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Characterizations of low separation axioms via α-open sets and
α-closure operator

M. Caldas, D. N. Georgiou and S. Jafari

abstract: In this paper, we introduce and investigate some weak separation
axioms by using the notions of α-open sets and the α-closure operator.
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1. Introduction

The notion of α-open set was introduced by O. Nj̊astad [25] in 1965. Since then
it has been widely investigated in the literature (see, [1], [2], [6], [11], [13], [14], [16],
[18], [19], [21], [22], [23], [26], [28], [29], [30], [31], [32]). In this paper, we offer some
new low separation axioms by utilizing α-open sets and α-closure operator. We
also characterize their fundamental properties.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y) we always mean topo-
logical spaces. A subset A of a topological space (X, τ) is called α-open [25] (resp.
semi-open [17] and preopen [24]) if A ⊆ Int(Cl(Int(A))) (resp. A ⊆ Cl(Int(A)) and
A ⊆ Int(Cl(A))). The complement of an α-open (resp. semi-open and preopen)
set is called α-closed (resp. semi-closed [9] and preclosed [24]). By αO(X, τ) (resp.
αC(X, τ)), we denote the family of all α-open (resp. α-closed) sets of X. The inter-
section of all α-closed (resp. semi-closed and preclosed) sets containing A is called
the α-closure (resp. semi-closure [8] and preclosure [27]) of A, denoted by Clα(A)
(resp. sCl(A) and pCl(A)). A subset A is α-closed if and only if A = Clα(A).
A set U in a topological space (X, τ) is an α-neighborhood [19] of a point x if U
contains an α-open set V such that x ∈ V . Recall that a topological space (X, τ)
is said to be:
(i) Weakly-R0

[10] (resp. weakly semi-R0
[3] and weakly pre-R0

[15]) if ∩x∈XCl({x}) =
∅ (resp. ∩x∈XsCl({x}) = ∅ and ∩x∈XpCl({x}) = ∅).
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(ii) Semi-R0
[20] (resp. pre-R0

[5]) if every semi-open (resp. preopen) set contains
the semi-closure (resp. preclosure) of each of its singletons.

Corollary 1.1 Let A be a subset of a topological space (X, τ). Then Clα(A) =
A

⋃
Cl(Int(Cl(A))).

Corollary 1.2 Clα(A) is α-closed , i.e. Clα(Clα(A)) = Clα(A).

Lemma 1.3 For subsets A and Ai (i ∈ I) of a space (X, τ), the following hold:
(1) A ⊂ Clα(A).
(2) If A ⊂ B, then Clα(A) ⊂ Clα(B).
(3) Clα(∩{Ai : i ∈ I}) ⊂ ∩{Clα(Ai) : i ∈ I}.
(4) Clα(∪{Ai : i ∈ I}) = ∪{Clα(Ai) : i ∈ I}.

2. Preliminaries

In this section we recall the definitions of α-Ti, s-Di and p-Di spaces, i = 0, 1, 2.

A subset A of a topological space (X, τ) is called:
(i) sD-set [7] if there are two semi-open sets U and V such that U 6= X and

A=U − V .
(ii) pD-set [12] if there are two preopen sets U and V such that U 6= X and

A=U − V .
Observe that every semi-open (respectively, preopen) set U different from X is

a sD-set (respectively, pD-set) if A=U and V =∅.
A topological space (X, τ) is said to be:
(iii) α-T0

[21] if for any distinct pair of points in X, there is an α-open set
containing one of the points but not the other.

(iv) α-T1
[21] if for any distinct pair of points x and y in X, there is an α-open

U in X containing x but not y and an α-open set V in X containing y but not x.
(v) α-T2

[18] if for any distinct pair of points x and y in X, there exist α-open
sets U and V in X containing x and y, respectively, such that U ∩ V = ∅.

(vi) s-D0
[7] if for any distinct pair of points x and y of X there exists a sD-set

of X containing x but not y or a sD-set of X containing y but not x.
(vii) s-D1

[7] if for any distinct pair of points x and y of X there exists a sD-set
of X containing x but not y and a sD-set of X containing y but not x.

(viii) s-D2
[7] if for any distinct pair of points x and y of X there exists disjoint

sD-sets G and E of X containing x and y, respectively.
(ix) p-D0

[12] if for any distinct pair of points x and y of X there exists a pD-set
of X containing x but not y or a pD-set of X containing y but not x.

(x) p-D1
[12] if for any distinct pair of points x and y of X there exists a pD-set

of X containing x but not y and a pD-set of X containing y but not x.
(xi) p-D2

[12] if for any distinct pair of points x and y of X there exists disjoint
pD-sets G and E of X containing x and y, respectively.

