Bol. Soc. Paran. Mat. (3s.) v. 21 1/2 (2003): 1-8. ©ŚРМ

Splitting 3-plane sub-bundles over the product of two real projective spaces

Maria Hermínia de Paula Leite Mello and Mário Olivero Marques da Silva

ABSTRACT: Let α be a real vector bundle of fiber dimension three over the product ${I\!\!R} P(m) \times {I\!\!R} P(n)$ which splits as a Whitney sum of line bundles. We show that the necessary and sufficient conditions for α to embed as a sub-bundle of a certain family of vector bundles β of fiber dimension m+n is the vanishing of the last three Stiefel-Whitney classes of the virtual bundle $\beta - \alpha$. Among the target bundles β we consider the tangent bundle.¹

Contents

The problem of deciding if a vector bundle α can be realized as a sub-bundle of another vector bundle β over a manifold M has been considered by several authors. Immersion problems and also the existence of a k-field frame on a manifold M are among the applications of this question. The most used techniques to approach such problems are Postnikov decomposition ([5], [6]) and the singularity method developed by Ulrich Koschorke [2].

This question can also be formulated as the existence of a monomorphism of vector bundles from α into β . In this paper the manifold is the product of two real projective spaces $\mathbb{R}P(m) \times \mathbb{R}P(n)$, α is a vector bundle of fiber dimension 3 and β has the same fiber dimension m + n as the dimension of the manifold and they are listed below.

> $\begin{array}{ll} \alpha & \beta \\ 1) \ \varepsilon^3 & 1) \ \varepsilon^{m+n} \\ 2) \ \gamma \oplus \varepsilon^2 & 2) \ TP(m) \oplus \varepsilon^n \\ 3) \ \gamma \oplus \gamma \oplus \varepsilon^1 & 3) \ \gamma^{\perp} \oplus \varepsilon^n \end{array}$ 4) $\gamma \oplus \gamma \oplus \gamma$ 4) $TP(m) \oplus TP(n)$ 5) $\varepsilon^2 \oplus \xi$ 5) $\gamma^{\perp} \oplus TP(n)$ 6) $\varepsilon^1 \oplus \xi \oplus \xi$ 6) $\gamma^{\perp} \oplus \xi^{\perp}$ 7) $\xi \oplus \xi \oplus \xi$ 7) $\varepsilon^m \oplus TP(n)$ 8) $\gamma \oplus \xi \oplus \varepsilon^1$ 8) $\varepsilon^m \oplus \xi^\perp$ 9) $TP(m) \oplus \xi^{\perp}$ 9) $\gamma \oplus \gamma \oplus \xi$ 10) $\gamma \oplus \xi \oplus \xi$

Here ε^n always represents the trivial vector bundle of dimension n, γ and ξ are the canonical line bundles over the projective spaces $\mathbb{I}\!\!RP(m)$ and $\mathbb{I}\!\!RP(n)$, respectively. The bundles TP(m) and TP(n) are their tangent bundles. We denote by

Typeset by $\mathcal{B}^{\mathcal{S}}\mathcal{P}_{\mathcal{M}}$ style. © Soc. Paran. Mat.

¹⁹⁹¹ Mathematics Subject Classification: 55R25, 55R40, 57R25 ¹ Partially supported by the CNPq-GMD.

 γ^{\perp} and ξ^{\perp} the orthogonal complement of γ and ξ , respectively. We recall that $\gamma \oplus \gamma^{\perp} \cong \varepsilon^{m+1}$ and $\gamma \otimes \gamma^{\perp} \cong TP(m)$ over $\mathbb{R}P(m)$ while $\xi \oplus \xi^{\perp} \cong \varepsilon^{n+1}$ and $\xi \otimes \xi^{\perp} \cong TP(n)$ over $\mathbb{R}P(n)$. Let p be the projection of $\mathbb{R}P(m) \times \mathbb{R}P(n)$ over any of the factors. We denote the pullback of any vector bundle under p and the vector bundle itself by the same notation. We assume m and n to be greater or equal than 3.

A motivation for considering this list of vector bundles α comes from the following facts:

- 1. Any vector bundle of fiber dimension two over $\mathbb{R}P(m)$ is isomorphic to either ε^2 , $\varepsilon^1 \oplus \gamma$ or $\gamma \oplus \gamma$.
- 2. Any vector bundle of fiber dimension three over $\mathbb{R}P(m)$ that is a restriction of a vector bundle over $\mathbb{R}P(\infty)$ is decomposable as a Whitney sum of line bundles.

