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Maximal chain transitive sets for local groups

Carlos J. Braga Barros and Luiz A. B. San Martin

abstract: Let H be a locally transitive local group. We characterize the maximal
chain sets for a family F of subsets of H as intersections of control sets for certain
shadowing semigroups.
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1. Introduction

The concepts of control set and chain control set for control systems were intro-
duced by Colonius and Kliemann [1]. Extending this notion for general classes of
semigroups Braga Barros and San Martin [3] defined chain control sets for a fam-
ily of subsets of a semigroup acting on a homogeneous space. In that paper chain
control sets were characterized as intersection of control sets for the semigroups
generated by the neighborhoods of the subsets in the family. For a metric space M
we denote by loc (M) the set of local homeomorphisms of M . Let H ⊂ loc (M) be
a local group (see Definition 1) and F a family of subsets of H. In this paper we de-
fine maximal chain transitive sets for F and characterize these sets as intersections
of control sets for certain shadowing semigroups. In case F is contained in a local
semigroup (see Definition 3) a maximal chain transitive set for F (with non empty
interior in M) is a F-chain control set as defined in [3]. Let A be a subset of a local
group H. The shadowing semigroups (see Definition 4) Sε,A, ε > 0 and A ∈ H are
semigroups obtained by successively composing the local homeomorphisms which
are ε-close (in their domains) to some φ ∈ A. The characterization of maximal
chain transitive sets as intersections of control sets is possible since we relate chain
attainability with the action of the shadowing semigroup (see Propositions 2 and
3). The approach here is different from that of [3]. In this new context, we are
considering local semigroups contained in locally transitive (see Definition 5) lo-
cal groups. We also consider local semigroups acting on metric spaces instead of
homogeneous spaces.

The maximal chain transitive sets for flows on metric spaces were studied in
[5]. Now, let φt be a flow on a metric space M . It is well known that the set
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H = {φt : t ∈ R} is a local group. For T > 0 we define AT = {φt : t ≥ T} and
Fφ = {AT : T ≥ 0}. In this paper it is shown that the maximal chain transitive
sets for the family Fφ are the maximal chain transitive sets for the flow φ as defined
by Conley in [2]. It follows that the Theorem 1 of this paper applied to the family
Fφ is the Theorem 4.7 in [5].

In the case of a flow on a metric space the domain of attraction of a chain
transitive component of the flow was defined and studied in [5]. In this paper we
also define and study the domain of attraction of a maximal chain transitive set
for a family of subsets of a local group.

Apart from this general characterization of maximal chain transitive sets as
intersection of control sets we also study the behavior of maximal chain transitive
sets on fiber bundles. The action of semigroups in fiber bundles arises naturally
in many contexts. For instance in nonlinear control systems the linearized flow
evolves on a fiber bundle over the state space of the system (see [1]). The action
of semigroups of diffeomorphisms on fiber bundles were studied by Barros and San
Martin [4]. In [4] the control sets were described from their projections onto the
base space and their intersections with the fibers.

In this paper it is shown the same kind of results of [4] for the maximal chain
transitive sets. We show that a maximal chain transitive set in the total space
of a fiber bundle projects inside a maximal chain transitive set in the base space.
On the other hand, under certain conditions, we also prove that a maximal chain
transitive set in the fiber is contained in a maximal chain transitive set in the total
space.

2. Maximal chain transitive sets

In this section we start defining the shadowing semigroups. They are associated
with a subset A contained in a local group H and a positive real number ε. We
also relate chain attainability and the shadowing semigroups. As a consequence
we characterize the chain control sets as intersections of control sets for shadowing
semigroups. Finally we define and study the domain of attraction of a maximal
chain transitive set for a family of subsets of a local group.

LetM be a metric space. We denote by loc (M) the set of local homeomorphisms
of M , that is, homeomorphisms ξ : U → V between open subsets of M .

Definition 1 A subset H ⊂ loc (M) is a local group if it is closed under the oper-
ations of inverses and compositions (when they are allowed).

Given A ⊂ H and a real ε > 0, we define a (ε,A)-chain.

