Bol. Soc. Paran. Mat. (3s.) v. 21 1/2 (2003): 1–14. ©SPM

Characterizations of low separation axioms via α -open sets and α -closure operator

M. Caldas, D. N. Georgiou and S. Jafari

ABSTRACT: In this paper, we introduce and investigate some weak separation axioms by using the notions of α -open sets and the α -closure operator.

Contents

1	Introduction	1
2	Preliminaries	2
3	$\alpha \mathbf{D}\text{-sets}$ and associated separation axioms	2
4	α - R_0 spaces and α - R_1 spaces	7
5	Weakly α - R_0 spaces	12

1. Introduction

The notion of α -open set was introduced by O. Njåstad ^[25] in 1965. Since then it has been widely investigated in the literature (see, ^[1], ^[2], ^[6], ^[11], ^[13], ^[14], ^[16], ^[18], ^[19], ^[21], ^[22], ^[23], ^[26], ^[28], ^[29], ^[30], ^[31], ^[32]). In this paper, we offer some new low separation axioms by utilizing α -open sets and α -closure operator. We also characterize their fundamental properties.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topological spaces. A subset A of a topological space (X, τ) is called α -open ^[25] (resp. semi-open ^[17] and preopen ^[24]) if $A \subseteq Int(Cl(Int(A)))$ (resp. $A \subseteq Cl(Int(A))$ and $A \subseteq Int(Cl(A))$). The complement of an α -open (resp. semi-open and preopen) set is called α -closed (resp. semi-closed ^[9] and preclosed ^[24]). By $\alpha O(X, \tau)$ (resp. $\alpha C(X, \tau)$), we denote the family of all α -open (resp. α -closed) sets of X. The intersection of all α -closed (resp. semi-closed and preclosed) sets containing A is called the α -closure (resp. semi-closure ^[8] and preclosure ^[27]) of A, denoted by $Cl_{\alpha}(A)$ (resp. sCl(A) and pCl(A)). A subset A is α -closed if and only if $A = Cl_{\alpha}(A)$. A set U in a topological space (X, τ) is an α -neighborhood ^[19] of a point x if U contains an α -open set V such that $x \in V$. Recall that a topological space (X, τ) is said to be:

(i) Weakly- R_0 ^[10] (resp. weakly semi- R_0 ^[3] and weakly pre- R_0 ^[15]) if $\cap_{x \in X} Cl(\{x\}) = \emptyset$ (resp. $\cap_{x \in X} sCl(\{x\}) = \emptyset$ and $\cap_{x \in X} pCl(\{x\}) = \emptyset$).

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. Mat.

¹⁹⁹¹ Mathematics Subject Classification: 54B05, 54C08, 54D05

(ii) Semi- R_0 ^[20] (resp. pre- R_0 ^[5]) if every semi-open (resp. preopen) set contains the semi-closure (resp. preclosure) of each of its singletons.

Corollary 1.1 Let A be a subset of a topological space (X, τ) . Then $Cl_{\alpha}(A) = A \bigcup Cl(Int(Cl(A)))$.

Corollary 1.2 $Cl_{\alpha}(A)$ is α -closed, i.e. $Cl_{\alpha}(Cl_{\alpha}(A)) = Cl_{\alpha}(A)$.

Lemma 1.3 For subsets A and A_i $(i \in I)$ of a space (X, τ) , the following hold: (1) $A \subset Cl_{\alpha}(A)$.

(2) If $A \subset B$, then $Cl_{\alpha}(A) \subset Cl_{\alpha}(B)$.

 $(3) Cl_{\alpha}(\cap \{A_i : i \in I\}) \subset \cap \{Cl_{\alpha}(A_i) : i \in I\}.$

 $(4) Cl_{\alpha}(\cup \{A_i : i \in I\}) = \cup \{Cl_{\alpha}(A_i) : i \in I\}.$

2. Preliminaries

In this section we recall the definitions of α - T_i , s- D_i and p- D_i spaces, i = 0, 1, 2.

A subset A of a topological space (X, τ) is called:

(i) sD-set ^[7] if there are two semi-open sets U and V such that $U \neq X$ and A=U-V.

(ii) pD-set ^[12] if there are two preopen sets U and V such that $U \neq X$ and A=U-V.

Observe that every semi-open (respectively, preopen) set U different from X is a sD-set (respectively, pD-set) if A=U and $V=\emptyset$.

A topological space (X, τ) is said to be:

(iii) $\alpha - T_0$ ^[21] if for any distinct pair of points in X, there is an α -open set containing one of the points but not the other.

(iv) αT_1 ^[21] if for any distinct pair of points x and y in X, there is an α -open U in X containing x but not y and an α -open set V in X containing y but not x.

(v) αT_2 ^[18] if for any distinct pair of points x and y in X, there exist α -open sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

(vi) $s - D_0$ ^[7] if for any distinct pair of points x and y of X there exists a sD-set of X containing x but not y or a sD-set of X containing y but not x.

(vii) $s - D_1$ ^[7] if for any distinct pair of points x and y of X there exists a sD-set of X containing x but not y and a sD-set of X containing y but not x.

(viii) $s - D_2$ ^[7] if for any distinct pair of points x and y of X there exists disjoint sD-sets G and E of X containing x and y, respectively.

(ix) $p - D_0$ ^[12] if for any distinct pair of points x and y of X there exists a pD-set of X containing x but not y or a pD-set of X containing y but not x.

(x) $p-D_1$ ^[12] if for any distinct pair of points x and y of X there exists a pD-set of X containing x but not y and a pD-set of X containing y but not x.

(xi) $p-D_2$ ^[12] if for any distinct pair of points x and y of X there exists disjoint pD-sets G and E of X containing x and y, respectively.

