

subject to the initial conditions

u(0, x′, 0) = u0(x′, 0), ut(0, x′, 0) = u1(x′, 0), x′ ∈ RN−1, (1)

where ∆ = ∂2
1 + ... + ∂2

N is the Laplace operator with respect to x = (x′, xN ) ∈
Ω, ut = ∂u/∂t, uxN

= ∂u/∂xN , and u0, u1 ∈ L2
loc(R

N−1 × {0}), D ∈ L∞loc(Σ),
A,At, B,Bt, Btt ∈ L2

loc(Σ). The functions A,B and D are assumed nonnegative; D
positive for large x, A and B don’t vanish simultaneously.

Before discribing our result in detail, let us dwell on some literature related
to equations with dynamical boundary conditions. These kind of problems have
been studied for a long time; see [9], [8], [11], [5]. More information is contained
in the book by Lions [12]; In chapter 11 of [12], the existence of weak solutions
to the Laplace equation with various nonlinear dynamical boundary conditions of
parabolic and hyperbolic type is studied. More recently, Kirane [10] considered
blow up for three equations with dynamical boundary conditions of parabolic and

2000 Mathematics Subject Classification: 35J99, 35L20

9
Typeset by BSPMstyle.
c© Soc. Paran. Mat.



10 M. KIRANE, E. NABANA and S. I. POHOZAEV

hyperbolic types. Later, Escher [6] addressed the questions of local solvability and
blow up for such problems. Andreucci and Gianni [3] discussed the global existence
and blow up issues for a degenerate parabolic problem with nonlocal dynamical
boundary conditions, this on one hand. On the other hand, Apushkinskaya and
Nazarov [1] present a survey on the recent results on boundary value problems with
boundary conditions described by second-order Venttsel operators. They paid a
special attention to nonlinear problems for elliptic and parabolic equations. They
stated a priori estimates and existence results in Sobolev and Hölder spaces.

In [2], Amann and Fila derived a Fijita’s type result for the Laplace equation
with a parabolic dynamical boundary condition with constant coefficients posed in
a half-space; they were followed by Fila and Quittner [7] who discussed the same
problem as in [2] but in a bounded domain.
In this paper, we generalize the results of [2] concerning blow up to inequalities with
non constant coefficients rather than equations with constant coefficients. Observe
also that our technique of proof is different of that used by Amann and Fila which
parallels Fujita’s one; we rather follow an idea from the papers of Baras and Pierre
[4], Mitidieri and Pohozaev [13] which is based on a judicious choice of the test
function in the weak formulation of the problem, and a scaling of the variables.

2. Preliminaries

The coefficient functions A(t, x′, 0), B(t, x′, 0) and D(t, x′, 0) appearing in the
boundary condition are assumed to verify the hypotheses

H1.
∫

RN−1
u(0, x′, 0) B(0, x′, 0) dx′ ≥ 0;

H2.
∫

RN−1

(
Bt(0, x′, 0) + At(0, x′, 0)

)
u(0, x′, 0) dx′ ≤ 0;

H3. Btt −At ≤ 0, in case we consider nonnegative solutions u ≥ 0,
or Btt −At = 0, in case the considered solutions u are of indefinite sign;

H4. |2Bt −A|D− 1
q ≤ C1t

σ1 |x′|δ1 , |B|D− 1
q ≤ C2t

σ2 |x′|δ2

for |x′| >> 1, t > 0, where (δ1 − δ2)/(σ1 − σ2 + 1) > 0.

H5. The function D is strictly positive for x′ outside a large ball.

Definition. By a solution of (EI) on Q subject to the conditions (1), we mean a
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function u ∈ Lq
loc(Σ) such that

∫

Σ

D(t, x′, 0)|u|qϕ̃ ≤ −
∫

RN−1
ut(0, x′, 0)B(0, x′, 0)ϕ̃(0, x′, 0)

+
∫

RN−1
Bt(0, x′, 0)u(0, x′, 0)ϕ̃(0, x′, 0)

+
∫

RN−1
B(0, x′, 0)ϕ̃t(0, x′, 0)u(0, x′, 0)

+
∫

Σ

u
(
Bttϕ̃ + 2Btϕ̃t + Bϕ̃tt

)

−
∫

RN−1
u(0, x′, 0)A(0, x′, 0)ϕ̃(0, x′, 0)

−
∫

Σ

u
(
Atϕ̃ + Aϕ̃t + ∆ϕ̃− ϕ̃xN

)
(2)

for any test function ϕ̃ ∈ C2
0 (R+ × Ω), ϕ̃(T, x′, xN ) = 0 for T large enough.

For later use, we set

χ̃ := (δ1 − δ2)/(σ1 − σ2 + 1) = χ/µ > 0.

3. The Result

Now, we are in force to announce our main result.

Theorem. Assume that conditions H1-H5 are satisfied, and

- either (i) χ̃σ1 + δ1 − χ̃ < 0, and q ≥ (χ̃ + N − 1)/(χ̃σ1 + δ1 − χ̃);

- or (ii) χ̃σ1 + δ1 − χ̃ > 0 and 1 ≤ q ≤ −(χ̃ + N − 1)/(χ̃σ1 + δ1 − χ̃).