Fact 1 can be verified by noticing that oriented vector bundles of fiber dimension 2 over $\mathbb{R}P(m)$ are classified by $H^2(\mathbb{R}P(m),\mathbb{Z})$ which is isomorphic to \mathbb{Z}_2 . On the other hand, nonorientable vector bundles of fiber dimension 2 are classified by $H^2(\mathbb{R}P(m),\mathbb{Z}_w)$, the cohomology group with coefficients twisted by $w = w_1(\gamma)$ and for $m \geq 3$ this group is trivial [4].

Fact 2 follows from the fact that there is a bijection between $[\mathbb{R}P(\infty), BO(3)]$, the set of homotopy classes of maps from $\mathbb{R}P(\infty)$ to BO(3) and $Rep(\mathbb{Z}_2, O(3))$, the set of equivalence classes of representation \mathbb{Z}_2 in O(3). This follows from a result of Dwyer and Zabrodsky ([1] or [3]). Since $Rep(\mathbb{Z}_2, O(3))$ is equal to $Hom(\mathbb{Z}_2, O(3)) / Inn(O(3))$ there are four classes, corresponding to the following four non isomorphic vector bundles: ε^3 , $\varepsilon^2 \oplus \gamma$, $\varepsilon^1 \oplus \gamma \oplus \gamma$ and $\gamma \oplus \gamma \oplus \gamma$.

Since $H^1(\mathbb{R}P(m) \times \mathbb{R}P(n), \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, the line bundles over $\mathbb{R}P(m) \times \mathbb{R}P(n)$ are isomorphic to one of the following line bundles: ε^1 , γ , ξ and $\gamma \otimes \xi$.

In this work we did not consider the line bundle $\gamma \otimes \xi$ as a splitting component of α because the very first obstructions to the problem will already break into many cases.

The first evidence one can get for the existence of a monomorphism from α to β comes from the Stiefel-Whitney classes. That is, if there is a monomorphism from α into β , then there is a vector bundle, say ζ , such that $\beta \cong \alpha \oplus \zeta$ and then

$$w_{r-i}(\zeta) = w_{r-i}(\beta - \alpha) = 0,$$

for $i = 0, 1, ..., \dim(\alpha) - 1$, where $r = \dim(\beta)$. Then we are facing the task of computing the three last Stiefel-Whitney classes $w_i(\alpha - \beta)$, i = m + n, m + n - 1, m + n - 2, for the ninety possibilities of our original setting. This can be done rather smoothly because of the algebraic simplicity of the cohomology of the product $\mathbb{R}P(m) \times \mathbb{R}P(n)$.

We prove then, in a constructive way in most of the cases, the following theorem:

Theorem 1 If $\alpha = r\gamma \oplus s\xi \oplus \varepsilon^t$, with $r, s, t \ge 0$ and r + s + t = 3 and $\beta = \beta_1 \oplus \beta_2$, with $\beta_1 = \varepsilon^m, TP(m)$ or γ^{\perp} , $\beta_2 = \varepsilon^n, TP(n)$ or ξ^{\perp} over the product $\mathbb{R}P(m) \times \mathbb{R}P(n)$, where $m, n \ge 3$, then there is a monomorphism from α into β if, and only if, $w_i(\beta - \alpha) = 0$ for i = m + n - 2, m + n - 1 and m + n.

The cases when $\beta = \varepsilon^m \oplus TP(n)$, $\varepsilon^m \oplus \xi^{\perp}$ and $TP(m) \oplus \xi^{\perp}$ are, in a sense, dual to the cases $\beta = TP(m) \oplus \varepsilon^n$, $\gamma^{\perp} \oplus \varepsilon^m$ and $\gamma^{\perp} \oplus TP(n)$, and so we only consider the first six bundles in the list on the right side.

First we compute the Stiefel-Whitney classes in order to prove the theorem.