Remark 2.1 (*i*) If (X, τ) is α - T_i , then it is α - T_{i-1} , i = 1, 2. (*ii*) If (X, τ) is s- D_i , then it is s- D_{i-1} , i = 1, 2. (*iii*) If (X, τ) is p- D_i , then it is p- D_{i-1} , i = 1, 2.

3. α D-sets and associated separation axioms

Definition 1 A subset A of a topological space X is called an αD -set if there are two $U, V \in \alpha O(X, \tau)$ such that $U \neq X$ and A = U - V.

Observe that every α -open set U different from X is an α D-set if A=U and $V=\emptyset$.

Example 3.1 Let (X, τ) be a topological space such that $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Clearly, the set $\{a, c, d\}$ is pD-set but it is not α D-set.

Example 3.2 Let (X, τ) be a topological space such that $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Clearly, the set $\{b, c, d\}$ is sD-set but it is not α D-set.

Definition 2 A topological space (X, τ) is called α - D_0 if for any distinct pair of points x and y of X there exists an α D-set of X containing x but not y or an α D-set of X containing y but not x.

Definition 3 A topological space (X, τ) is called α - D_1 if for any distinct pair of points x and y of X there exists an α D-set of X containing x but not y and an α D-set of X containing y but not x.

Definition 4 A topological space (X, τ) is called α - D_2 if for any distinct pair of points x and y of X there exists disjoint αD -sets G and E of X containing x and y, respectively.

Remark 3.3 (i) If (X, τ) is α - T_i , then (X, τ) is α - D_i , i = 0, 1, 2. (ii) If (X, τ) is α - D_i , then it is α - D_{i-1} , i = 1, 2.

Theorem 3.4 For a topological space (X, τ) the following statements hold: (1) (X, τ) is α -D₀ if and only if it is α -T₀. (2) (X, τ) is α -D₁ if and only if it is α -D₂.

Proof. (1) The sufficiency is stated in Remark 3.3(i). To prove necessity, let (X, τ) be α - D_0 . Then for each distinct pair $x, y \in X$, at least one of x, y, say x, belongs to an α D-set G where $y \notin G$. Let $G = U_1 \setminus U_2$ such that $U_1 \neq X$ and U_1 , $U_2 \in \alpha O(X, \tau)$. Then $x \in U_1$. For $y \notin G$ we have two cases: (a) $y \notin U_1$; (b) $y \in U_1$ and $y \in U_2$.

In case (a), $x \in U_1$ but $y \notin U_1$;

In case (b), $y \in U_2$ but $x \notin U_2$. Hence X is α -T₀.

(2) Sufficiency. Remark 3.3(ii).

Necessity. Suppose that X is α -D₁. Then for each distinct pair $x, y \in X$, we have α D-sets G_1, G_2 such that $x \in G_1, y \notin G_1; y \in G_2, x \notin G_2$. Let $G_1 = U_1 \setminus U_2$, $G_2 = U_3 \setminus U_4$. By $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. Now we consider two cases.

(1) $x \notin U_3$. By $y \notin G_1$ we have two subcases:

(a) $y \notin U_1$. By $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$ and by $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Hence $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \emptyset$. (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, $y \in U_2$. $(U_1 \setminus U_2) \cap U_2 = \emptyset$. (2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$, $x \in U_4$. $(U_3 \setminus U_4) \cap U_4 = \emptyset$.

(2) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$, $x \in U_4$. $(U_3 \setminus U_4) \cap U_4 = 0$ Therefore X is α -D₂.

Theorem 3.5 If (X, τ) is α - D_1 , then it is α - T_0 .

Proof. Remark 3.3 and Theorem 3.4.

Example 3.6 Let (X, τ) be a topological space such that $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Clearly the space X is α -T₀ but it is not α -D₁.

Theorem 3.7 A topological space (X, τ) is α - T_0 if and only if for each pair of distinct points x, y of $X, Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$.

Proof. Sufficiency. Suppose that $x, y \in X$, $x \neq y$ and $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Let $z \in X$ such that $z \in Cl_{\alpha}(\{x\})$ but $z \notin Cl_{\alpha}(\{y\})$. We claim that $x \notin Cl_{\alpha}(\{y\})$. For, if $x \in Cl_{\alpha}(\{y\})$ then $Cl_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{y\})$. This contradicts the fact that $z \notin Cl_{\alpha}(\{y\})$. Consequently x belongs to the α -open set $[Cl_{\alpha}(\{y\})]^c$ to which y does not belong.

Necessity. Let (X, τ) be an α - T_0 space and x, y be any two distinct points of X. There exists an α -open set G containing x or y, say x but not y. Then G^c is an α -closed set which $x \notin G^c$ and $y \in G^c$. Since $Cl_{\alpha}(\{y\})$ is the smallest α -closed set containing y (Corollary 1.1), $Cl_{\alpha}(\{y\}) \subset G^c$, and therefore $x \notin Cl_{\alpha}(\{y\})$. Hence $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$.

Theorem 3.8 A topological space (X, τ) is α - T_1 if and only if the singletons are α -closed sets.

Proof. Let (X, τ) be α - T_1 and x any point of X. Suppose $y \in \{x\}^c$. Then $x \neq y$ and so there exists an α -open set U_y such that $y \in U_y$ but $x \notin U_y$. Consequently $y \in U_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{U_y/y \in \{x\}^c\}$ which is α -open.

Conversely, suppose $\{p\}$ is α -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is an α -open set containing y but not x. Similarly $\{y\}^c$ is an α -open set containing x but not y. Accordingly X is an α - T_1 space.

Definition 5 A point $x \in X$ which has X as an α -neighborhood is called an α -neat point.

Theorem 3.9 For an α - T_0 topological space (X, τ) the following are equivalent: (1) (X, τ) is α - D_1 ; (2) (X, τ) has no α -neat point.

Proof. (1) \rightarrow (2). Since (X, τ) is α - D_1 , then each point x of X is contained in an α D-set O=U-V and thus in U. By definition $U \neq X$. This implies that x is not an α -neat point.