Then problem (EI)-(1) doesn’t admit global non trivial solutions.

Proof. The proof is by contradiction. So, we assume that the solution is global.
Let ϕ0 ∈ C2

0 (R), ϕ0 ≥ 0, ϕ0 decreasing be such that

ϕ0(ξ) =





1 if 0 ≤ |ξ| ≤ 1,

0 if |ξ| ≥ 2.

Next, let’s define ψ = ψ(t, x) as the solution of
{

∆ψ = 0, t ∈ R+, x ∈ RN−1 ×R+,
ψ(t, x′, 0) = ϕ(t, x′, 0), t ∈ R+, x′ ∈ RN−1.

We choose
ϕ(t, x′) = ϕλ

0 (ξ),
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where ξ = θ−1/(tχ + |x′|µ), θ a positive real and λ any real greater than p, such
that the integrals

∫

suppϕt

|ϕt|pϕ1−p and
∫

suppϕtt

|ϕtt|pϕ1−p

are finite.
The function ψ is given by the Poisson’s formula

ψ(t, x′, xN ) =
2xN

σN

∫

RN−1

ϕ(t, y, 0)
(|y − x′|2 + x2

N )N/2
dy,

where σN/N is the volume of the unit ball; so, we have

ψxN
(t, x′, 0) =

2
σN

∫

RN−1

ϕ(t, y, 0)
|y − x′|N dy

so
−ϕxN

(t, x′, 0) = −ψxN
(t, x′, 0) < 0.

Multiplying Equation (EI)1 by ψ and integrating, we obtain
∫

Q

∆uψ = 0,

which, in the light of the Green formula, yields
∫

Σ

uxN
(t, x′, 0)ψ(t, x′, 0) =

∫

Σ

u(t, x′, 0)ψxN
(t, x′, 0).

or ∫

Σ

uxN
(t, x′, 0)ϕ(t, x′, 0) =

∫

Σ

u(t, x′, 0)ϕxN
(t, x′, 0).

because on Σ, ψ = ϕ.

Now, using ϕ in (2) as a test function and splitting the expression into terms,
we obtain

∫

Σ

B(t, x′, 0)uttϕ =
∫

RN−1
[utBϕ]T0 −

∫

Σ

(Bϕ)tut

=
∫

RN−1
[utBϕ]T0 +

∫

RN−1
[u(Bϕ)t]

T
0 +

∫

Σ

u(Bϕ)tt

= −
∫

RN−1
ut(0, x′, 0)B(0, x′, 0)ϕ(0, x′, 0)

+
∫

RN−1
Bt(0, x′, 0)u(0, x′, 0)ϕ(0, x′, 0)

+
∫

RN−1
B(0, x′, 0)ϕt(0, x′, 0)u(0, x′, 0)

+
∫

Σ

u(Bttϕ + 2Btϕt + Bϕtt).
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Also, we have
∫

Σ

A(t, x′, 0)utϕ =
∫

RN−1
[uAϕ]T0 −

∫

Σ

u(Aϕ)t

= −
∫

RN−1
u(0, x′)A(0, x′, 0)ϕ(0, x′, 0)−

∫

Σ

uAtϕ−
∫

Σ

uAϕt.

So if we assume u ≥ 0, we may then write
∫

Σ

D(t, x′, 0)|u|qϕ ≤ −
∫

RN−1
ut(0, x′, 0)B(0, x′, 0)ϕ(0, x′, 0)

+
∫

RN−1
Bt(0, x′, 0)u(0, x′, 0)ϕ(0, x′, 0)

+
∫

RN−1
B(0, x′, 0)ϕt(0, x′, 0)u(0, x′, 0)

+
∫

Σ

u(Bttϕ + 2Btϕt + Bϕtt)

−
∫

Σ

u(0, x′, 0)A(0, x′, 0)ϕ(0, x′, 0)

−
∫

Σ

uAtϕ−
∫

Σ

uAϕt −
∫

RN−1
uψσ. (3)

In the case where Btt −At = 0, the solution u may change sign.
By (H1) and (H2), (3) becomes

∫

Σ

D(t, x′, 0)|u|qϕ ≤
∫

Σ

u(2Bt −A)ϕt +
∫

Σ

uBϕtt. (4)

Using the ε-Young inequality to estimate the right hand side of (4), we obtain
∫

Σ

D(t, x′, 0)|u|qϕ ≤ ε

∫

Σ

D(t, x′, 0)|u|qϕ + C(ε)
∫

Σ

|2Bt −A|p|ϕt|pD1−pϕ1−p

+ε

∫

Σ

D(t, x′, 0)|u|qϕ + C(ε)
∫

Σ

|B|p|ϕtt|pD1−pϕ1−p,

for some positive constants ε and C(ε), and where p + q = pq.
For ε small enough, we obtain
∫

Σ

D|u|qϕ ≤ C

∫

Σ

|2Bt −A|p|ϕt|pD1−pϕ1−p + C

∫

Σ

|B|p|ϕtt|pD1−pϕ1−p. (5)

The right hand side of (5) is finite thanks to our choice of the test function.
At this stage, we introduce the scaled variables

t = τ θχ and x′ = η θµ,

so
ξ := (t

1
χ + |x′| 1µ )/θ = τ

1
χ + |η| 1µ .
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Observe that

suppϕ ⊂ {(τ, η) ∈ R2 : 0 ≤ τ
1
χ + |η| 1µ ≤ 2} =: C1,2,

suppϕt ⊂ {(τ, η) ∈ R2 : 1 ≤ τ
1
χ + |η| 1µ ≤ 2}, suppϕtt ⊂ C1,2.