Let u and v represent the generators of $H^1(\mathbb{R}P(m);\mathbb{Z}_2)$ and $H^1(\mathbb{R}P(n);\mathbb{Z}_2)$, respectively. Then, $H^k(\mathbb{R}P(m) \times \mathbb{R}P(n);\mathbb{Z}_2)$ is generated by all possible products $u^i v^j$ such that i + j = k. In particular, for k = m + n - 2, m + n - 1 and m + n we can choose the following ordered basis:

 $\{ u^{m} v^{n-2}, u^{m-1} v^{n-1}, u^{m-2} v^{n} \} \text{ for } H^{m+n-2}(\mathbb{R}P(m) \times \mathbb{R}P(n); \mathbb{Z}_{2}), \\ \{ u^{m} v^{n-1}, u^{m-1} v^{n} \} \text{ for } H^{m+n-1}(\mathbb{R}P(m) \times \mathbb{R}P(n); \mathbb{Z}_{2}),$

 $\{u^m v^n\}$ for $H^{m+n}(\mathbb{R}P(m) \times \mathbb{R}P(n); \mathbb{Z}_2)$.

To avoid similar calculations that occurs in more dual cases (as when $\beta = \varepsilon^m \oplus \xi^{\perp}$ and $\alpha = \gamma \oplus \gamma \oplus \xi$ or $\gamma \oplus \xi \oplus \xi$) we consider the total Stiefel-Whitney classes given below. When $\alpha = \varepsilon^3$ and $\beta = \varepsilon^{m+n}, TP(m) \oplus \varepsilon^n$ and $\gamma^{\perp} \oplus \varepsilon^n$, the solution is clear.

1) $w(\varepsilon^{m+n} - \gamma \oplus \varepsilon^2) = (1+u)^{-1}$ 2) $w(\varepsilon^{m+n} - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{-2}$ 3) $w(\varepsilon^{m+n} - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{-3}$ 4) $w(\varepsilon^{m+n} - \gamma \oplus \xi \oplus \varepsilon^1) = (1+u)^{-1}(1+v)^{-1}$ 5) $w(\varepsilon^{m+n} - \gamma \oplus \gamma \oplus \xi) = (1+u)^{-2}(1+v)^{-1}$ 6) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \varepsilon^2) = (1+u)^m$ 7) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{m-1}$ 8) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{m-2}$ 9) $w(TP(m) \oplus \varepsilon^n - \varepsilon^2 \oplus \xi) = (1+u)^{m+1}(1+v)^{-1}$ 10) $w(TP(m) \oplus \varepsilon^n - \varepsilon^1 \oplus \xi \oplus \xi) = (1+u)^{m+1}(1+v)^{-2}$ 11) $w(TP(m) \oplus \varepsilon^n - \xi \oplus \xi \oplus \xi) = (1+u)^{m+1}(1+v)^{-3}$ 12) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \xi \oplus \varepsilon^1) = (1+u)^m (1+v)^{-1}$ 13) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \xi) = (1+u)^{m-1}(1+v)^{-1}$ 14) $w(TP(m) \oplus \varepsilon^n - \gamma \oplus \xi \oplus \xi) = (1+u)^m (1+v)^{-2}$ 15) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \varepsilon^2) = (1+u)^{-2}$ 16) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{-3}$ 17) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{-4}$ 18) $w(\gamma^{\perp} \oplus \varepsilon^n - \varepsilon^2 \oplus \xi) = (1+u)^{-1}(1+v)^{-1}$ 19) $w(\gamma^{\perp} \oplus \varepsilon^n - \varepsilon^1 \oplus \xi \oplus \xi) = (1+u)^{-1}(1+v)^{-2}$ 20) $w(\gamma^{\perp} \oplus \varepsilon^n - \xi \oplus \xi \oplus \xi) = (1+u)^{-1}(1+v)^{-3}$ 21) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \xi \oplus \varepsilon^1) = (1+u)^{-2}(1+v)^{-1}$ 22) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \gamma \oplus \xi) = (1+u)^{-3}(1+v)^{-1}$ 23) $w(\gamma^{\perp} \oplus \varepsilon^n - \gamma \oplus \xi \oplus \xi) = (1+u)^{-2}(1+v)^{-2}$ 24) $w(TP(m) \oplus TP(n) - \varepsilon^3) = (1+u)^{m+1}(1+v)^{n+1}$ 25) $w(TP(m) \oplus TP(n) - \gamma \oplus \varepsilon^2) = (1+u)^m (1+v)^{n+1}$