 $(2) \to (1)$. If X is α -T₀, then for each distinct pair of points $x, y \in X$, at least one of them, x(say) has an α -neighborhood U containing x and not y. Thus U which is different from X is an α D-set. If X has no α -neighborhood V of y is not an α -neighborhood V of y such that $V \neq X$. Thus $y \in (V - U)$ but not x and V - U is an α D-set. Hence X is α -D₁.

Remark 3.10 It is clear that an α - T_0 topological space (X, τ) is not α - D_1 if and only if there is a unique α -neat point in X. It is unique because if x and y are both α -neat point in X, then at least one of them say x has an α -neighborhood U containing x but not y. But this is a contradiction since $U \neq X$.

Definition 6 A topological space (X, τ) is α -symmetric if for x and y in $X, x \in Cl_{\alpha}(\{y\})$ implies $y \in Cl_{\alpha}(\{x\})$.

Definition 7 A subset A of a topological space (X, τ) is called a (α, α) -generalizedclosed set ^[21] (briefly (α, α) -g-closed) if $Cl_{\alpha}(A) \subset U$ whenever $A \subset U$ and U is α -open in (X, τ) .

Lemma 3.11 Every α -closed set is (α, α) -g-closed.

Theorem 3.12 A topological space (X, τ) is α -symmetric if and only if $\{x\}$ is (α, α) -g-closed for each $x \in X$.

Proof. Assume that $x \in Cl_{\alpha}(\{y\})$ but $y \notin Cl_{\alpha}(\{x\})$. This means that $[Cl_{\alpha}(\{x\})]^{c}$ contains y. Therefore the set $\{y\}$ is a subset of $[Cl_{\alpha}(\{x\})]^{c}$. This implies that $Cl_{\alpha}(\{y\})$ is a subset of $[Cl_{\alpha}(\{x\})]^{c}$. Now $[Cl_{\alpha}(\{x\})]^{c}$ contains x which is a contradiction.

Conversely, suppose that $\{x\} \subset E \in \alpha O(X, \tau)$ but $Cl_{\alpha}(\{x\})$ is not a subset of *E*. This means that $Cl_{\alpha}(\{x\})$ and E^{c} are not disjoint. Let $y \in Cl_{\alpha}(\{x\}) \cap E^{c}$. We have $x \in Cl_{\alpha}(\{y\})$ which is a subset of E^{c} and $x \notin E$. But this is a contradiction.

Corollary 3.13 If a topological space (X, τ) is an α - T_1 space, then it is α -symmetric.

Proof. In an α - T_1 space, singleton sets are α -closed (Theorem 3.8) and therefore (α, α) -g-closed (Lemma 3.11). By Theorem 3.1, the space is α -symmetric.

Corollary 3.14 For a topological space (X, τ) the following are equivalent: (1) (X, τ) is α -symmetric and α -T₀; (2) (X, τ) is α -T₁.

Proof. By Corollary 3.13 and Remark 3.3 it suffices to prove only $(1) \to (2)$. Let $x \neq y$ and by α - T_0 , we may assume that $x \in G_1 \subset \{y\}^c$ for some $G_1 \in \alpha O(X, \tau)$. Then $x \notin Cl_\alpha(\{y\})$ and hence $y \notin Cl_\alpha(\{x\})$. There exists a $G_2 \in \alpha O(X, \tau)$ such that $y \in G_2 \subset \{x\}^c$. Hence (X, τ) is an α - T_1 space.

Definition 8 A space (X, τ) is said to be $(\alpha, \alpha) - T_{\frac{1}{2}}$ if every (α, α) -g-closed set of X is α -closed.

Theorem 3.15 For an α -symmetric topological space (X, τ) the following are equivalent:

(1) (X, τ) is α -T₀; (2) (X, τ) is α -D₁; (3 (X, τ) is (α, α) -T_{1/2}; (4) (X, τ) is α -T₁.

The proof is straightforward and hence omitted.

We recall the following.

Definition 9 A function $f : (X, \tau) \to (Y, \sigma)$ is α -irresolute ^[18] if the inverse image of each α -open set is α -open.

Theorem 3.16 If $f : (X, \tau) \to (Y, \sigma)$ is an α -irresolute surjective function and E is an α D-set in Y, then the inverse image of E is an α D-set in X.

Proof. Let E be an α D-set in Y. Then there are α -open sets U_1 and U_2 in Y such that $S = U_1 \setminus U_2$ and $U_1 \neq Y$. By the α - irresoluteness of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are α -open in X. Since $U_1 \neq Y$, we have $f^{-1}(U_1) \neq X$. Hence $f^{-1}(E) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is an α D-set.

Theorem 3.17 If (Y, σ) is α - D_1 and $f : (X, \tau) \to (Y, \sigma)$ is α -irresolute and bijective, then (X, τ) is α - D_1 .

Proof. Suppose that Y is an α - D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is α - D_1 , there exist α D-sets G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(y) \notin G_x$ and $f(x) \notin G_y$. By Theorem 3.16, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are α D-sets in X containing x and y, respectively. This implies that X is an α - D_1 space.

Recall that a map is always α -open ^[11] if the image of every α -open set is α -open.

Theorem 3.18 Let X be an arbitrary space, R an equivalence relation in X and $p: X \to X/R$ the identification map. If $R \subset X \times X$ is α -closed in $X \times X$ and p is an always α -open map, then X/R is α - T_2 .

Proof. Let p(x), p(y) be distinct members of X/R. Since x and y are not related, $R \subset X \times X$ is α -closed in $X \times X$. There are α -open sets U and V such that $x \in U$, $y \in V$ and $U \times V \subset R^c$. Thus p(U), p(V) are disjoint and also α -open in X/R since p is always α -open.

Theorem 3.19 A topological space (X, τ) is α - D_1 if and only if for each pair of distinct points $x, y \in X$, there exists an α -irresolute surjective function $f : (X, \tau) \to (Y, \sigma)$, where (Y, σ) is an α - D_1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take the identity function on X.

Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there exists an α -irresolute, surjective function f of a space (X, τ) onto an α - D_1 space (Y, σ) such that $f(x) \neq f(y)$. Therefore, there exist disjoint α D-sets G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is α -irresolute and surjective, by Theorem 3.16, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint α D-sets in X containing x and y, respectively. Therefore the space X is an α - D_1 space.

Theorem 3.20 The following four properties are equivalent:

(1) X is α -T₂; (2) Let $x \in X$. For each $y \neq x$, there exists an α -open set U such that $x \in U$ and $y \notin Cl_{\alpha}(U)$;

(3) For each $x \in X$, $\cap \{Cl_{\alpha}(U)/U \in \alpha O(X, \tau) \text{ and } x \in U\} = \{x\};$

(4) The diagonal $\Delta = \{(x, x) | x \in X\}$ is α -closed in $X \times X$.

Proof. (1) \rightarrow (2). Let $x \in X$ and $y \neq x$. Then there are disjoint α -open sets U and V such that $x \in U$ and $y \in V$. Clearly, V^c is α -closed, $Cl_{\alpha}(U) \subset V^c$, $y \notin V^c$ and therefore $y \notin Cl_{\alpha}(U)$.

(2) \rightarrow (3). If $y \neq x$, then there exists an α -open set U such that $x \in U$ and $y \notin Cl_{\alpha}(U)$. So $y \notin \cap \{Cl_{\alpha}(U)/U \in \alpha O(X, \tau) \text{ and } x \in U\}$.

(3) \rightarrow (4). We prove that Δ^c is α -open. Let $(x, y) \notin \Delta$. Then $y \neq x$ and since $\cap \{Cl_{\alpha}(U)/U \in \alpha O(X, \tau) \text{ and } x \in U\} = \{x\}$ there is some $U \in \alpha O(X, \tau)$ with $x \in U$ and $y \notin Cl_{\alpha}(U)$. Since $U \cap (Cl_{\alpha}(U))^c = \emptyset$, $U \times (Cl_{\alpha}(U))^c$ is an α -open set such that $(x, y) \in U \times (Cl_{\alpha}(U))^c \subset \Delta^c$.

(4) \rightarrow (1). If $y \neq x$, then $(x, y) \notin \Delta$ and thus there exist α -open sets U and V such that $(x, y) \in U \times V$ and $(U \times V) \cap \Delta = \emptyset$. Clearly, for the α -open sets U and V we have: $x \in U, y \in V$ and $U \cap V = \emptyset$.

4. α - R_0 spaces and α - R_1 spaces

Definition 10 Let A be a subset of a topological space X. The α -kernel of $A^{[16]}$, denoted by $Ker_{\alpha}(A)$ is defined to be the set $Ker_{\alpha}(A) = \cap \{O \in \alpha O(X, \tau) \mid A \subset O\}$.

Definition 11 Let x be a point of a topological space X. The α -kernel of x, denoted by $Ker_{\alpha}(\{x\})$ is defined to be the set $Ker_{\alpha}(\{x\}) = \cap \{O \in \alpha O(X, \tau) \mid x \in O\}$.

Lemma 4.1 Let (X, τ) be a topological space and $x \in X$. Then $Ker_{\alpha}(A) = \{x \in X/Cl_{\alpha}(\{x\}) \cap A \neq \emptyset\}.$

Proof. Let $x \in Ker_{\alpha}(A)$ and $Cl_{\alpha}(\{x\}) \cap A = \emptyset$. Hence $x \notin X - Cl_{\alpha}(\{x\})$ which is an α -open set containing A. This is impossible, since $x \in Ker_{\alpha}(A)$. Consequently, $Cl_{\alpha}(\{x\}) \cap A \neq \emptyset$. Let $Cl_{\alpha}(\{x\}) \cap A \neq \emptyset$ and $x \notin Ker_{\alpha}(A)$. Then, there exists an α -open set D containing A and $x \notin D$. Let $y \in Cl_{\alpha}(\{x\}) \cap A$. Hence, D is an α -neighborhood of y which $x \notin D$. By this contradiction, $x \in Ker_{\alpha}(A)$ and the claim. **Definition 12** A topological space (X, τ) is said to be an α - R_0 space if every α -open set contains the α -closure of each of its singletons.

It is clear that α - R_0 implies pre- R_0 and α - R_0 implies semi- R_0 but the converses are not true.

Example 4.2 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a, b\}, X\}$. This is pre- R_0 but not α - R_0 since $Cl_{\alpha}(\{a\}) = X \not\subset \{a, b\}$ and also not semi- R_0 .

Example 4.3 Let $X = \{a, b, c\}$ be endowed with the topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space X is semi- R_0 but it is not pre- R_0 since $Cl(Int(\{a\}) \not\subset \{a, c\})$ where $\{a, c\} \in PO(X, \tau)$ [5]. Observe also that (X, τ) is not α - R_0 .

Remark 4.4 $Pre-R_0$ and $semi-R_0$ spaces are independent. Example 4.3 is semi- R_0 but not pre- R_0 whereas in Example 4.2, the space X is pre- R_0 but not semi- R_0 .

Note that none of the implications in the diagram below is reversible.

The notion of α - R_0 does not imply the notion of R_0 as it is shown by the following example.

Example 4.5 Let p be a fixed point of (X, τ) with τ as the cofinite topology on X, i.e., $\tau = \{\emptyset, G, X\}$ with $G \subset X - p$ and X - G finite. We can see that X is not R_0 , since if G is an open set and $x \in G$, then $Cl(x) = X \not\subset G$. But X is α - R_0 since X is α - T_1 and therefore every α - T_1 is α - R_0 .