Definition 2 Take x, y ∈M, a real ε > 0 and A ⊂ H. A (ε,A)-chain from x to y
consists of points x0 = x, x1,. . ., xn−1, xn = y in M and φ0, . . . , φn−1 ∈ A such
that d(φj(xj), xj+1) < ε for j = 0, . . . , n− 1.

We denote by

Cε,A(x) = {y ∈M : there is a (ε,A)-chain from x to y}
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We use dom (·) for the domain of local homeomorphisms and for ξ, η ∈ loc (M)
whose domains overlap put

d′(ξ, η) = sup d(ξ(x), η(x))

where the supremum is taken over dom (ξ)∩dom (η). Note that for ξ, τ, η ∈ loc (M)
it holds

d′ (ξη, τη) ≤ d′ (ξ, τ) , (1)

since the supremum in the left hand side is taken over a smaller set than in the
right hand side.

Given a local group H and A ⊂ H we define the neighborhood

Bε (A,H) = {η ∈ H : there is ξ ∈ A such that d′(ξ, η) < ε}

(or simply Bε (A) if H is understood).

Definition 3 We say that S ⊂ loc (M) is a local semigroup in case S is closed
under the allowed compositions.

Definition 4 Let H be a local group and A ⊂ H. Given a positive real number ε we
define the shadowing semigroup Sε,A (H) (or simply Sε,A) as the local subsemigroup
of H generated by the set Bε(A,H).

For a set S ⊂ loc (M) and x ∈M , we use the notation

Sx = {φ (x) : φ ∈ S}.

Using the standard notation of control theory we say that a local semigroup S
satisfies the accessibility property if int(Sx) 6= ∅ for every x ∈M .

In the following we show that the shadowing semigroups Sε,A satisfy the ac-
cessibility property. In order to discuss this result we require that the set of local
homeomorphisms H is locally transitive. This locally transitive property means
intuitively that we can map any x ∈ M to neighboring points using “small” local
homeomorphisms of M . More specifically, we introduce the following class of local
groups.

Definition 5 We say that a local group H ⊂ loc (M) is locally transitive with
parameters c, ρ > 0 if for every x ∈ M and y in the ball Bρ (x) there exists ξ ∈ H
such that ξ (x) = y and d (ξ (x) , x) ≥ cd′ (ξ, id).

We observe that this condition was extensively discussed in [5]. Although
restrictive (see examples in section 3 of [5]) this condition is weak enough so that
many classes of reasonable metric spaces are allowed, like e.g. compact Riemannian
manifolds or open sets in Frechet spaces.

Note that by the very definition Sε,A ⊂ Sε1,A1 if ε ≤ ε1 and A ⊂ A1. Actually,
the next lemma, which is a reformulation of [5] Lemma 4.2, shows that in a certain
sense Sε1,A is contained in the interior of Sε2,A if ε1 < ε2.



116 Carlos J. Braga Barros and Luiz A. B. San Martin

Lemma 1 Suppose that ξ ∈ H satisfies d′ (ξ, id) < δ. Then for ψ ∈ Sε,A, the
composition ξψ ∈ Sε+δ,A.

Proof: Write ψ = ψ1 · · ·ψk with ψi ∈ Bε (A,H), i = 1, . . . , k. To prove the
lemma it is enough to check that ξψ1 ∈ Sε+δ,A, because ψ2 · · ·ψk ∈ Sε,A ⊂ Sε+δ,A.
By inequality (1), d′ (ξψ1, ψ1) ≤ d′ (ξ, id), so that d′ (ξψ1, ψ1) < δ. However,
ψ1 ∈ Bε (A,H) and there is φ ∈ A such that d′ (ψ1, φ) < ε. Hence for any z in
dom (ξψ1) ∩ dom (ψ1) = dom (ψ1) it holds,

d (ξψ1 (z) , φ (z)) ≤ d (ξψ1 (z) , ψ1 (z)) + d (ψ1 (z) , φ (z))
< δ + ε,

showing that ξψ1 ∈ Bε+δ (A,H), concluding the proof. 2

With the aid of the Lemma 1 we show under the hypothesis of locally transitivity
that the shadowing semigroups satisfy the accessibility property.

Proposition 1 Suppose that A is contained in a locally transitive local group H
and ε is a positive real number. Then the shadowing semigroup Sε,A satisfy the
accessibility property.