26) $w(TP(m) \oplus TP(n) - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{m-1}(1+v)^{n+1}$ 27) $w(TP(m) \oplus TP(n) - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{m-2}(1+v)^{n+1}$ 28) $w(TP(m) \oplus TP(n) - \gamma \oplus \xi \oplus \varepsilon^1) = (1+u)^m (1+v)^n$ 29) $w(TP(m) \oplus TP(n) - \gamma \oplus \gamma \oplus \xi) = (1+u)^{m-1}(1+v)^n$ 30) $w(\gamma^{\perp} \oplus TP(n) - \varepsilon^3) = (1+u)^{-1}(1+v)^{n+1}$ 31) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \varepsilon^2) = (1+u)^{-2}(1+v)^{n+1}$ 32) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{-3}(1+v)^{n+1}$ 33) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{-4}(1+v)^{n+1}$ 34) $w(\gamma^{\perp} \oplus TP(n) - \varepsilon^2 \oplus \xi) = (1+u)^{-1}(1+v)^n$ 35) $w(\gamma^{\perp} \oplus TP(n) - \varepsilon^1 \oplus \xi \oplus \xi) = (1+u)^{-1}(1+v)^{n-1}$ 36) $w(\gamma^{\perp} \oplus TP(n) - \xi \oplus \xi \oplus \xi) = (1+u)^{-1}(1+v)^{n-2}$ 37) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \xi \oplus \varepsilon^1) = (1+u)^{-2}(1+v)^n$ 38) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \gamma \oplus \xi) = (1+u)^{-3}(1+v)^n$ 39) $w(\gamma^{\perp} \oplus TP(n) - \gamma \oplus \xi \oplus \xi) = (1+u)^{-2}(1+v)^{n-1}$ 40) $w(\gamma^{\perp} \oplus \xi^{\perp} - \varepsilon^3) = (1+u)^{-1}(1+v)^{-1}$ 41) $w(\gamma^{\perp} \oplus \xi^{\perp} - \gamma \oplus \varepsilon^2) = (1+u)^{-2}(1+v)^{-1}$ 42) $w(\gamma^{\perp} \oplus \xi^{\perp} - \gamma \oplus \gamma \oplus \varepsilon^1) = (1+u)^{-3}(1+v)^{-1}$ 43) $w(\gamma^{\perp} \oplus \xi^{\perp} - \gamma \oplus \gamma \oplus \gamma) = (1+u)^{-4}(1+v)^{-1}$ 44) $w(\gamma^{\perp} \oplus \xi^{\perp} - \gamma \oplus \xi \oplus \varepsilon^{1}) = (1+u)^{-2}(1+v)^{-2}$ 45) $w(\gamma^{\perp} \oplus \xi^{\perp} - \gamma \oplus \gamma \oplus \xi) = (1+u)^{-3}(1+v)^{-2}$

Since we want to compute the last three Stiefel-Whitney classes, we only have to know the three last terms of each factor of $(1+u)^i$ where i = -1, -2, -3, -4, m+1, m, m-1 and m-2, where $m, n \geq 3$. These are given by the following table:

$$(1+u)^{-1} = 1 + u + u^2 + \dots + u^{m-2} + u^{m-1} + u^m, \quad \forall m,$$

$$(1+u)^{-2} = \begin{cases} 1+u^2+u^4+\dots+u^{m-2}+0+u^m, & m \equiv 0(2)\\ 1+u^2+u^4+\dots+0+u^{m-1}+0, & m \equiv 1(2), \end{cases}$$

$$(1+u)^{-3} = \begin{cases} 1+u+u^4+u^5+\dots+0+0+u^m, & m \equiv 0(4) \\ 1+u+u^4+u^5+\dots+0+u^{m-1}+u^m, & m \equiv 1(4) \\ 1+u+u^4+u^5+\dots+u^{m-2}+u^{m-1}+0, & m \equiv 2(4) \\ 1+u+u^4+u^5+\dots+u^{m-2}+0+0, & m \equiv 3(4), \end{cases}$$

$$(1+u)^{-4} = \begin{cases} 1+u^4+u^8+\dots+0+0+u^m, & m \equiv 0(4) \\ 1+u^4+u^8+\dots+0+u^{m-1}+0, & m \equiv 1(4) \\ 1+u^4+u^8+\dots+u^{m-2}+0+0, & m \equiv 2(4) \\ 1+u^4+u^8+\dots+0++0+0, & m \equiv 3(4), \end{cases}$$

