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Oscillation Criteria for Delay Neutral Difference Equations with
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abstract: This paper is concerned with a class of neutral type difference equations
with positive and negative coefficients of the form

∆ (xn − rnxn−m) + pnxn−k − qnxn−l = 0, n = 0, 1, 2, ...,

where m, k and l are nonnegative integers, and {pn} , {qn} as well as {rn} are
nonnegative real sequences. Novel oscillation criteria for this equation are derived.
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1. Introduction

Let xn be the state variable of a stage dependent process where n belongs to a
set of consecutive integers. In case the change ∆xn = xn+1 − xn depends on the
past changes as well as the past state sizes, we may then write

∆xn = F (∆xn−1,∆xn−2, ...;xn, xn−1, ...).

In this paper, we consider a special case in the form of a neutral difference equation
with positive and negative coefficients

∆ (xn − rnxn−m) + pnxn−k − qnxn−l = 0, n = 0, 1, 2, ..., (1)

where we assume that
(i) m, k and l are three integers such that 0 ≤ l < k and m > 0,
(ii) {pn}∞n=0, {qn}∞n=0 and {rn}∞n=0 are nonnegative sequences, and
(iii) the sequence {hn} defined by

hn = pn − qn−k+l, n ≥ k − l, (2)

is nonnegative and has a positive subsequence.
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By a solution of (1), we mean a real sequence {xn} which is defined for n ≥ −µ
and satisfies (1) for n ≥ 0, where µ = max {m, k}. Let Ω = {−µ,−µ + 1, · · · , 1, 0}.
It is easy to see that for any given sequence {φn} defined on Ω, there exists a
solution {xn} of (1) with xn = φn for n ∈ Ω.

A solution {xn} of (1) is said to be eventually positive (or eventually negative)
if xn > 0 (or xn < 0) for all large n. It is said to be oscillatory if it is neither
eventually positive nor eventually negative.

Among the existing studies, the oscillation of Eq. (1) has been discussed by
several authors, see for example [1-7]. In particular, Ladas [1] and Qian and Ladas
[2] considered the case where rn ≡ 0. Chen and Zhang [3] and Zhang and Wang
[4] considered the case where rn ≡ r with 0 ≤ r < 1. Recently, Li and Cheng [5,6]
and Tang et al. [7] considered the general case in which one of their main results
is obtained under assumptions such as

rn +
n−1∑

s=n−k+l

qs = 1. (3)

In this paper, we are concerned with oscillation criteria for (1) which do not
make use of (3). Our approach is new and is based on the monotonicity of an
associated sequence of a solution as well as a functional inequality satisfied by it.
As a result, our results can be used to show oscillation when the previous results
cannot.

In the sequel, empty sum will be taken to be zero as usual.

2. Oscillation Criteria

For any integer t ∈ {0, 1, · · · , k − l}, let

Rn (t) = rn +
n−1∑

s=n−t

qs +
n−t+k−l−1∑

s=n

ps. (4)

In particular, if t = 0, then (4) is just

Rn (0) = rn +
n+k−l−1∑

s=n

ps,

and if t = k − l, then (4) is

Rn (k − l) = rn +
n−1∑

s=n−k+l

qs.

Let

α(t) =
{

m, if qn ≡ 0 and t = k − l
max {m, k} , otherwise
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and

β(t) =
{

m, if qn ≡ 0 and t = k − l
min {m, l + 1} , otherwise .

Obviously, α(t) ≥ m ≥ β(t).
Lemma 2.1. Suppose there exists an integer t ∈ {0, 1, · · · , k − l} such that

Rn (t) = rn +
n−1∑

s=n−t

qs +
n−t+k−l−1∑

s=n

ps ≤ 1, (5)

for all large n. Suppose further that {xn} is an eventually positive solution of the
functional difference inequality

∆ (xn − rnxn−m) + pnxn−k − qnxn−l ≤ 0. (6)