Lemma 4.6 Let (X, τ) be a topological space and $x \in X$. Then $y \in Ker_{\alpha}(\{x\})$ if and only if $x \in Cl_{\alpha}(\{y\})$.

Proof. Suppose that $y \notin Ker_{\alpha}(\{x\})$. Then there exists an α -open set V containing x such that $y \notin V$. Therefore we have $x \notin Cl_{\alpha}(\{y\})$. The proof of the converse case can be done similarly.

Lemma 4.7 The following statements are equivalent for any points x and y in a topological space (X, τ) : (1) $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\});$ (2) $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\}).$

Proof. $(1) \to (2)$: Suppose that $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$, then there exists a point z in X such that $z \in Ker_{\alpha}(\{x\})$ and $z \notin Ker_{\alpha}(\{y\})$. It follows from $z \in Ker_{\alpha}(\{x\})$ that $\{x\} \cap Cl_{\alpha}(\{z\}) \neq \emptyset$. This implies that $x \in Cl_{\alpha}(\{z\})$. By $z \notin Ker_{\alpha}(\{y\})$, we have $\{y\} \cap Cl_{\alpha}(\{z\}) = \emptyset$. Since $x \in Cl_{\alpha}(\{z\})$, $Cl_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{z\})$ and $\{y\} \cap Cl_{\alpha}(\{x\}) = \emptyset$. Therefore, $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Now $Ker_{\alpha}(\{x\}) \neq I$ $Ker_{\alpha}(\{y\})$ implies that $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$.

 $(2) \rightarrow (1)$: Suppose that $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Then there exists a point $z \in X$ such that $z \in Cl_{\alpha}(\{x\})$ and $z \notin Cl_{\alpha}(\{y\})$. Then, there exists an α -open set containing z and therefore x but not y, i.e., $y \notin Ker_{\alpha}(\{x\})$. Hence $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$.

Theorem 4.8 A topological space (X, τ) is an α - R_0 space if and only if for any xand y in X, $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$ implies $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$.

Proof. Necessity. Suppose that (X, τ) is α - R_0 and $x, y \in X$ such that $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Then, there exist $z \in Cl_{\alpha}(\{x\})$ such that $z \notin Cl_{\alpha}(\{y\})$ (or $z \in Cl_{\alpha}(\{y\})$) such that $z \notin Cl_{\alpha}(\{x\})$. There exists $V \in \alpha O(X, \tau)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin Cl_{\alpha}(\{y\})$. Thus $x \in X - Cl_{\alpha}(\{y\}) \in \alpha O(X, \tau)$, which implies $Cl_{\alpha}(\{x\}) \subset X - Cl_{\alpha}(\{y\})$ and $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$. The proof for otherwise is similar

Sufficiency. Let $V \in \alpha O(X, \tau)$ and let $x \in V$. We will show that $Cl_{\alpha}(\{x\}) \subset V$. V. Let $y \notin V$, i.e., $y \in X - V$. Then $x \neq y$ and $x \notin Cl_{\alpha}(\{y\})$. This shows that $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. By assumption $, Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$. Hence $y \notin Cl_{\alpha}(\{x\})$ and therefore $Cl_{\alpha}(\{x\}) \subset V$.

Theorem 4.9 A topological space (X, τ) is an α - R_0 space if and only if for any points x and y in X, $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$ implies $Ker_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\}) = \emptyset$.

Proof. Suppose that (X, τ) is an α - R_0 space. Thus by Lemma 4.7, for any points x and y in X if $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$ then $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Now we prove that $Ker_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\}) = \emptyset$. Assume that $z \in Ker_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\})$. By $z \in Ker_{\alpha}(\{x\})$ and Lemma 4.6, it follows that $x \in Cl_{\alpha}(\{z\})$. Since $x \in Cl_{\alpha}(\{x\})$, by Theorem 4.8 $Cl_{\alpha}(\{x\}) = Cl_{\alpha}(\{z\})$. Similarly, we have $Cl_{\alpha}(\{y\}) = Cl_{\alpha}(\{z\}) = Cl_{\alpha}(\{x\})$. This is a contradiction. Therefore, we have $Ker_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\}) = \emptyset$. Conversely, let (X, τ) be a topological space such that for any points x and y in X, $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$ implies $Ker_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\}) = \emptyset$. If $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$, then by Lemma 4.7, $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\}) = \emptyset$. Because $z \in Cl_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{y\}) = \emptyset$ which implies $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$. Because $z \in Cl_{\alpha}(\{x\}) \cap Ker_{\alpha}(\{x\}) = \emptyset$ which implies $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$. By hypothesis, we have $Ker_{\alpha}(\{x\}) = Ker_{\alpha}(\{z\})$. Then $z \in Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\})$ implies that $Ker_{\alpha}(\{x\}) = Ker_{\alpha}(\{z\}) = Ker_{\alpha}(\{y\})$. This is a contradiction. Hence, $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) = \emptyset$. By Theorem 4.8 (X, τ) is an α - R_0 space.

Theorem 4.10 For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is an α - R_0 space; (2) For any $A \neq \emptyset$ and $G \in \alpha O(X, \tau)$ such that $A \cap G \neq \emptyset$, there exists $F \in \alpha C(X, \tau)$ such that $A \cap F \neq \emptyset$ and $F \subset G$; (3) Any $G \in \alpha O(X, \tau)$, $G = \cup \{F \in \alpha C(X, \tau) \mid F \subset G\}$; (4) Any $F \in \alpha C(X, \tau)$, $F = \cap \{G \in \alpha O(X, \tau) \mid F \subset G\}$; (5) For any $x \in X$, $Cl_{\alpha}(\{x\}) \subset Ker_{\alpha}(\{x\})$. *Proof.* $(1) \to (2)$: Let A be a nonempty set of X and $G \in \alpha O(X, \tau)$ such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G \in \alpha O(X, \tau), Cl_{\alpha}(\{x\}) \subset G$. Set $F = Cl_{\alpha}(\{x\})$, then $F \in \alpha C(X, \tau), F \subset G$ and $A \cap F \neq \emptyset$.