Remark 2.1 (i) If (X, τ) is α-Ti, then it is α-Ti−1, i = 1, 2.
(ii) If (X, τ) is s-Di, then it is s-Di−1, i = 1, 2.
(iii) If (X, τ) is p-Di, then it is p-Di−1, i = 1, 2.
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3. αD-sets and associated separation axioms

Definition 1 A subset A of a topological space X is called an αD-set if there are
two U, V ∈ αO(X, τ) such that U 6= X and A=U − V .

Observe that every α-open set U different from X is an αD-set if A=U and
V =∅.

Example 3.1 Let (X, τ) be a topological space such that X = {a, b, c, d} and τ =
{∅, X, {a, b}}. Clearly, the set {a, c, d} is pD-set but it is not αD-set.

Example 3.2 Let (X, τ) be a topological space such that X = {a, b, c, d} and τ =
{∅, X, {a}, {b}, {a, b}}. Clearly, the set {b, c, d} is sD-set but it is not αD-set.

Definition 2 A topological space (X, τ) is called α-D0 if for any distinct pair of
points x and y of X there exists an αD-set of X containing x but not y or an
αD-set of X containing y but not x.

Definition 3 A topological space (X, τ) is called α-D1 if for any distinct pair of
points x and y of X there exists an αD-set of X containing x but not y and an
αD-set of X containing y but not x.

Definition 4 A topological space (X, τ) is called α-D2 if for any distinct pair of
points x and y of X there exists disjoint αD-sets G and E of X containing x and
y, respectively.

Remark 3.3 (i) If (X, τ) is α-Ti, then (X, τ) is α-Di, i = 0, 1, 2.
(ii) If (X, τ) is α-Di, then it is α-Di−1, i = 1, 2.

Theorem 3.4 For a topological space (X, τ) the following statements hold:
(1) (X, τ) is α-D0 if and only if it is α-T0.
(2) (X, τ) is α-D1 if and only if it is α-D2.

Proof. (1) The sufficiency is stated in Remark 3.3(i). To prove necessity, let
(X, τ) be α-D0. Then for each distinct pair x, y ∈ X, at least one of x, y, say x,
belongs to an αD-set G where y /∈ G. Let G = U1 \ U2 such that U1 6= X and U1,
U2 ∈ αO(X, τ). Then x ∈ U1. For y /∈ G we have two cases: (a) y /∈ U1; (b) y ∈ U1

and y ∈ U2.
In case (a), x ∈ U1 but y /∈ U1;
In case (b), y ∈ U2 but x /∈ U2. Hence X is α-T0.

(2) Sufficiency. Remark 3.3(ii).
Necessity. Suppose that X is α-D1. Then for each distinct pair x, y ∈ X, we

have αD-sets G1, G2 such that x ∈ G1, y /∈ G1; y ∈ G2 , x /∈ G2. Let G1= U1\U2 ,
G2 = U3\U4. By x /∈ G2, it follows that either x /∈ U3 or x ∈ U3 and x ∈ U4. Now
we consider two cases.

(1) x /∈ U3. By y /∈ G1 we have two subcases:
(a) y /∈ U1. By x ∈ U1\U2, it follows that x ∈ U1\ (U2∪ U3) and by y ∈ U3\U4

we have y ∈ U3\(U1 ∪ U4). Hence (U1\(U2 ∪ U3)) ∩ (U3\(U1 ∪ U4) = ∅.
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(b) y ∈ U1 and y ∈ U2. We have x ∈ U1\U2, y ∈ U2. (U1\U2) ∩ U2 = ∅.
(2) x ∈ U3 and x ∈ U4. We have y ∈ U3\U4, x ∈ U4. (U3\U4) ∩ U4 = ∅.

Therefore X is α-D2.

Theorem 3.5 If (X, τ) is α-D1, then it is α-T0.

Proof. Remark 3.3 and Theorem 3.4.

Example 3.6 Let (X, τ) be a topological space such that X = {a, b, c} and τ =
{∅, X, {a}, {b}, {a, b}}. Clearly the space X is α-T0 but it is not α-D1.

Theorem 3.7 A topological space (X, τ) is α-T0 if and only if for each pair of
distinct points x, y of X, Clα({x}) 6= Clα({y}).

Proof. Sufficiency. Suppose that x, y ∈ X, x 6= y and Clα({x}) 6= Clα({y}).
Let z ∈ X such that z ∈ Clα({x}) but z /∈ Clα({y}). We claim that x /∈ Clα({y}).
For, if x ∈ Clα({y}) then Clα({x}) ⊂ Clα({y}). This contradicts the fact that
z /∈ Clα({y}). Consequently x belongs to the α-open set [Clα({y})]c to which y
does not belong.