Then the sequence {zn} defined by

zn = xn − rnxn−m −
n−1∑

s=n−t

qsxs−l −
n+k−l−t−1∑

s=n

psxs−k (7)

for all large n will satisfy ∆zn ≤ 0 and zn > 0 eventually.
Proof. Let N1 > µ such that xn > 0 for n ≥ N1 − µ. Then, from (6) and (7),

we have

∆zn ≤ − (pn−t+k−l − qn−t)xn−t−l = −hn−t+k−lxn−t−l ≤ 0, n ≥ N1. (8)

Hence zn is nonincreasing for n ≥ N1. If {zn} is not eventually positive, then in
view of our assumption on {hn}, zn < 0 for all large n. Thus there exist an integer
N2 ≥ N1 and a constant c > 0 such that zn < −c for n ≥ N2. Therefore, from (7),
we have

xn ≤ −c + rnxn−m +
n−1∑

s=n−t

qsxs−l +
n+k−l−t−1∑

s=n

psxs−k, n ≥ N2. (9)

If the solution {xn} is unbounded, then lim supn→∞ xn = ∞. Hence there
exists a sequence of integers {ni}∞i=1 such that ni ≥ N2 + α(t) for i = 1, 2, 3, ...,
limi→∞ ni = ∞, limi→∞ xni

= ∞ and

xni = max {xn| N2 ≤ n ≤ ni}

for i = 1, 2, 3, ... . From (5), (9) and the above equalities, we have

xni
≤ −c + rni

xni−m +
ni−1∑

s=ni−t

qsxs−l +
ni+k−l−t−1∑

s=ni

psxs−k ≤ −c + xni
< xni

,

which is a contradiction.
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If {xn} is bounded, then there exists a constant θ ≥ 0 such that lim supn→∞ xn =
θ < ∞. Choose a sequence of integers {ni}∞i=1 such that limi→∞ ni = ∞ and
limi→∞ xni

= θ. It is easy to see that there exists a sequence of integers {λi}∞i=1

such that ni − α(t) ≤ λi ≤ ni − β(t) and

xλi
= max {xn| ni − α(t) ≤ n ≤ ni − β(t)} .

Then limi→∞ λi = ∞ and lim supn→∞ xλi ≤ θ. Hence, from (5) and (9), we have

xni
≤ −c + rni

xni−m +
ni−1∑

s=ni−t

qsxs−l +
ni+k−l−t−1∑

s=ni

psxs−k ≤ −c + xλi
.

Taking the superior limit as i →∞ on both sides, we obtain θ ≤ −c+θ < θ, which
is also a contradiction. The proof is complete.
Lemma 2.2. Suppose there exists an integer t ∈ {0, 1, · · · , k − l} such that

Rn (t) = rn +
n−1∑

s=n−t

qs +
n−t+k−l−1∑

s=n

ps ≥ 1 (10)

for all large n. Suppose further that the following second-order difference inequality

∆2yn +
1

α (t)
hn−t+k−lyn ≤ 0 (11)

does not have any eventually positive solution. Then for any eventually positive
solution {xn} of (6), the sequence {zn} defined by (7) satisfies zn < 0 and ∆zn ≤ 0
for all large n.

Proof. We will only consider the case where the conditions qn ≡ 0 and t = k−l
do not hold simultaneously, since the other case can be dealt with in a similar
fashion. Then α(t) = max {m, k}. From (6) and (7), (8) holds for all large n.
Hence ∆zn ≤ 0 for all large n.

Suppose to the contrary that {zn} is eventually positive, then there is an integer
T > α(t) such that xn > 0, zn > 0 and ∆zn ≤ 0 for any n ≥ T − α(t).

Let M = min
{
xT−α(t), xT−α(t)+1, · · · , xT

}
> 0. Then, in view of (7) and (10),

we have

xT = zT + rT xT−m +
T−1∑

s=T−t

qsxs−l +
T+k−l−t−1∑

s=T

psxs−k

≥ M

(
rT +

T−1∑
s=T−t

qs +
T+k−l−t−1∑

s=T

ps

)
≥ M.