Proof: Take x ∈M . We show that Sε,Ax ⊂ int (Sε1,Ax) if ε < ε1. Given η ∈ Sε,A

let us show that ηx ∈ int (Sε1,Ax). Write η = η1 · · · ηk with ηi ∈ Bε (A,H),
i = 1, . . . , k. Now, let c, ρ > 0 be the parameters of local transitivity of H, and
choose ρ′ ≤ min{ρ, c (ε1 − ε)}. Then for any y ∈ Bρ′ (ηx) there exists ξ ∈ H with
ξη (x) = y and d (ξ (ηx) , ηx) ≥ cd′ (ξ, id). By Lemma 1, one has ξη ∈ Sε1,A, be-
cause the choice of ρ′ ensures that d′ (ξ, id) ≤ ε1− ε. Therefore, every y ∈ Bρ′ (ηx)
belongs to Sε1,Ax, proving the lemma. 2

The basic facts relating chain attainability and the shadowing semigroups are
the following two propositions which are essentially a reformulation of Propositions
3.1 and 3.2 of [3] (see also Proposition 4.5 of [5]).

Proposition 2 Keep the above notations and take x, y ∈ M . Then y ∈ Cε,A(x) if
y ∈ Sε,Ax. Also y ∈ Cέ,A(x) for every ε′ > ε if y ∈ cl(Sε,Ax).

Proof: Take y ∈ Sε,Ax and let ψ ∈ Sε,A be such that y = ψ(x). By definition
of Sε,A it follows that ψ = ψk−1 · · ·ψ0 with ψi ∈ Bε (A), i = 0, . . . , k − 1. Thus
there are φi ∈ A such that d (φi (z) , ψi (z)) < ε for every z ∈ dom (ψi). The
sequences x0 = x, x1 = ψ0(x0),. . ., xk = ψk−1(xk−1) = y and A ∈ F determine an
(ε,A)-chain from x to y, since

d (φi−1 (xi−1) , xi) = d (φi−1 (xi−1) , ψi−1 (xi−1)) < ε

for every i, showing the existence of a (ε,A)-chain from x to y.
Now, take y ∈ cl (Sε,Ax). Then there exists a sequence ψn ∈ Sε,A with ψn (x) →

y. Take ε′ > ε and let n0 be such that d (ψn0 (x) , y) < ε′ − ε. As before, there
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exists a (ε,A)-chain from x to ψn0 (x). Let this chain be given by y0 = x,....,
yn = ψn0(x0), and φ0, . . . , φn−1 ∈ A. Thus d (φi (yi) , yi+1) < ε for i = 0, . . . , n−1.
Therefore, the chain z0 = x, z1 = y1, ..., zn−1 = yn−1, zn = y and φ0, . . . , φn−1 ∈ A
determine a (ε′, A)-chain from x to y, since

d (φn−1 (yn−1) , y) ≤ d (φn−1 (yn−1) , ψn0 (x)) + d (ψn0 (x) , y) < ε′,

so that d (φi−1 (yi−1) , yi) < ε < ε′ for every i. 2

As a converse one has.

Proposition 3 Suppose that A ⊂ H and H is a locally transitive local group with
parameters c, ρ. Take ε with 0 < ε < ρ and put ε′ = ε/c. Let x0, . . . , xn ∈ M and
φ0, . . . , φn−1 determine a (ε,A)-chain from x0 to xn. Then xn ∈ int (Sε′,Ax0).

Proof: Since d (φi (xi) , xi+1) < ε < ρ, the locally transitivity property of H
implies that there exists ξi ∈ H such that

d (xi+1, φi (xi)) = d (ξi (φi (xi)) , φi (xi)) ≥ cd′ (ξi, id)

for i = 0, . . . , n− 1. Hence d′ (ξi, id) < ε/c = ε′. Define ηi = ξiφi. Then

d′ (ηi, φi) = d′ (ξiφi, φi) ≤ d′ (ξi, id) < ε′

because multiplication on the right diminishes d′. Therefore, ηi ∈ Bε′ (A). On the
other hand, ηi (xi) = ξiφi (xi) = xi+1, and xn = ηn−1 · · · η0 (x0), concluding the
proof since ψ = ηn−1 · · · η0 ∈ Sε′,A. 2

This proposition ensures that we can replace an (ε,A)-chain by the action of
an element in Sε,A.