Necessity. Let (X, τ) be an α-T0 space and x, y be any two distinct points of
X. There exists an α-open set G containing x or y, say x but not y. Then Gc is an
α-closed set which x /∈ Gc and y ∈ Gc. Since Clα({y}) is the smallest α-closed set
containing y (Corollary 1.1), Clα({y}) ⊂ Gc, and therefore x /∈ Clα({y}). Hence
Clα({x}) 6= Clα({y}).

Theorem 3.8 A topological space (X, τ) is α-T1 if and only if the singletons are
α-closed sets.

Proof. Let (X, τ) be α-T1 and x any point of X. Suppose y ∈ {x}c. Then x 6= y
and so there exists an α-open set Uy such that y ∈ Uy but x/∈ Uy. Consequently
y ∈ Uy ⊂ {x}c i.e., {x}c =

⋃
{Uy/y ∈ {x}c} which is α-open.

Conversely, suppose {p} is α-closed for every p ∈ X. Let x, y ∈ X with x 6= y .
Now x 6= y implies y ∈ {x}c. Hence{x}c is an α-open set containing y but not x.
Similarly {y}c is an α-open set containing x but not y. Accordingly X is an α-T1

space.

Definition 5 A point x ∈ X which has X as an α-neighborhood is called an α-neat
point.

Theorem 3.9 For an α-T0 topological space (X, τ) the following are equivalent:
(1) (X, τ) is α-D1;
(2) (X, τ) has no α-neat point.

Proof. (1) → (2). Since (X, τ) is α-D1, then each point x of X is contained in
an αD-set O=U − V and thus in U. By definition U 6= X. This implies that x is
not an α-neat point.
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(2) → (1). If X is α-T0, then for each distinct pair of points x, y ∈ X, at least
one of them, x(say) has an α-neighborhood U containing x and not y. Thus U
which is different from X is an αD-set. If X has no α-neat point, then y is not an
α-neat point. This means that there exists an α-neighborhood V of y such that
V 6= X. Thus y ∈ (V − U) but not x and V − U is an αD-set. Hence X is α-D1.

Remark 3.10 It is clear that an α-T0 topological space (X, τ) is not α-D1 if and
only if there is a unique α-neat point in X. It is unique because if x and y are
both α-neat point in X, then at least one of them say x has an α-neighborhood U
containing x but not y. But this is a contradiction since U 6= X.

Definition 6 A topological space (X, τ) is α-symmetric if for x and y in X, x ∈
Clα({y}) implies y ∈ Clα({x}).

Definition 7 A subset A of a topological space (X, τ) is called a (α, α)-generalized-
closed set [21] (briefly (α, α)-g-closed) if Clα(A) ⊂ U whenever A ⊂ U and U is
α-open in (X, τ).

Lemma 3.11 Every α-closed set is (α, α)-g-closed.

Theorem 3.12 A topological space (X, τ) is α-symmetric if and only if {x} is
(α, α)-g-closed for each x ∈ X.

Proof. Assume that x ∈ Clα({y}) but y /∈ Clα({x}). This means that
[Clα({x})]c contains y. Therefore the set {y} is a subset of [Clα({x})]c. This im-
plies that Clα({y}) is a subset of [Clα({x})]c. Now [Clα({x})]c contains x which
is a contradiction.

Conversely, suppose that {x} ⊂ E ∈ αO(X, τ) but Clα({x}) is not a subset of
E. This means that Clα({x}) and Ec are not disjoint. Let y ∈ Clα({x})∩Ec. We
have x ∈ Clα({y}) which is a subset of Ec and x /∈ E. But this is a contradiction.

Corollary 3.13 If a topological space (X, τ) is an α-T1 space, then it is α-symmetric.

Proof. In an α-T1 space, singleton sets are α-closed (Theorem 3.8) and therefore
(α, α)-g-closed (Lemma 3.11). By Theorem 3.1, the space is α-symmetric.

Corollary 3.14 For a topological space (X, τ) the following are equivalent:
(1) (X, τ) is α-symmetric and α-T0;
(2) (X, τ) is α-T1.

Proof. By Corollary 3.13 and Remark 3.3 it suffices to prove only (1) → (2). Let
x 6= y and by α-T0, we may assume that x ∈ G1 ⊂ {y}c for some G1 ∈ αO(X, τ).
Then x /∈ Clα({y}) and hence y /∈ Clα({x}). There exists a G2 ∈ αO(X, τ) such
that y ∈ G2 ⊂ {x}c. Hence (X, τ) is an α-T1 space.

Definition 8 A space (X, τ) is said to be (α, α) − T 1
2

if every (α, α)-g-closed set
of X is α-closed.
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Theorem 3.15 For an α-symmetric topological space (X, τ) the following are equiv-
alent:
(1) (X, τ) is α-T0;
(2) (X, τ) is α-D1;
(3 (X, τ) is (α, α)-T 1

2
;

(4) (X, τ) is α-T1.