 $(2) \to (3)$: Let $G \in \alpha O(X, \tau)$, then $G \supset \cup \{F \in \alpha C(X, \tau) \mid F \subset G\}$. Let x be any point of G. There exists $F \in \alpha C(X, \tau)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \cup \{F \in \alpha C(X, \tau) \mid F \subset G\}$ and hence $G = \cup \{F \in \alpha C(X, \tau) \mid F \subset G\}$.

 $(3) \rightarrow (4)$: This is obvious.

 $(4) \to (5)$: Let x be any point of X and $y \notin Ker_{\alpha}(\{x\})$. There exists $V \in \alpha O(X, \tau)$ such that $x \in V$ and $y \notin V$; hence $Cl_{\alpha}(\{y\}) \cap V = \emptyset$. By (4) $(\cap \{G \in \alpha O(X, \tau) \mid Cl_{\alpha}(\{y\}) \subset G\}) \cap V = \emptyset$. There exists $G \in \alpha O(X, \tau)$ such that $x \notin G$ and $Cl_{\alpha}(\{y\}) \subset G$. Therefore, $Cl_{\alpha}(\{x\}) \cap G = \emptyset$ and $y \notin Cl_{\alpha}(\{x\})$. Consequently, we obtain $Cl_{\alpha}(\{x\}) \subset Ker_{\alpha}(\{x\})$.

 $(5) \to (1)$: Let $G \in \alpha O(X, \tau)$ and $x \in G$. Suppose $y \in Ker_{\alpha}(\{x\})$, then $x \in Cl_{\alpha}(\{y\})$ and $y \in G$. This implies that $Cl_{\alpha}(\{x\}) \subset Ker_{\alpha}(\{x\}) \subset G$. Therefore, (X, τ) is an α - R_0 space.

Corollary 4.11 For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is an α - R_0 space; (2) $Cl_{\alpha}(\{x\}) = Ker_{\alpha}(\{x\})$ for all $x \in X$.

Proof. (1) \rightarrow (2) : Suppose that (X, τ) is an α - R_0 space. By Theorem 4.10, $Cl_{\alpha}(\{x\}) \subset Ker_{\alpha}(\{x\})$ for each $x \in X$. Let $y \in Ker_{\alpha}(\{x\})$, then $x \in Cl_{\alpha}(\{y\})$ and so $Cl_{\alpha}(\{x\}) = Cl_{\alpha}(\{y\})$. Therefore, $y \in Cl_{\alpha}(\{x\})$ and hence $Ker_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{x\})$. This shows that $Cl_{\alpha}(\{x\}) = Ker_{\alpha}(\{x\})$. (2) \rightarrow (1) : This is obvious by Theorem 4.9

Theorem 4.12 For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is an α -R₀ space;

(2) $x \in Cl_{\alpha}(\{y\})$ if and only if $y \in Cl_{\alpha}(\{x\})$, for any points x and y in X.

Proof. (1) \rightarrow (2) : Assume that X is α -R₀. Let $x \in Cl_{\alpha}(\{y\})$ and D be any α -open set such that $y \in D$. Now by hypothesis, $x \in D$. Therefore, every α -open set containing y contains x. Hence $y \in Cl_{\alpha}(\{x\})$.

 $(2) \to (1)$: Let U be an α -open set and $x \in U$. If $y \notin U$, then $x \notin Cl_{\alpha}(\{y\})$ and hence $y \notin Cl_{\alpha}(\{x\})$. This implies that $Cl_{\alpha}(\{x\}) \subset U$. Hence (X, τ) is α -R₀.

We observed that by Definition 6 and Theorem 4.12 the notions of α -symmetric and α - R_0 are equivalent.

Theorem 4.13 For a topological space (X, τ) , the following properties are equivalent :

(1) (X, τ) is an α - R_0 space; (2) If F is α -closed, then $F = Ker_{\alpha}(F)$; (3) If F is α -closed and $x \in F$, then $Ker_{\alpha}(\{x\}) \subset F$; (4) If $x \in X$, then $Ker_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{x\})$.

Proof. (1) \rightarrow (2) : Let F be α -closed and $x \notin F$. Thus X - F is α -open and contains x. Since (X, τ) is α - R_0 , $Cl_{\alpha}(\{x\}) \subset X - F$. Thus $Cl_{\alpha}(\{x\}) \cap F = \emptyset$ and by Lemma 4.1 $x \notin Ker_{\alpha}(F)$. Therefore $Ker_{\alpha}(F) = F$.

 $(2) \to (3)$: In general, $A \subset B$ implies $Ker_{\alpha}(A) \subset Ker_{\alpha}(B)$. Therefore, it follows from (2) that $Ker_{\alpha}(\{x\}) \subset Ker_{\alpha}(F) = F$.

 $(3) \rightarrow (4)$: Since $x \in Cl_{\alpha}(\{x\})$ and $Cl_{\alpha}(\{x\})$ is α -closed, by (3) $Ker_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{x\})$.

 $(4) \rightarrow (1)$: We show the implication by using Theorem 4.10. Let $x \in Cl_{\alpha}(\{y\})$. Then by Lemma 4.6, $y \in Ker_{\alpha}(\{x\})$. Since $x \in Cl_{\alpha}(\{x\})$ and $Cl_{\alpha}(\{x\})$ is α closed, by (4) we obtain $y \in Ker_{\alpha}(\{x\}) \subset Cl_{\alpha}(\{x\})$. Therefore $x \in Cl_{\alpha}(\{y\})$ implies $y \in Cl_{\alpha}(\{x\})$. The converse is obvious and (X, τ) is α - R_0 .

Recall that a filterbase F is called α -convergent ^[11] to a point x in X, if for any α -open set U of X containing x, there exists B in F such that B is a subset of U.