Now, we recall the definition of a control set. For a more detailed study of the
control sets we refer [10]. From now on, and in the whole paper we assume that S
is a local semigroup satisfying the accessibility property.

Definition 6 A control set for S on M is a subset D ⊂M which satisfies

1. int(D) 6= ∅

2. For every x ∈ D, D ⊂ cl(Sx) and

3. D is maximal with these properties.

The control sets are the subsets where the semigroup is approximately transi-
tive. This approximate transitivity can be improved to exact transitivity inside a
dense subset of D. We define

D0 = {x ∈ D : x ∈ int(Sx) ∩ int(S−1x)}.
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In general, D0 may be empty. However, in case it is not empty the set D0 is
called the set of transitivity ( or core) of the control set D. The control set D is an
effective control set in case D0 6= ∅. We also recall that a control set is called an
invariant control set if it is invariant under the action of the semigroup S.

These control sets have the following properties, proved in [4], Proposition 2.2
(see also [10], Proposition 2.2).

Proposition 4 Suppose D0 6= ∅, that is, D is an effective control set. Then

1. D ⊂ int
(
S−1x

)
for every x ∈ D0.

2. D0 = int
(
S−1x

)
∩ int (Sx) for every x ∈ D0.

3. For every x, y ∈ D0 there exist g ∈ S with gx = y.

4. D0 is dense in D.

5. D0 is S-invariant inside D, i.e., ξ (x) ∈ D0 if ξ ∈ S, x ∈ D0 and ξ (x) ∈ D.

As a complement to the above proposition we have the following statement
which ensures the existence of effective control sets.

Proposition 5 Let x ∈M be such that

x ∈ int (Sx) ∩ int
(
S−1x

)
.

Then there exists a unique effective control set D such that x ∈ D0.

Proof: See [4], Proposition 2.3. 2

On the sets of the transitivity of the control sets for the shadowing semigroups
we have.

Lemma 2 With the same assumptions as the previous proposition, take ε1 < ε2
and suppose that Dε1,A and Dε2,A are effective control sets for Sε1,A and Sε2,A,
respectively, such that (Dε1,A)0 ∩ (Dε2,A)0 6= ∅. Then Dε1,A ⊂ (Dε2,A)0.

Proof: Take x ∈ (Dε1,A)0 ∩ (Dε2,A)0. Then for any y ∈ (Dε1,A)0, y ∈ Sε1,Ax
and x ∈ Sε1,Ay. Since Sε1,A ⊂ Sε2,A, the maximality property in the definition of
control sets ensures that y ∈ Dε2,A, and a fortiori, by Proposition 4, y ∈ (Dε2,A)0.
Hence, (Dε1,A)0 ⊂ (Dε2,A)0. To conclude the proof we show that z ∈ Sε2,Ax
and x ∈ Sε2,Az. By Proposition 4, x ∈ Sε1,Az ⊂ Sε2,Az. On the other hand,
Dε1,A ⊂ cl (Dε2,A)0, so that any z ∈ Dε1,A belongs to cl (Sε1,Ax). Hence by Propo-
sition 3, it follows that z ∈ int (Sε2,Ax) ⊂ Sε2,Ax, as we desired to show. 2

We define maximal chain transitive sets for a family F of subsets of a local
group H. We use the notation

C(x) =
⋂

ε>0,A∈F
Cε,A(x)
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Definition 7 Let F be a family of subsets of a local group H. A subset E ⊂ M
is chain transitive for the family F if for all x ∈ E, E ⊂ C (x). A chain transitive
subset E is a maximal chain transitive for F if E is maximal with respect to set
inclusion.

Definition 8 Let S be a local semigroup and assume that F is contained in S. A
maximal transitive set for F is called a F-chain control set if intM (E) 6= ∅.

It follows quickly from the maximallity condition that two maximal chain tran-
sitive sets for F are either disjoint or coincident. On the other hand, a simple
application of Zorn’s Lemma shows that any chain transitive set for a family F is
contained in a maximal chain transitive set for F .