The proof is straightforward and hence omitted.

We recall the following.

Definition 9 A function f : (X, τ) → (Y, σ) is α-irresolute [18] if the inverse
image of each α-open set is α-open.

Theorem 3.16 If f : (X, τ) → (Y, σ) is an α-irresolute surjective function and E
is an αD-set in Y, then the inverse image of E is an αD-set in X.

Proof. Let E be an αD-set in Y . Then there are α-open sets U1 and U2 in
Y such that S = U1\U2 and U1 6= Y . By the α- irresoluteness of f , f−1(U1)
and f−1(U2) are α-open in X. Since U1 6= Y , we have f−1(U1) 6= X. Hence
f−1(E) = f−1(U1)\f−1(U2) is an αD-set.

Theorem 3.17 If (Y, σ) is α-D1 and f : (X, τ) → (Y, σ) is α-irresolute and
bijective, then (X, τ) is α-D1.

Proof. Suppose that Y is an α-D1 space. Let x and y be any pair of distinct
points in X. Since f is injective and Y is α-D1, there exist αD-sets Gx and Gy

of Y containing f(x) and f(y) respectively, such that f(y) /∈ Gx and f(x) /∈ Gy.
By Theorem 3.16 , f−1(Gx) and f−1(Gy) are αD-sets in X containing x and y,
respectively. This implies that X is an α-D1 space.

Recall that a map is always α-open [11] if the image of every α-open set is
α-open.

Theorem 3.18 Let X be an arbitrary space, R an equivalence relation in X and
p : X → X/R the identification map. If R ⊂ X ×X is α-closed in X ×X and p is
an always α-open map, then X/R is α-T2.

Proof. Let p(x), p(y) be distinct members of X/R. Since x and y are not
related, R ⊂ X × X is α-closed in X × X. There are α-open sets U and V such
that x ∈ U , y ∈ V and U × V ⊂ Rc. Thus p(U), p(V ) are disjoint and also α-open
in X/R since p is always α-open.

Theorem 3.19 A topological space (X, τ) is α-D1 if and only if for each pair of
distinct points x, y ∈ X, there exists an α-irresolute surjective function f : (X, τ) →
(Y, σ), where (Y, σ) is an α-D1 space such that f(x) and f(y) are distinct.
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Proof. Necessity. For every pair of distinct points of X, it suffices to take the
identity function on X.
Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis, there
exists an α-irresolute, surjective function f of a space (X, τ) onto an α-D1 space
(Y, σ) such that f(x) 6= f(y). Therefore, there exist disjoint αD-sets Gx and Gy in
Y such that f(x) ∈ Gx and f(y) ∈ Gy. Since f is α-irresolute and surjective, by
Theorem 3.16, f−1(Gx) and f−1(Gy) are disjoint αD-sets in X containing x and
y, respectively. Therefore the space X is an α-D1 space.

Theorem 3.20 The following four properties are equivalent:
(1) X is α-T2;
(2) Let x ∈ X. For each y 6= x, there exists an α-open set U such that x ∈ U and
y 6∈ Clα(U);
(3) For each x ∈ X, ∩{Clα(U)/U ∈ αO(X, τ) and x ∈ U} = {x};
(4) The diagonal ∆ = {(x, x)/x ∈ X} is α-closed in X ×X.

Proof. (1) → (2). Let x ∈ X and y 6= x. Then there are disjoint α-open sets U
and V such that x ∈ U and y ∈ V . Clearly, V c is α-closed, Clα(U) ⊂ V c, y 6∈ V c

and therefore y 6∈ Clα(U).
(2) → (3). If y 6= x, then there exists an α-open set U such that x ∈ U and
y 6∈ Clα(U). So y 6∈ ∩{Clα(U)/U ∈ αO(X, τ) and x ∈ U}.
(3) → (4). We prove that ∆c is α-open. Let (x, y) 6∈ ∆. Then y 6= x and since
∩{Clα(U)/U ∈ αO(X, τ) and x ∈ U} = {x} there is some U ∈ αO(X, τ) with
x ∈ U and y 6∈ Clα(U). Since U ∩ (Clα(U))c = ∅, U × (Clα(U))c is an α-open set
such that (x, y) ∈ U × (Clα(U))c ⊂ ∆c.
(4) → (1). If y 6= x, then (x, y) 6∈ ∆ and thus there exist α-open sets U and V
such that (x, y) ∈ U × V and (U × V )∩∆ = ∅. Clearly, for the α-open sets U and
V we have: x ∈ U , y ∈ V and U ∩ V = ∅.