Lemma 4.14 Let (X, τ) be a topological space and x and y any two points in X such that every net in X α -converging to y α -converges to x. Then $x \in Cl_{\alpha}(\{y\})$.

Proof. Suppose that $x_n = y$ for each $n \in \mathbb{N}$. Then $\{x_n\}_{n \in \mathbb{N}}$ is a net in $Cl_{\alpha}(\{y\})$. Since $\{x_n\}_{n \in \mathbb{N}} \alpha$ -converges to y, then $\{x_n\}_{n \in \mathbb{N}} \alpha$ -converges to x and this implies that $x \in Cl_{\alpha}(\{y\})$.

Theorem 4.15 For a topological space (X, τ) , the following statements are equivalent :

(1) (X, τ) is an α -R₀ space;

(2) If $x, y \in X$, then $y \in Cl_{\alpha}(\{x\})$ if and only if every net in X α -converging to y α -converges to x.

Proof. (1) \rightarrow (2) : Let $x, y \in X$ such that $y \in Cl_{\alpha}(\{x\})$. Suppose that $\{x_{\alpha}\}_{\alpha \in N}$ is a net in X such that $\{x_{\alpha}\}_{\alpha \in N}$ α -converges to y. Since $y \in Cl_{\alpha}(\{x\})$, by Theorem 4.8 we have $Cl_{\alpha}(\{x\}) = Cl_{\alpha}(\{y\})$. Therefore $x \in Cl_{\alpha}(\{y\})$. This means that $\{x_{\alpha}\}_{\alpha \in \Lambda}$ α -converges to x. Conversely, let $x, y \in X$ such that every net in X α -converging to y α -converges to x. Then $x \in Cl_{\alpha}(\{y\})$ by Lemma 4.1. By Theorem 4.8, we have $Cl_{\alpha}(\{x\}) = Cl_{\alpha}(\{y\})$. Therefore $y \in Cl_{\alpha}(\{x\})$.

 $(2) \to (1)$: Assume that x and y are any two points of X such that $Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\}) \neq \emptyset$. Let $z \in Cl_{\alpha}(\{x\}) \cap Cl_{\alpha}(\{y\})$. So there exists a net $\{x_{\alpha}\}_{\alpha \in \Lambda}$ in $Cl_{\alpha}(\{x\})$ such that $\{x_{\alpha}\}_{\alpha \in \Lambda}$ α -converges to z. Since $z \in Cl_{\alpha}(\{y\})$, then $\{x_{\alpha}\}_{\alpha \in \Lambda}$ α -converges to y. It follows that $y \in Cl_{\alpha}(\{x\})$. Similarly we obtain $x \in Cl_{\alpha}(\{y\})$. Therefore $Cl_{\alpha}(\{x\}) = Cl_{\alpha}(\{y\})$ and by Theorem 4.8, (X, τ) is α - R_0 .

Definition 13 A topological space (X, τ) is said to be α -R₁ if for x, y in X with $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$, there exist disjoint α -open sets U and V such that $Cl_{\alpha}(\{x\})$ is a subset of U and $Cl_{\alpha}(\{y\})$ is a subset of V.

Clearly every α - R_1 space is α - R_0 . Indeed let U be an α -open such that $x \in U$. If $y \notin U$, then since $x \notin Cl_{\alpha}(\{y\})$, $Cl_{\alpha}(\{x\}) \neq Cl_{\alpha}(\{y\})$. Hence, there exists an α -open V_y such that $Cl_{\alpha}(\{y\}) \subset V_y$ and $x \notin V_y$, which implies $y \notin Cl_{\alpha}(\{x\})$. Thus $Cl_{\alpha}(\{x\}) \subset U$. Therefore (X, τ) is α - R_0 .

Example 4.16 Let p be a fixed point of (X, τ) with τ as the cofinite topology on X, i.e., $\tau = \{\emptyset, G, X\}$ with $G \subset X - p$ and X - G finite. The space X is α - R_0 but it is not α - R_1 .

Theorem 4.17 A topological space (X, τ) is α - R_1 if and only if for $x, y \in X$, $Ker_{\alpha}(\{x\}) \neq Ker_{\alpha}(\{y\})$, there exist disjoint α -open sets U and V such that $Cl_{\alpha}(\{x\}) \subset U$ and $Cl_{\alpha}(\{y\}) \subset V$.

Proof. It follows from Lemma 4.6.

5. Weakly α - R_0 spaces

Definition 14 A topological space (X, τ) is said to be weakly α - R_0 if $\bigcap_{x \in X} Cl_{\alpha}(\{x\}) = \emptyset$.

Theorem 5.1 A topological space (X, τ) is weakly α - R_0 if and only if $Ker_{\alpha}(\{x\}) \neq X$ for every $x \in X$.

Proof. Suppose that the space (X, τ) is weakly α - R_0 . Assume that there is a point y in X such that $Ker_{\alpha}(\{y\}) = X$. Then $y \notin O$, where O is some proper α -open subset of X. This implies that $y \in \bigcap_{x \in X} Cl_{\alpha}(\{x\})$. But this is a contradiction.

Now assume that $Ker_{\alpha}(\{x\}) \neq X$ for every $x \in X$. If there exists a point $y \in X$ such that $y \in \bigcap_{x \in X} Cl_{\alpha}(\{x\})$, then every α -open set containing y must contain every point of X. This implies that the space X is the unique α -open set containing y. Hence $Ker_{\alpha}(\{x\}) = X$ which is a contradiction. Therefore, (X, τ) is weakly α - R_0 .

Remark 5.2 It should be noted that since $sCl(\{x\}) \subset Cl_{\alpha}(\{x\}) \subset Cl(\{x\})$ and $pCl(\{x\}) \subset Cl_{\alpha}(\{x\}) \subset Cl(\{x\})$, we have the following diagram in which the converses of the implications are not true.