Hence

xT+1 ≥ M

(
rT+1 +

T∑
s=T+1−l

qs +
T+k−l−t∑
s=T+1

ps

)
≥ M.
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In general, we can obtain

xn ≥ M

(
rn +

n−1∑
s=n−t

qs +
n+k−l−t−1∑

s=n

ps

)
≥ M, T ≤ n ≤ T + α(t).

By induction, we can further obtain

xn ≥ M, T + (s− 1) α(t) ≤ n ≤ T + sα(t), s = 1, 2, ... .

Hence

xn ≥ M for any n ≥ T − α(t). (12)

In view of the monotonicity of {zn}, we may set limn→∞ zn = c. If c = 0, there
exists an integer T1 > T such that zn < M/2 holds for n > T1. Hence, from (12),
we have

xn ≥
1

α(t)

n+α(t)−1∑
s=T1

zs, T1 ≤ n ≤ T1 + α(t).

If c > 0, then zn ≥ c for n ≥ T . In view of (7), (10) and (12), we have

xn ≥ c + rnxn−m +
n−1∑

s=n−t

qsxs−l +
n+k−l−t−1∑

s=n

psxs−k ≥ c + M, n ≥ T1.

In general, we get

xn ≥ sc + M, n ≥ T1 + (s− 1) α(t), s = 1, 2, ... .

Hence limn→∞ xn = ∞. Thus there exists an integer T2 > T1 such that

xn ≥
1

α(t)

n+α(t)−1∑
s=T2

zs, T2 ≤ n ≤ T2 + α(t).

In general, there exists an integer N ≥ T2 such that

xn ≥
1

α(t)

n+α(t)−1∑
s=N

zs, N ≤ n ≤ N + α(t). (13)

For N +α(t) ≤ n ≤ N +α(t)+β(t), in view of the monotonicity of {zn}, from (7),
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(10) and (13),

xn = zn + rnxn−m +
n−1∑

s=n−t

qsxs−l +
n+k−l−t−1∑

s=n

psxs−k

≥ zn +

(
rn +

n−1∑
s=n−t

qs +
n+k−l−t−1∑

s=n

ps

)
1

α(t)

n−1∑
s=N

zs

≥ 1
α(t)

n+α(t)−1∑
s=n

zs +
1

α(t)

n−1∑
s=N

zs

=
1

α(t)

n+α(t)−1∑
s=N

zs.

By induction, we obtain

xn ≥
1

α(t)

n+α(t)−1∑
s=N

zs, N + α(t) + (j − 1) β(t) ≤ n ≤ N + α(t) + jβ(t),

for j = 1, 2, ... . Hence

xn ≥
1

α(t)

n+α(t)−1∑
s=N

zs, n ≥ N. (14)

Let yn =
∑n−1

s=N zs. Then yn > 0 for all large n, and ∆yn = zn and ∆2yn = ∆zn

for n ≥ N. From (8) and (14), in view of α(t) ≥ t + l, we have

∆zn ≤ −hn−t+k−lxn−t−l ≤ −hn−t+k−l

α(t)

n−t−l+α(t)−1∑
s=N

zs ≤ −hn−t+k−l

α(t)

n−1∑
s=N

zs,

and so
∆2yn +

1
α(t)

hn−t+k−lyn ≤ 0, n ≥ N + α(t),

i.e., {yn} is an eventually positive solution of (11). This is contrary to our assump-
tion. The proof is complete.

Theorem 1 Assume there exist two integers t1, t ∈ {0, 1, · · · , k − l} such that

Rn (t1) = rn +
n−1∑

s=n−t1

qs +
n−t1+k−l−1∑

s=n

ps ≤ 1 (15)

and

Rn (t) = rn +
n−1∑

s=n−t

qs +
n−t+k−l−1∑

s=n

ps ≥ 1 (16)

for all large n. Further assume that the functional inequality (11) does not have
any eventually positive solution. Then every solution of (1) oscillates.
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Indeed, from Lemma 2.1 and (15), for every eventually positive solution {xn}
of (1), the sequence {zn} defined by (7) is eventually positive. But in view of (11),
(16) and Lemma 2.2, the sequence {zn} is eventually negative, thus we obtain a
contradiction. Thus (1) cannot have any eventually positive, nor any eventually
negative, solutions.