4. α-R0 spaces and α-R1 spaces

Definition 10 Let A be a subset of a topological space X. The α-kernel of A [16] ,
denoted by Kerα(A) is defined to be the set Kerα(A) = ∩{O ∈ αO(X, τ) | A ⊂ O}.

Definition 11 Let x be a point of a topological space X. The α-kernel of x, denoted
by Kerα({x}) is defined to be the set Kerα({x}) = ∩{O ∈ αO(X, τ) | x ∈ O}.

Lemma 4.1 Let (X, τ) be a topological space and x ∈ X. Then
Kerα(A) = {x ∈ X/Clα({x}) ∩A 6= ∅}.

Proof. Let x ∈ Kerα(A) and Clα({x}) ∩ A = ∅. Hence x /∈ X − Clα({x})
which is an α-open set containing A. This is impossible, since x ∈ Kerα(A).
Consequently, Clα({x}) ∩ A 6= ∅. Let Clα({x}) ∩ A 6= ∅ and x /∈ Kerα(A). Then,
there exists an α-open set D containing A and x /∈ D. Let y ∈ Clα({x})∩A. Hence,
D is an α-neighborhood of y which x /∈ D. By this contradiction, x ∈ Kerα(A)
and the claim.
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Definition 12 A topological space (X, τ) is said to be an α-R0 space if every α-
open set contains the α-closure of each of its singletons.

It is clear that α-R0 implies pre-R0 and α-R0 implies semi-R0 but the converses
are not true.

Example 4.2 Let X = {a, b, c} with topology τ = {∅, {a, b}, X}. This is pre-R0

but not α-R0 since Clα({a}) = X 6⊂ {a, b} and also not semi-R0.

Example 4.3 Let X = {a, b, c} be endowed with the topology τ = {∅, {a}, {b}, {a, b}, X}.
Then the space X is semi-R0 but it is not pre-R0 since Cl(Int({a}) 6⊂ {a, c} where
{a, c} ∈ PO(X, τ) [5]. Observe also that (X, τ) is not α-R0.

Remark 4.4 Pre-R0 and semi-R0 spaces are independent. Example 4.3 is semi-
R0 but not pre-R0 whereas in Example 4.2, the space X is pre-R0 but not semi-R0.

Note that none of the implications in the diagram below is reversible.

R0 → α-R0 → semi-R0

↘
pre-R0

The notion of α-R0 does not imply the notion of R0 as it is shown by the
following example.

Example 4.5 Let p be a fixed point of (X, τ) with τ as the cofinite topology on X,
i.e., τ = {∅, G,X} with G ⊂ X − p and X − G finite. We can see that X is not
R0 , since if G is an open set and x ∈ G , then Cl(x) = X 6⊂ G. But X is α-R0

since X is α-T1 and therefore every α-T1 is α-R0.

Lemma 4.6 Let (X, τ) be a topological space and x ∈ X. Then y ∈ Kerα({x}) if
and only if x ∈ Clα({y}).

Proof. Suppose that y /∈ Kerα({x}). Then there exists an α-open set V
containing x such that y /∈ V . Therefore we have x /∈ Clα({y}). The proof of the
converse case can be done similarly.

Lemma 4.7 The following statements are equivalent for any points x and y in a
topological space (X, τ) :
(1) Kerα({x}) 6= Kerα({y});
(2) Clα({x}) 6= Clα({y}).

Proof. (1) → (2) : Suppose that Kerα({x}) 6= Kerα({y}), then there exists
a point z in X such that z ∈ Kerα({x}) and z /∈ Kerα({y}). It follows from
z ∈ Kerα({x}) that {x} ∩ Clα({z}) 6= ∅. This implies that x ∈ Clα({z}). By z /∈
Kerα({y}), we have {y}∩Clα({z}) = ∅. Since x ∈ Clα({z}) , Clα({x}) ⊂ Clα({z})
and {y} ∩ Clα({x}) = ∅. Therefore, Clα({x}) 6= Clα({y}). Now Kerα({x}) 6=
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Kerα({y}) implies that Clα({x}) 6= Clα({y}).
(2) → (1) : Suppose that Clα({x}) 6= Clα({y}). Then there exists a point z ∈ X
such that z ∈ Clα({x}) and z /∈ Clα({y}). Then, there exists an α-open set
containing z and therefore x but not y, i.e., y /∈ Kerα({x}). Hence Kerα({x}) 6=
Kerα({y}).

Theorem 4.8 A topological space (X, τ) is an α-R0 space if and only if for any x
and y in X, Clα({x}) 6= Clα({y}) implies Clα({x}) ∩ Clα({y}) = ∅.