Now, using the scaled variables, we obtain the estimates

|2Bt −A|pD1−p ≤ Cθp(χσ1+µδ1) τpσ1 |η|pδ1 ,

ϕt = θ−pχ, ϕtt = θ−2pχ, dt dx′ = θχ+(N−1)µdτ dη.

So, ∫

Σ

|2Bt −A|pD1−p|ϕt|pϕ1−p dt dx′ ≤ C1θ
Λ1 , (6)

where

Λ1 = χσ1p + µδ1p− χp + χ + µ(N − 1).

Similarly, we obtain the estimate
∫

Σ

|B|p D1−p |ϕtt|p ϕ1−p ≤ C2θ
Λ2 , (7)

where

Λ2 = χσ2p + µδ2p− 2χp + χµ(N − 1).

Now, we choose Λ1 ≤ 0 and Λ2 ≤ 0, that is

χ̃(σ1p− p + 1) + (δ1p + N − 1) ≤ 0,

χ̃(σ2p− 2p + 1) + (δ2p + N − 1) ≤ 0,

where we set χ̃ = χ/µ.
For an optimal choice of χ and µ, we take

χ̃ = (δ2 − δ1)/(σ1 − σ2 + 1).

As χ̃ has to be positive, the inequality (δ2 − δ1)(σ1 − σ2 + 1) > 0 is required.

Finally, we have

(χ̃σ1 + δ1 − χ̃)p + (χ̃ + N − 1) ≤ 0, with χ̃ = (δ2 − δ1)/(σ1 − σ2 + 1). (8)

There are two possibilities
- either (i) χ̃σ1 + δ1 − χ̃ < 0 =⇒ p ≥ (χ̃ + N − 1)/(χ̃σ1 + δ1 − χ̃);
- or (ii) χ̃σ1 + δ1 − χ̃ > 0 =⇒ 1 ≤ p ≤ −(χ̃ + N − 1)/(χ̃σ1 + δ1 − χ̃).
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In the case Λ1 < 0,Λ2 < 0, using (6), (7) and (8) we obtain
∫

Σ

D|u|q ≤ 0 =⇒ u = 0.

If Λ1 or Λ2 = 0, we have
∫

Σ

D|u|q ≤ Const. < ∞. (9)

Now, estimating inequality (4) via the Hölder inequality and using (9), we may
write

∫

Σ

D|u|qϕ ≤
(∫

{θ≤tχ+|x′|µ≤2θ}
D(t, x′)|u|qϕ

) 1
q

.

((∫

suppϕt

|2Bt −A|p |ϕt|p
(D ϕ)p−1

) 1
p

+
(∫

suppϕtt

|B|p |ϕtt|p
(D ϕ)p−1

) 1
p

)
.

As

lim
θ→∞

(∫

{θ≤tχ+|x′|µ≤2θ}
D(t, x′, 0)|u|qϕ

)
= 0,

we deduce from the former estimate that
∫

Σ

D|u|q ≤ 0 =⇒ u = 0.

The proof is complete.
Remark 1. In the case where B 6= 0, the natural choice is χ = µ = 2 because the
temporal and spatial derivatives which appear are of the same order; in this case
χ̃ = 1 and hence σ1 +δ1−1 < 0; the condition on q is then q ≤ N/(N +1−σ1−δ1).
Remark 2. Amann and Fila showed that the problem

(AF)





∆u = 0, (0,∞)× Ω,
∂tu + ∂nu = uq, (0,∞)× ∂Ω,

u(0, x′) = φ, ∂Ω.

admits, for each φ bounded and uniformly continuous on RN−1, a unique maximal
solution uφ. Moreover, they showed that

- If Tφ < ∞ then lim
t→Tφ

‖uφ‖∞ = ∞.

- If q ≤ N/(N−1) then every nonzero maximal solution blows up in finite time.
- If q > N/(N−1) then there are solutions that exist globally as well as solutions

that blow up in finite time.
In our notations, Problem (AF) corresponds to

B = 0, A = D = 1, σ1 = δ1 = 0.
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In this case, (8) reads

−pχ̃ + χ̃ + N − 1 ≤ 0 =⇒ q

q − 1
= p ≥ 1 +

N − 1
χ̃

.

So if we choose χ̃ = 1, then q ≤ N/(N − 1) for N ≥ 2; this corresponds to the
result of Amann and Fila as expected.
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