Finally we can give a characterization of the maximal chain transitive sets in
terms of the control sets of the shadowing semigroups.

Theorem 1 Suppose that F is a family of subsets contained in a locally transitive
group H. Assume that for each ε > 0 and A ∈ F there exists a control set Dε,A of
Sε,A (H) such that E ′ =

⋂
ε>0A∈F Dε,A 6= ∅. Then E ′ is a maximal chain transitive

set for F .
Conversely let E be a maximal chain transitive set for F . Then for every ε > 0

and A ∈ F , there exists an effective control set Dε,A(E) of Sε,A (H) such that E is
contained in the set of transitivity Dε,A (E)0. Furthermore,

E =
⋂

ε>0,A∈F
Dε,A (E) =

⋂
ε>0,A∈F

Dε,A (E)0 . (2)

Proof: If x, y ∈ E ′ then for all ε > 0 and A ∈ F one has x, y ∈ Dε,A, so that
y ∈ cl (Sε,Ax). Hence by Proposition 2 there exists an (ε,A)-chain from x to y.
This shows that E ′ is chain transitive. The maximality follows by Proposition 3.
In fact, if x ∈ E ′ and for every ε > 0, A ∈ F there is a (ε,A)-chain from x to z and
from z to x then z ∈ Dε,A, so that z ∈ E ′.

For the second part take x ∈ E . Since E is chain recurrent, x ∈ Cε,A (x) for all
ε > 0, A ∈ F . By Proposition 3 and Corollary 1, it follows that x ∈ int (Sε,Ax)
for every ε > 0, A ∈ F . Now applying Proposition 5 we conclude that there
exists a control set Dε,A (E , x) of Sε,A such that x ∈ Dε,A (E , x)0. We claim that
Dε,A (E , x) = Dε,A (E , y) for all x, y ∈ E . In fact, since E is chain transitive,
y ∈ Cε,A (x) for all ε > 0, A ∈ F . Hence, by Proposition 3, y ∈ Sε,Ax. The same
way x ∈ Sε,Ay, showing that x and y belong to the same control set.

As to the equalities in (2), note that the second one is a consequence of Corol-
lary 2. Hence it remains to prove that

⋂
ε,A

Dε,A (E) ⊂ E . Using Proposition 2, we

see that any two points x, y ∈
⋂
ε,A

Dε,A (E) are attainable to each other by (ε,A)-

chains, so that this intersection is indeed contained in a maximal chain transitive
set for F , which must be E . 2

Now, we present some applications of the last theorem.
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Example 1 Let G be a Lie group and G/H a homogeneous space of G. Let
X0, X1, . . . , Xm be right invariant vector fields in G, and consider the control sys-
tem

ẋ(t) = X0(x(t)) +
m∑

i=1

ui(t)Xi(x(t))

where u = (u1, . . . , um) ∈ U for some class of admissible controls U . Denote by
ϕ(g, u, t) the solution of the system at time t given by the control u and starting at
g ∈ G. It is given by ϕ(g, u, t) = ϕ(1, u, t)g where 1 stands for the identity in G.
The attainable set from the identity at time t, A(t) is given by A(t) = {ϕ(1, u, t) :
u ∈ U}. Their union

S =
⋃
t≥0

A(t)

is a subsemigroup of G known as the system’s semigroup (see [7]).
Let Fcontrol be the family of subsets of S defined by

Fcontrol = {
⋃
t>T

A(t) : T ≥ 0}.

Then the Fcontrol-chain control sets on G/H are, in general, the chain control sets
for control systems as defined by Colonius and Kliemann in [1](see [3] pg 260).

Now, if we apply Theorem 1 to the case where M = G/H and F is a family
of subsets of a semigroup contained in a locally transitive local group of loc(G/H))
we obtain Theorem 3.7 in [3] for F-chain control sets.

Example 2 Regarding flows on metric spaces we refer to the books Colonius-
Kliemann [1] (Appendix B) and Conley [2]. Let (M,d) be a metric space. Given a
continuous-time flow φ : R×M →M we write the corresponding homeomorphisms
by φt (·) = φ (t, ·) or simply by φt (x) = t · x.