Proof. Necessity. Suppose that (X, τ) is α-R0 and x, y ∈ X such that Clα({x}) 6=
Clα({y}). Then, there exist z ∈ Clα({x}) such that z /∈ Clα({y}) (or z ∈ Clα({y}))
such that z /∈ Clα({x}). There exists V ∈ αO(X, τ) such that y /∈ V and z ∈ V ;
hence x ∈ V . Therefore, we have x /∈ Clα({y}). Thus x ∈ X − Clα({y}) ∈
αO(X, τ), which implies Clα({x}) ⊂ X − Clα({y}) and Clα({x}) ∩ Clα({y}) = ∅.
The proof for otherwise is similar

Sufficiency. Let V ∈ αO(X, τ) and let x ∈ V . We will show that Clα({x}) ⊂
V. Let y /∈ V , i.e., y ∈ X − V. Then x 6= y and x /∈ Clα({y}). This shows
that Clα({x}) 6= Clα({y}). By assumption , Clα({x}) ∩ Clα({y}) = ∅. Hence
y /∈ Clα({x}) and therefore Clα({x}) ⊂ V .

Theorem 4.9 A topological space (X, τ) is an α-R0 space if and only if for any
points x and y in X , Kerα({x}) 6= Kerα({y}) implies Kerα({x})∩Kerα({y}) = ∅.

Proof. Suppose that (X, τ) is an α-R0 space. Thus by Lemma 4.7, for any points
x and y in X if Kerα({x}) 6= Kerα({y}) then Clα({x}) 6= Clα({y}). Now we prove
that Kerα({x}) ∩Kerα({y}) = ∅. Assume that z ∈ Kerα({x}) ∩Kerα({y}). By
z ∈ Kerα({x}) and Lemma 4.6, it follows that x ∈ Clα({z}). Since x ∈ Clα({x}),
by Theorem 4.8 Clα({x}) = Clα({z}). Similarly, we have Clα({y}) = Clα({z}) =
Clα({x}). This is a contradiction. Therefore, we have Kerα({x})∩Kerα({y}) = ∅.
Conversely, let (X, τ) be a topological space such that for any points x and y in
X, Kerα({x}) 6= Kerα({y}) implies Kerα({x}) ∩Kerα({y}) = ∅. If Clα({x}) 6=
Clα({y}), then by Lemma 4.7, Kerα({x}) 6= Kerα({y}). Hence Kerα({x}) ∩
Kerα({y}) = ∅ which implies Clα({x}) ∩ Clα({y}) = ∅. Because z ∈ Clα({x})
implies that x ∈ Kerα({z}). Therefore Kerα({x}) ∩ Kerα({z}) 6= ∅. By hy-
pothesis, we have Kerα({x}) = Kerα({z}). Then z ∈ Clα({x}) ∩ Clα({y}) im-
plies that Kerα({x}) = Kerα({z}) = Kerα({y}). This is a contradiction. Hence,
Clα({x}) ∩ Clα({y}) = ∅. By Theorem 4.8 (X, τ) is an α-R0 space.

Theorem 4.10 For a topological space (X, τ), the following properties are equiv-
alent :
(1) (X, τ) is an α-R0 space;
(2) For any A 6= ∅ and G ∈ αO(X, τ) such that A ∩ G 6= ∅, there exists F ∈
αC(X, τ) such that A ∩ F 6= ∅ and F ⊂ G;
(3) Any G ∈ αO(X, τ), G = ∪{F ∈ αC(X, τ) | F ⊂ G};
(4) Any F ∈ αC(X, τ), F = ∩{G ∈ αO(X, τ) | F ⊂ G};
(5) For any x ∈ X, Clα({x}) ⊂ Kerα({x}).
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Proof. (1) → (2) : Let A be a nonempty set of X and G ∈ αO(X, τ) such that
A ∩ G 6= ∅. There exists x ∈ A ∩ G. Since x ∈ G ∈ αO(X, τ), Clα({x}) ⊂ G. Set
F = Clα({x}), then F ∈ αC(X, τ), F ⊂ G and A ∩ F 6= ∅.
(2) → (3) : Let G ∈ αO(X, τ), then G ⊃ ∪{F ∈ αC(X, τ) | F ⊂ G}. Let x be any
point of G. There exists F ∈ αC(X, τ) such that x ∈ F and F ⊂ G. Therefore, we
have x ∈ F ⊂ ∪{F ∈ αC(X, τ) | F ⊂ G} and hence G = ∪{F ∈ αC(X, τ) | F ⊂
G}.
(3) → (4) : This is obvious.
(4) → (5) : Let x be any point of X and y /∈ Kerα({x}). There exists V ∈ αO(X, τ)
such that x ∈ V and y /∈ V ; hence Clα({y}) ∩ V = ∅. By (4) (∩{G ∈ αO(X, τ) |
Clα({y}) ⊂ G}) ∩ V = ∅. There exists G ∈ αO(X, τ) such that x /∈ G and
Clα({y}) ⊂ G. Therefore, Clα({x}) ∩ G = ∅ and y /∈ Clα({x}). Consequently, we
obtain Clα({x}) ⊂ Kerα({x}).
(5) → (1) : Let G ∈ αO(X, τ) and x ∈ G. Suppose y ∈ Kerα({x}), then x ∈
Clα({y}) and y ∈ G. This implies that Clα({x}) ⊂ Kerα({x}) ⊂ G. Therefore,
(X, τ) is an α-R0 space.