We remark that there are many sufficient conditions which will guarantee the
nonexistence of eventually positive solutions of (11). For instance, the following
result is taken from [7]: If {dn}∞n=0 is a nonnegative sequence and

lim inf
n→∞

n
∞∑

s=n

ds >
1
4
, (17)

then the following functional inequality

∆2yn + dnyn ≤ 0, n = 0, 1, 2, ... (18)

does not have any eventually positive solutions.
Consequently, if (15) and (16) hold for t1, t and all large n and if

lim inf
n→∞

n
∞∑

s=n

(ps+k−l − qs) >
α(t)
4

, (19)

then every solution of (1) oscillates.

Corollary 2.1. Assume there exists an integer t ∈ {1, · · · , k − l − 1} such that
(16) holds for all large n, and

lim inf
n→∞

n

∞∑
s=n

(ps+k−l − qs) >
max{m, k}

4
,

holds. Further assume that {qn/ (pn+k−l − qn)} and {pn/ (pn − qn−k+l)} are non-
decreasing and there exist two nonnegative constants δ1 and δ2 such that

rn−k (pn − qn−k+l) ≤ δ1 (pn−m − qn−k+l−m) , (20)

qn−k (pn − qn−k+l) ≤ δ2 (pn−l − qn−k) , (21)

pn (pn+t+l − qn+t−k+2l) ≤ δ2 (pn − qn−k+l) , (22)

for all large n and δ1 + (k − l) δ2 = 1. Then every solution of Eq. (1) oscillates.

Proof. Suppose to the contrary that Eq.(1) has an eventually positive solution
{xn} and let {zn} be defined by (7). From Lemma 2.2, we have zn < 0 and ∆zn ≤ 0
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eventually. In view of (20), (21) and (22),

∆zn = −hn−t+k−lxn−t−l

= −hn−t+k−l (zn−t−l + rn−t−lxn−t−l−m)

−hn−t+k−l

(
n−t−l−1∑
s=n−2t−l

qsxs−l +
n−2t+k−2l−1∑

s=n−t−l

psxs−k

)
≥ −hn−t+k−lzn−t−l − δ1hn−t+k−l−mxn−t−l−m

−hn−t+k−l

n−t−l−1∑
s=n−2t−l

qshs+k−l

hs+k−l
xs−l − hn−t+k−l

n−2t+k−2l−1∑
s=n−t−l

pshs

hs
xs−k

≥ −hn−t+k−lzn−t−l − δ1hn−t+k−l−mxn−t−l−m

−qn−t−lhn−t+k−l

hn−t+k−2l

n−t−l−1∑
s=n−2t−l

(−∆zs+t)

−pn−2t+k−2lhn−t+k−l

hn−2t+k−2l

n−2t+k−2l−1∑
s=n−t−l

(−∆zs+t−k+l)

≥ −hn−t+k−lzn−t−l + δ1∆zn−m + δ2

n−t−l−1∑
s=n−2t−l

∆zs+t

+δ2

n−2t+k−2l−1∑
s=n−t−l

∆zs+t−k+l

= −hn−t+k−lzn−t−l + δ1∆zn−m + δ2 (zn−l − zn−t−l) + δ2 (zn−t−l − zn−k)
≥ −hn−t+k−lzn−k + δ1∆zn−m + δ2zn−l − δ2zn−k

= − (hn−t+k−l + δ2) zn−k + δ1∆zn−m + δ2zn−l.