For x, y ∈ M and ε, T > 0 an ε, T -chain from x to y is given by points x0 =
x, x1, . . . , xn = y ∈M and t0, . . . , tn−1 ≥ T , for some n ∈ N, such that

d(ti · xi, xi+1) < ε, i = 0, 1, . . . , n− 1.

We denote by Cε,T (x) the set of those y ∈ Y such that there exists an ε, T -chain
from x to y, and put C (x) =

⋃
ε,T Cε,T (x). A subset A ⊂M is chain transitive for

φ if for all x ∈ A, A ⊂ C (x). A chain transitive subset A is maximal transitive
for φ (with respect to set inclusion) if and only if for all x ∈ A, A = C (x). The
set H = {φt : t ∈ R} is a local group. Now, define AT = {φt : t ≥ T} and
Fφ = {AT : T ≥ 0}. It follows that the maximal chain transitive sets for Fφ are
the maximal chain transitive sets for the flow φ. If we apply the Theorem 1 using
the family Fφ we obtain Theorem 4.7 in [5].

Next, we define and study the domain of attraction of maximal chain transitive
sets. In the case of a flow on a metric space the domain of attraction of a maximal
chain transitive set was defined and studied in [5]. The definition of the domain of
attraction of a maximal chain transitive set given bellow generalizes the definition
given in [5].
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Definition 9 Let F be a family of subsets of a local group H. Let E be a maximal
chain transitive set for F . We define the domain of attraction of E as

A(E) = {y ∈M : there exist a x ∈ E and y ∈ C(x)}

We define the following relation among the maximal chain transitive sets for F
in M :

E1 � E2 if and only if there are x ∈ E1, y ∈ E2 and y ∈ C(x)

Proposition 6 The relation � is an order among the maximal chain transitive
sets for F .

Proof: It is immediate from the definition and properties of the maximal chain
transitive sets for F . 2

Equivalently, E1 � E2 if and only if E1 ∩ A(E2) 6= ∅.

Proposition 7 Let F be a family contained in a locally transitive local group H.
Suppose that E is a maximal chain transitive set for F given by E =

⋂
ε,ADε,A

where Dε,A are invariant control sets for the shadowing semigroups Sε,A with ε > 0
and A ∈ F . Then E is maximal with respect to the order �, defined above.

Proof: It is enough to show that if a point z ∈ E can be linked to a point x by a
(ε,A)-chain for every ε > 0 and A ∈ F then x ∈ E . By contradiction we assume
that there exists a (ε,A)-chain from z to x /∈ E for every ε > 0 and A ∈ F . Since
x /∈ E we have x /∈ Dε1,A1 for some ε1 > 0 and A1 ∈ F . Let c be the parameter
given by the locally transitivity. There is a (cε1, A1)-chain from z to x and by the
Proposition 3 we conclude that x ∈ Sε1,A1z. Since z ∈ Dε1,A1 and Dε1,A1 is in-
variant by the action of Sε1,A1 one has that x ∈ Dε1,A1 , which is a contradiction. 2

Now, we show that the domain of attraction of a maximal chain transitive set is
the intersection of the domains of attraction of the control sets for the shadowing
semigroups.

Proposition 8 With the hypothesis of Theorem 1 one has

A(E) =
⋂
ε,A

A(Dε,A)

Proof: Take z ∈ A(E). Then, there is x ∈ E and a (ε,A)-chain from z to x for
every ε > 0 and A ∈ F . By the Proposition 3 there exist φε,A ∈ Sε,A such that
φε,A(z) = x for every ε > 0 and A ∈ F . Therefore z ∈ A(Dε,A) for every ε > 0 and
A ∈ F , i.e., z ∈

⋂
ε,AA(Dε,A). For the converse, assume that z ∈

⋂
ε,AA(Dε,A).

Then, z ∈ A(Dε,A) for every ε > 0 and A ∈ F . For ε > 0 and A ∈ F there is
φε,A ∈ Sε,A and xε,A ∈ Dε,A such that φε,A(z) = xε,A. Take x ∈ E ⊂ Dε,A. By
the Proposition 2 there exist a (ε,A)-chain from z to xε,A and therefore from z to
x. 2

As a corollary we have.
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Corollary 1 Let F be a family contained in a locally transitive local group H.
Suppose that E1 and E2 are maximal chain transitive sets for F . Then E1 � E2 if
and only if E1 ⊂ A(E2).