Corollary 4.11 For a topological space (X, τ), the following properties are equiv-
alent :
(1) (X, τ) is an α-R0 space;
(2) Clα({x}) = Kerα({x}) for all x ∈ X.

Proof. (1) → (2) : Suppose that (X, τ) is an α-R0 space. By Theorem 4.10,
Clα({x}) ⊂ Kerα({x}) for each x ∈ X. Let y ∈ Kerα({x}), then x ∈ Clα({y})
and so Clα({x}) = Clα({y}). Therefore, y ∈ Clα({x}) and hence Kerα({x}) ⊂
Clα({x}). This shows that Clα({x}) = Kerα({x}).
(2) → (1) : This is obvious by Theorem 4.9

Theorem 4.12 For a topological space (X, τ), the following properties are equiv-
alent :
(1) (X, τ) is an α-R0 space;
(2) x ∈ Clα({y}) if and only if y ∈ Clα({x}), for any points x and y in X.

Proof. (1) → (2) : Assume that X is α-R0. Let x ∈ Clα({y}) and D be any
α-open set such that y ∈ D. Now by hypothesis, x ∈ D. Therefore, every α-open
set containing y contains x. Hence y ∈ Clα({x}).
(2) → (1) : Let U be an α-open set and x ∈ U . If y /∈ U , then x /∈ Clα({y}) and
hence y /∈ Clα({x}). This implies that Clα({x}) ⊂ U. Hence (X, τ) is α-R0.

We observed that by Definition 6 and Theorem 4.12 the notions of α-symmetric
and α-R0 are equivalent.

Theorem 4.13 For a topological space (X, τ), the following properties are equiv-
alent :
(1) (X, τ) is an α-R0 space;
(2) If F is α-closed, then F = Kerα(F );
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(3) If F is α-closed and x ∈ F , then Kerα({x}) ⊂ F ;
(4) If x ∈ X, then Kerα({x}) ⊂ Clα({x}).

Proof. (1) → (2) : Let F be α-closed and x /∈ F . Thus X − F is α-open and
contains x. Since (X, τ) is α-R0, Clα({x}) ⊂ X − F. Thus Clα({x}) ∩ F = ∅ and
by Lemma 4.1 x /∈ Kerα(F ). Therefore Kerα(F ) = F.
(2) → (3) : In general, A ⊂ B implies Kerα(A) ⊂ Kerα(B). Therefore, it follows
from (2) that Kerα({x}) ⊂ Kerα(F ) = F.
(3) → (4) : Since x ∈ Clα({x}) and Clα({x}) is α-closed, by (3) Kerα({x}) ⊂
Clα({x}).
(4) → (1) : We show the implication by using Theorem 4.10. Let x ∈ Clα({y}).
Then by Lemma 4.6, y ∈ Kerα({x}). Since x ∈ Clα({x}) and Clα({x}) is α-
closed, by (4) we obtain y ∈ Kerα({x}) ⊂ Clα({x}). Therefore x ∈ Clα({y})
implies y ∈ Clα({x}). The converse is obvious and (X, τ) is α-R0.

Recall that a filterbase F is called α-convergent [11] to a point x in X, if for
any α-open set U of X containing x, there exists B in F such that B is a subset
of U.

Lemma 4.14 Let (X, τ) be a topological space and x and y any two points in X
such that every net in X α-converging to y α-converges to x. Then x ∈ Clα({y}).

Proof. Suppose that xn = y for each n ∈ N. Then {xn}n∈N is a net in Clα({y}).
Since {xn}n∈N α-converges to y , then {xn}n∈N α-converges to x and this implies
that x ∈ Clα({y}).

Theorem 4.15 For a topological space (X, τ), the following statements are equiv-
alent :
(1) (X, τ) is an α-R0 space;
(2) If x, y ∈ X, then y ∈ Clα({x}) if and only if every net in X α-converging to y
α-converges to x.