Thus
∆ (zn − δ1zn−m) + (hn−t+k−l + δ2) zn−k − δ2zn−l ≥ 0,

which implies {−zn} is an eventually positive solution of the inequality

∆ (xn − δ1xn−m) + (hn−t+k−l + δ2)xn−k − δ2xn−l ≤ 0. (23)

In view of Lemma 2.1-2.2 and δ1 + (k − l) δ2 = 1, (23) has no eventually positive
solution, thus we will obtain a contraction. In fact, if {xn} is an eventually positive
solution of (23) and let rn = δ1, pn = hn+k−l + δ2 and qn = δ2, then

Rn(k − l) = rn +
n−1∑

s=n−k+l

qs = δ1 + (k − l)δ2 = 1 ≤ 1,

Rn(0) = rn +
n+k−l−1∑

s=n

ps = δ1 + (k − l)δ2 +
n+k−l−1∑

s=n

hs+k−l ≥ 1,



Oscillation Criteria for Delay Neutral Difference... 9

and from the known condition,

lim inf
n→∞

n
∞∑

s=n

(ps+k−l − qs) >
max{m, k}

4
=

α(0)
4

.

Hence from Lemma 2.1, zn < 0 defined by (7) is negative. But from Lemma 2.2,
zn > 0. We obtain a contradiction. The proof is complete.
Corollary 2.2. Assume that (16) holds for t = 0 and all large n, and

lim inf
n→∞

n
∞∑

s=n

(ps+k−l − qs) >
max{m, k}

4

holds. Further assume that {pn/ (pn − qn−k+l)} is nondecreasing and there exist
two nonnegative constants δ1 and δ2 such that δ3 ≥ pn− qn−k+l eventually and for
all large n,

rn−k (pn − qn−k+l) ≤ δ1 (pn−m − qn−k+l−m) , (24)

pn (pn+l − qn−k+2l) ≤ δ3 (pn − qn−k+l) , (25)

and δ1 + (k − l) δ3 = 1 and hn < δ3 eventually. Then every solution of Eq.(1)
oscillates.

Indeed, by arguments similar to those in the proof of Corollary 2.1, we obtain,

∆zn ≥ (δ3 − hn+k−l) zn−l + δ1∆zn−m − δ3zn−k.

Hence {−zn} is an eventually positive solution of the inequality

∆ (xn − δ1xn−m) + δ3xn−k − (δ3 − hn+k−l) xn−l ≤ 0,

which yields a contradiction by Lemma 2.1 and 2.2.
Similarly, we can obtain the following result.

Corollary 2.3. Assume that (16) holds eventually and (19) holds for t = k −
l. Further assume that {qn/ (pn+k−l − qn)} is nondecreasing and there exist two
nonnegative constants δ1 and δ2 such that for all large n,

rn−k (pn − qn−k+l) ≤ δ1 (pn−m − qn−k+l−m) , (26)

qn−k (pn − qn−k+l) ≤ δ2 (pn−l − qn−k) , (27)

and δ1 + (k − l) δ2 = 1. Then every solution of Eq.(1) oscillates.

Theorem 2 Suppose there exists an integer t ∈ {0, 1, · · · , k − l} such that (3)
holds eventually. Suppose further that

lim inf
n→∞

n

∞∑
s=n

(ps+k−l − qs) >
max(m, t + l)

4

holds and that
rn−k (pn − qn−k+l) ≥ pn−m − qn−k+l−m (28)

for all large n. Then every solution of Eq.(1) is oscillatory.
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Proof. Suppose to the contrary that {xn} is an eventually positive solution of
(1). Then, in view of Lemma 2.1, zn > 0 and ∆zn ≤ 0 for all large n. In view of
(1), we have

∆zn = −hn−t+k−lxn−t−l

= −hn−t+k−l (zn−t−l + rn−t−lxn−t−l−m)

−hn−t+k−l

(
n−t−l−1∑
s=n−2t−l

qsxs−l +
n−2t+k−2l−1∑

s=n−t−l

psxs−k

)

Hence

∆zn + hn−t+k−lzn−t−l + rn−t−lhn−t+k−lxn−t−l−m ≤ 0 (29)

for all large n. From (1), we have

∆zn−m + hn−t+k−l−mxn−t−l−m = 0.

In view of (29) and the above equality, we obtain

∆ (zn − zn−m)+hn−t+k−lzn−t−l ≤ {hn−t+k−l−m − rn−t−lhn−t+k−l}xn−t−l−m ≤ 0,

i.e. {zn} is an eventually positive solution of the recurrence relation

∆ (zn − zn−m) + hn−t+k−lzn−t−l ≤ 0,

which yields a contradiction by Lemma 2.1 and 2.2. The proof is complete.
If the assumption (28) is not satisfied, the following result is available.