Weakly $R_0 \rightarrow$ Weakly $\alpha - R_0 \rightarrow$ Weakly semi- R_0 \searrow Weakly pre- R_0

In ^[15], it is shown that every weakly R_0 space is weakly pre- R_0 (^[15], Theorem 2.1) and the converse is not true (^[15], Example 2.1). Moreover it is shown that the notions of weakly pre- R_0 and weakly semi- R_0 are independent of each other (^[15], Example 2.2 and Example 2.3). Also (^[15], Example 2.2) and (^[15], Example 2.23) show that weakly pre- R_0 and weakly semi- R_0 do not imply weakly α - R_0 .

Definition 15 A function $f : X \to Y$ is called always α -closed if the image of every α -closed subset of X is α -closed in Y.

Theorem 5.3 If $f : X \to Y$ is an injective always α -closed function and X is weakly α -R₀, then Y is weakly α -R₀.

Proof. Straightforward.

Theorem 5.4 If the topological space X is weakly α -R₀ and Y is any topological space, then the product $X \times Y$ is weakly α -R₀.

Proof. If we show that $\cap_{(x,y)\in X\times Y}Cl_{\alpha}(\{x,y\}) = \emptyset$, then we are done. Observe that $\cap_{(x,y)\in X\times Y}Cl_{\alpha}(\{x,y\}) \subset \cap_{(x,y)\in X\times Y}(Cl_{\alpha}(\{x\})\times Cl_{\alpha}(\{y\})) = \cap_{x\in X}Cl_{\alpha}(\{x\})\times \cap_{y\in Y}Cl_{\alpha}(\{y\}) \subset \emptyset \times Y = \emptyset$ and hence the proof.

Acknowledgements. The authors are grateful to the referee for his valuable work which improved the quality of this paper.

References

- 1. D. Andrijevic, Some properties of the topology of α -sets, Mat. Vesnik **36** (1984), 1-10.
- 2. F. G. Arenas, J. Cao, J. Dontchev and M. L. Puertas, Some covering properties of the α -topology (preprint).
- 3. S. P. Arya and T. M. Nour, Weakly semi- R_0 spaces, Indian J. Pure Appl. Math., 2 (12) (1990), 1083-85.
- 4. M. Caldas, D. N. Georgiou and S. Jafari, Study of (Λ, α) -closed sets and the related notions in topological spaces (submitted).
- M. Caldas, S. Jafari and T. Noiri, Characterizations of pre-R₀ and pre-R₁, Topology Proceedings, 25(2000), 17-30.
- M. Caldas and J. Dontchev, On spaces with hereditarily compact α-topologies, Acta Math. Hung. 82 (1999), 121-129.
- 7. M. Caldas, A separation axiom between semi- T_0 and semi- T_1 , Mem. Fac. Sci. Kochi Univ. (Math.) 18 (1997), 37-42.
- 8. S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.
- 10. J. Di Maio, A separation axiom weaker than R_0 , Indian J. Pure Appl. Math. **16**(4) (1985), 373-375
- 11. S. Jafari, Rare α -continuity (submitted).
- 12. S. Jafari, On a weak separation axiom, Far East J. Math. Sci. (to appear).
- S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, Iranian Int. J. Sci. 2(2)(2001),153-167.
- 14. S. Jafari and T. Noiri, Some remarks on weak α -continuity, Far East J. Math. Sci. **6**(4) (1998), 619-625.
- 15. S. Jafari, A note on weakly pre- R_0 spaces, Far East J. Math. Sci. 3(1) (2001), 93-96.
- 16. S. Jafari and T. Noiri, Contra-strongly α -irresolute functions (preprint).

- 17. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly **70** (1963), 36-41.
- 18. S.N. Maheshwari and S.S. Thakur, On $\alpha\text{-}\mathrm{irresolute}$ mappings, Tamkang J. Math. 11 (1980), 209-214.
- S.N. Maheshwari and S.S. Thakur, On α-compact spaces, Bull. Inst. Math. Acad. Sinica 13 (1985), 341-347.
- 20. S.N. Maheshwari and R. Prasad, On $(R_0)_s$ -spaces, Portugaliae Math. 34 (1975), 213-217.
- 21. H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.
- 22. H. Maki and T. Noiri, The pasting lemma for $\alpha\text{-continuous maps},$ Glas. Mat. 23(43) (1988), 357-363.
- A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hung. 41 (1983), 213-218.
- A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 51 (1982), 47-53.
- 25. O. Njåstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- T. Noiri and G. Di Maio, Properties of α-compact spaces, Suppl. Rend. Circ. Mat. Palermo (2) 18 (1988), 359-369.
- T. Noiri, S. N. El-Deeb, I. A. Hasanein and A. S. Mashhour, On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie 27 (25) (1983), 311-315.
- 28. T. Noiri, Weakly α -continuous functions, Internat. J. Math. Math. Sci. **10**(3) (1987), 483-490.
- 29. T. Noiri, On $\alpha\text{-continuous functions},$ Časopis Pěst. Mat. 109 (1984), 118-126.
- I. L. Reilly and M. K. Vamanamurthy, On α-continuity in topological spaces, Acta math. Hung. 45 (1-2) (1985), 27-32.
- I. L. Reilly and M. K. Vamanamurthy, On α-sets in topological spaces, Tamkang J. Math. 16 (1985), 7-11.
- 32. I. L. Reilly and M. K. Vamanamurthy, On countably $\alpha\text{-compact spaces},$ J. Sci. Res. 5 (1983), 5-8.

Addresses :

M. Caldas

Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. e-mail: gmamccs@vm.uff.br

D.N. Georgiou Department of Mathematics, University of Patras, 26500 Patras, Greece e-mail: georgiou@math.upatras.gr

S. Jafari

Department of Mathematics and Physics, Roskilde University,Postbox 260, 4000 Roskilde, Denmark. e-mail: sjafari@ruc.dk