Proof: Suppose E1 � E2. By the definition of order among the F-chain control
sets we have E1 ∩ A(E2) 6= ∅. Applying Theorem 1 we obtain E1 =

⋂
ε,AD

1
ε,Aand

E2 =
⋂

ε,AD
2
ε,A. Proposition 8 implies that A(E2) =

⋂
ε,AA(D2

ε,A). Therefore
D1

ε,A∩A(D2
ε,A) 6= ∅ for every ε > 0 and A ∈ F . Thus D1

ε,A ⊂ A(D2
ε,A) (see, Propo-

sition 2.1 in [9]) and E1 ⊂ A(E2). For the converse we observe that E1 ⊂ A(E2)
implies immediately that E1 � E2 2

3. Fiber bundles

In this section we present some properties concerning the behavior of maximal
chain transitive sets on principal bundles and their associated bundles. We refer
to [6] and [8] for the theory of fiber bundles.

We start by settling some notation. Let G be a topological group. We start
with a principal bundle π : Q→M with structural group G. Thus G acts freely on
the right on the metric space Q and its orbits are the fibers Qx = π−1{x}, x ∈M .
Each fiber is homeomorphic to G. We assume always that Q→M is locally trivial.

Recall that if G acts on the left on a space F we can construct the associated
bundle with typical fiber F by taking in Q× F the equivalence relation (q1, v1) ∼
(q2, v2) if and only if there exists g ∈ G such that q2 = q1g and v2 = g−1v1. Let E
be the quotient space by this equivalence relation and denote by [q, v] the class in
E of (q, v) ∈ Q×F . Then [q, v] 7→ π (q) defines a projection E →M , also denoted
by π or πE if we wish to distinguish it from the projection πQ : Q → M of Q. It
is well known that the map v ∈ F 7→ [q, v] ∈ E establishes a bijection between F
and the fiber above x = π (q).

The associated bundle E →M is locally trivial when this happens to Q→M .
In locally trivial bundles over metric spaces we use the following metric.

Proposition 9 Let π : E → M be a locally trivial bundle with (M,d) a metric
space as well as the fiber (F, dF ). Fix a covering Uα of M with π−1 (Uα) ≈ Uα×F .
Then there exists a metric dE on E such that on each trivialization Uα×F it holds

dE ((x, v) , (y, w)) = max{d (x, y) , dF (v, w)}.

Also, d (πe, πf) ≤ dE (e, f) for all e, f ∈ E.

Proof: See [1], [11]. 2

Let π : Q → M be a principal bundle with structure group G. An element
φ ∈ loc (Q) is called right invariant if φ(q.g) = φ(q).g, g ∈ G. We denote by
Aut (Q) the local group of the right invariant local homeomorphisms φ of Q having
domain dom (φ) = π−1 (U) with U open in M .
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Now, let E →M be a bundle associated to Q→M with typical fiber F where
G acts on the left. Any φ ∈ Aut(Q) induces homeomorphisms on both M and E.
In fact, if y ∈M and y = π(q) we define elements b(φ) ∈ loc (M) and e(φ) ∈ loc (E)
as

b(φ)(y) = π(φ(q)) and e(φ)([q, v]) = [φ(q), v],

if φ ∈ Aut(Q). Usually the induced maps are also denoted by φ. Note that the
domain of e (φ) also has the form π−1 (U), U ⊂M . The maps e : Aut (Q) → loc (E)
and b : Aut (Q) → loc (M) define actions of Aut (Q) on E and M , respectively.
The images of e and b are local groups in the corresponding spaces. In general b is
not onto loc (M).

Now, let S be a local semigroup contained in Aut (Q). The images of e and b
are local semigroups in the corresponding spaces. These semigroups are denoted
by e(S) and b(S).