Theorem 3 Suppose there exists an integer t ∈ {0, 1, · · · , k − l} such that (3)
holds eventually. Further assume that there exists a constant c ∈ [0, 1) such that

rn−k (pn − qn−k+l) ≥ c (pn−m − qn−k+l−m) . (30)

Then every solution of Eq.(1) is oscillatory provided that there exists a constant
c ∈ [0, c) such that the following recurrence relation

∆un +
c

1− c
hn−t+k−lun−t−l−m ≤ 0, n = 0, 1, 2, ... (31)

does not have an eventually positive solution.

Proof. Suppose to the contrary that {xn} is an eventually positive solution of
(1). Then, from Lemma 2.1, we have zn > 0 and ∆zn ≤ 0 for all large n. As in
the proof of Theorem 2, we get

∆ (zn − czn−m) + hn−t+k−lzn−t−l ≤ 0,
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for all large n. Let un = zn − czn−m. Similar to the proof of Lemma 2.1, we have
un > 0 and ∆un ≤ 0 for all large n. Hence there exists an integer N > 0 such that
zn > 0 and ∆zn ≤ 0, and un > 0 and ∆un ≤ 0 for n ≥ N . Thus

zn = un + czn−m = un + c (un−m + czn−2m) = · · ·
= un + cun−m + · · ·+ ciun−im + czn−(i+1)m

≥
(
c + c2 + · · ·+ ci

)
un−m =

c
(
1− ci+1

)
1− c

un−m

for n ≥ (i + 1) m + N . Hence (31) holds for all large n, which is contrary to the
hypothesis that (31) has no eventually positive solution. The proof is complete.

3. Examples

In this section, we give two examples to illustrate our results.
Example 3.1. Consider the neutral difference equation

∆ (xn − rnxn−m) + pnxn−k − qnxn−l = 0, n = 1, 2, · · · , (32)

where k = l + 1 and m > 0, l ≥ 0, and rn = 1− c, pn = c and qn = c− (n + 1)−d

for n ∈ {0, 1, 2, · · · }, where c ∈ (0, 1) and d is a real constant.
Let t1 = 1 and t = 0. Then it is easy to see that

Rn (t1) = Rn (1) = rn + qn−1 = 1− n−d < 1

for any positive integer n, and

Rn (t) = Rn (0) = rn + pn = 1 ≥ 1.

Since hn = pn − qn−1 = n−d satisfies

lim inf
n→∞

(
n

∞∑
s=n

hs+k−l

)
= lim inf

n→∞

(
n

∞∑
s=n+1

s−d

)
=
{
∞, d ∈ (−∞, 2)
1, d = 2 .

Hence by Theorem 1, every solution of (32) oscillates when d ∈ (−∞, 2) or d = 2
and max{m, k} < 4. But it seems difficult to obtain the same conclusion from the
results in [5-7].
Example 3.2. Consider the neutral difference equation (32), where m = l = 1,
k = 3 and r = 0.5, and

pn = 0.25 + (n + 1)−2
, n = 0, 1, 2, ...,

qn = 0.25− (n + 3)−2
, n = 0, 1, 2, ... .

Take t1 = 2 and t = 0, then

Rn (t1) = Rn (2) = rn + qn−2 + qn−1 = 1− (n + 1)−2 − (n + 2)−2
< 1
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and

Rn (t) = Rn (0) = rn + pn + pn+1 = 1 + (n + 1)−2 + (n + 2)−2
> 1

for all large n, and hn = pn − qn−2 = 2 (n + 1)−2
. Thus

lim inf
n→∞

(
n
∞∑

s=n

hs+k−l

)
= 2× lim inf

n→∞

(
n

∞∑
s=n+3

s−2

)
= 2 >

3
4

=
max(m, k)

4
.

Hence by Theorem 1, every solution of (32) oscillates. But it seems difficult to
obtain the same conclusion from the results in [5-7].
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