Proof. (1) → (2) : Let x, y ∈ X such that y ∈ Clα({x}). Suppose that
{xα}α∈N is a net in X such that {xα}α∈N α-converges to y. Since y ∈ Clα({x}),
by Theorem 4.8 we have Clα({x}) = Clα({y}). Therefore x ∈ Clα({y}). This
means that {xα}α∈Λ α-converges to x. Conversely, let x, y ∈ X such that every net
in X α-converging to y α-converges to x. Then x ∈ Clα({y}) by Lemma 4.1. By
Theorem 4.8, we have Clα({x}) = Clα({y}). Therefore y ∈ Clα({x}).
(2) → (1) : Assume that x and y are any two points of X such that Clα({x}) ∩
Clα({y}) 6= ∅. Let z ∈ Clα({x}) ∩ Clα({y}). So there exists a net {xα}α∈Λ in
Clα({x}) such that {xα}α∈Λ α-converges to z. Since z ∈ Clα({y}), then {xα}α∈Λ

α-converges to y. It follows that y ∈ Clα({x}). Similarly we obtain x ∈ Clα({y}).
Therefore Clα({x}) = Clα({y}) and by Theorem 4.8, (X, τ) is α-R0.

Definition 13 A topological space (X, τ) is said to be α-R1 if for x, y in X with
Clα({x}) 6= Clα({y}), there exist disjoint α-open sets U and V such that Clα({x})
is a subset of U and Clα({y}) is a subset of V.
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Clearly every α-R1 space is α-R0. Indeed let U be an α-open such that x ∈ U .
If y /∈ U , then since x /∈ Clα({y}), Clα({x}) 6= Clα({y}). Hence, there exists an
α-open Vy such that Clα({y}) ⊂ Vy and x /∈ Vy, which implies y /∈ Clα({x}). Thus
Clα({x}) ⊂ U . Therefore (X, τ) is α-R0.

Example 4.16 Let p be a fixed point of (X, τ) with τ as the cofinite topology on
X, i.e., τ = {∅, G,X} with G ⊂ X − p and X −G finite. The space X is α-R0 but
it is not α-R1.

Theorem 4.17 A topological space (X, τ) is α-R1 if and only if for x, y ∈ X, Kerα({x}) 6=
Kerα({y}), there exist disjoint α-open sets U and V such that Clα({x}) ⊂ U and
Clα({y}) ⊂ V.

Proof. It follows from Lemma 4.6.

5. Weakly α-R0 spaces

Definition 14 A topological space (X, τ) is said to be weakly α-R0 if
∩x∈XClα({x}) = ∅.

Theorem 5.1 A topological space (X, τ) is weakly α-R0 if and only if Kerα({x}) 6=
X for every x ∈ X.

Proof. Suppose that the space (X, τ) is weakly α-R0. Assume that there is a
point y in X such that Kerα({y}) = X. Then y /∈ O, where O is some proper α-
open subset of X. This implies that y ∈ ∩x∈XClα({x}). But this is a contradiction.

Now assume that Kerα({x}) 6= X for every x ∈ X. If there exists a point
y ∈ X such that y ∈ ∩x∈XClα({x}), then every α-open set containing y must
contain every point of X. This implies that the space X is the unique α-open set
containing y. Hence Kerα({x}) = X which is a contradiction. Therefore, (X, τ) is
weakly α-R0.

Remark 5.2 It should be noted that since sCl({x}) ⊂ Clα({x}) ⊂ Cl({x}) and
pCl({x}) ⊂ Clα({x}) ⊂ Cl({x}), we have the following diagram in which the
converses of the implications are not true.

Weakly R0 → Weakly α-R0 → Weakly semi-R0

↘
Weakly pre-R0

In [15], it is shown that every weakly R0 space is weakly pre-R0 ( [15], Theorem
2.1) and the converse is not true ( [15], Example 2.1). Moreover it is shown that the
notions of weakly pre-R0 and weakly semi-R0 are independent of each other ( [15],
Example 2.2 and Example 2.3). Also ( [15], Example 2.2) and ( [15], Example 2.23)
show that weakly pre-R0 and wealy semi-R0 do not imply weakly α-R0.
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Definition 15 A function f : X → Y is called always α-closed if the image of
every α-closed subset of X is α-closed in Y .

Theorem 5.3 If f : X → Y is an injective always α-closed function and X is
weakly α-R0, then Y is weakly α-R0.

Proof. Straightforward.

Theorem 5.4 If the topological space X is weakly α-R0 and Y is any topological
space, then the product X × Y is weakly α-R0.

Proof. If we show that ∩(x,y)∈X×Y Clα({x, y}) = ∅, then we are done. Observe
that ∩(x,y)∈X×Y Clα({x, y}) ⊂ ∩(x,y)∈X×Y (Clα({x})×Clα({y})) = ∩x∈XClα({x})×
∩y∈Y Clα({y}) ⊂ ∅ × Y = ∅ and hence the proof.
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