Given q ∈ Q we define the subset

Sq = S(q) ∩ π−1(x), x = π(q)

Through the identification of the fiber over x with G via g ∈ G 7−→ q.g ∈
π−1(x), Sq can be viewed as a subset of G

Sq = {g ∈ G : ∃φ ∈ S, φ(q) = q.g}

It follows immediately that Sq is a subsemigroup of G if Sq 6= ∅.
Suppose that F is a family of subsets of a local group H. Using the maps b

and e defined above the family F induces a family FM in the local group b(H) and
a family FE in e(H). If F is contained in a local semigroup S for each A ∈ F
we define Aq = {a ∈ G : ∃φ ∈ A and φ(q) = q.a}. Thus we define the family
Fq = {Aq : A ∈ F} of Sq.

The following theorem shows that maximal chain transitive sets in the total
space of a fiber bundle project into maximal chain transitive sets in the base of the
bundle.

Theorem 2 Let E be a fiber bundle with projection π : E →M . Let F be a family
of subsets in a local group H. Suppose that E is compact, and let T ⊂ E be a
maximal chain transitive set for FE. Then there exists a maximal chain transitive
B ⊂ M for FM such that π(T ) ⊂ B. For F contained in a local semigroup S one
also has that FE-chain control sets project into FM -chain control sets.

Proof: Take ε > 0, A ∈ F and x′, y′ ∈ π(T ). Pick x, y ∈ T such that π(x) = x′ and
π(y) = y′. Let’s show that there exists an (ε, b(A))-chain from x′ to y′. Since E is
compact, π is uniformly continuous so that there is δ > 0 such that d(π(z), π(z′)) <
ε if d(z, z′) < δ, z, z′ ∈ E. Let x0 = x, x1, ..., xn−1, xn = y in E together
with e(φ0), e(φ1), ..., e(φn−1) in e(A) form a (δ, e(A))-chain from x to y. Since
d(xj , e(φj)(xj)) < δ we have that d(π(xj), π(e(φj)(xj))) = d(π(xj), b(φj)(π(xj))) <
ε which shows that π(xi), b(φi) determine a (ε, b(A))-chain from x′ to y′ and the
result follows. For the chain control sets assume that int(T ) 6= ∅. Since π is an
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open map, π(T ) has nonempty interior and therefore it is contained in a FM -chain
control set. 2

The next theorem shows that a maximal chain transitive set for Fq in a fiber
of a bundle is contained in a maximal chain transitive set in the total space.

Theorem 3 Let E → M be a bundle associated to the locally trivial bundle Q →
M . Assume that S is a local semigroup contained in Aut (Q). Suppose that F is a
family of subsets of S and take q ∈ π−1(x), x ∈ M . Assume that T is a maximal
chain transitive set for Fq in the fiber F of the principal bundle. Then

1. Any maximal chain transitive set for Fq in F is contained in a maximal chain
transitive set for F in Q.

2. [q, T ] is contained in a maximal chain transitive set for FE in E.

Proof:

1. Let T be a maximal chain transitive set for Fq in F . Pick z, z′ ∈ T . Then for
every ε > 0 and Aq ∈ Fq there exists x0 = z, x1, . . . , xn−1, xn = z′ in π−1(x)
and a0, a1, . . . , an−1 ∈ Aq such that d(xjaj , xj+1) < ε for j = 0, . . . , n−1. Let
φj ∈ A be defined as φj(q) = qaj . Then x0, . . . , xn and φj , j = 0, . . . , n − 1
determine a F-chain from z to z′.

2. Take [q, v] and [q, v′] in [q, T ]. Since T is a Fq-chain control set, for every
ε > 0 and Aq ∈ Fq there exist v0 = v, . . . , vn = v′ in F and a0, . . . , an−1 ∈ Aq

such that dF (ajvj , vj+1) < ε for j = 0, . . . , n − 1. Let φj ∈ A be defined as
φj(q) = qaj . Then [q, v0], . . . , [q, vn] and e(φj), j = 0, . . . , n − 1 determine a
(ε, e(A))-chain from [q, v] to [q, v′]. In fact, using Proposition 9, one has

dE(Eφj([q, vj ]), [q, vj+1]) = dE([qaj , vj ], [q, vj+1])
= dE([q, ajvj ]), [q, vj+1])
= dF (ajvj , , vj+1)
< ε.

and we conclude the proof.

2
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