$$(1+u)^{m+1} = \begin{cases} 1+\dots+0+0+u^m, & m \equiv 0(4) \\ 1+\dots+0+u^{m-1}+0, & m \equiv 1(4) \\ 1+\dots+u^{m-2}+u^{m-1}+u^m, & m \equiv 2(4) \\ 1+\dots+0+0+0, & m \equiv 3(4), \end{cases}$$
$$(1+u)^m = \begin{cases} 1+\dots+0+u^{m-1}+u^m, & m \equiv 1(4) \\ 1+\dots+u^{m-2}+0+u^m, & m \equiv 2(4) \\ 1+\dots+u^{m-2}+u^{m-1}+u^m, & m \equiv 3(4), \end{cases}$$
$$(1+u)^{m-1} = \begin{cases} 1+\dots+u^{m-2}+u^{m-1}+0, & m \equiv 0(2) \\ 1+\dots+0+u^{m-1}+0, & m \equiv 1(2), \end{cases}$$
$$(1+u)^{m-2} = 1+\dots+u^{m-2}+0+0, \quad \forall m. \end{cases}$$

We denote: $w_k(\zeta_i) = w_k(\beta - \alpha)$ where i = 1, 2, ..., 45, and we use the ordered basis choosen before. The cases where the last three Stiefel-Whitney classes vanish are:

Cases 1, 2, 3, 6, 7, 8, 15, 16, 17, for any n, m. If i = 9, 10, 43, for $m \equiv 3(4)$ and any n. If i = 11, for $m \equiv 1(4)$ and $n \equiv 3(4)$ or $m \equiv 3(4)$ and any n. If i = 24, for $m \equiv 3(4)$ or $n \equiv 3(4)$. If i = 25, 26, 30, 31, for any m and $n \equiv 3(4)$. If i = 27, for any m and $n \equiv 1(2)$. If i = 32, for any m and $n \equiv 3(4)$ or $m \equiv 3(4)$ and $n \equiv 1(4)$. If i = 33, for $m \equiv 2(4)$ and $n \equiv 1(4)$ or $m \equiv 3(4)$ or $n \equiv 3(4)$. If i = 45, for $m \equiv 3(4)$ and $n \equiv 1(2)$. Otherwise at least one of the three last of a Whitney closes is not zero. Therefore there is no memory problem. We use

Stiefel-Whitney classes is not zero. Therefore there is no monomorphism. We use some basic results:

Lemma 1 If $m \equiv 1(2)$ then $TP(m) \cong \varepsilon^1 \oplus \theta^{m-1}$.

Proof This follows from the Poincaré-Hopf Theorem.

Lemma 2 If $m \equiv 3(4)$ then $TP(m) \cong \varepsilon^3 \oplus \zeta^{m-3}$.

Proof If $m \equiv 3(4)$ then $\binom{m+1}{2} \equiv 0(2)$ and so $\mathbb{R}P(m)$ is a spin manifold. Then we can use the following fact due to Emery Thomas: If M is a spin manifold with dim $M \equiv 3(4)$, then span $(M) \geq 3$. See [5], corollary 1.2.

Lemma 3 If α and β are smooth vector bundle of dimensions a and b, respectively, over a closed connected n-dimensional manifold M. If $n + a \leq b$, then there exists a monomorphism $\alpha \hookrightarrow \beta$.

Proof This can be obtained by singularity approach due to Ulrich Koschorke. See [2], exercise 1.13.

Recall that $TP(m) \oplus \varepsilon^1 \cong \gamma \oplus \gamma \oplus \cdots \oplus \gamma \quad ((m+1) - \text{times}).$

Cases 1-3 $(\alpha = \gamma \oplus \varepsilon^2, \gamma \oplus \gamma \oplus \varepsilon^1 \text{ and } \gamma \oplus \gamma \oplus \gamma, \beta = \varepsilon^{m+n})$ For any 3-plane bundle α there is a monomorphism $\alpha \hookrightarrow \varepsilon^{m+3}$ over $\mathbb{R}P(m)$ (Lemma 3). In particular for $\alpha = \gamma \oplus \varepsilon^2, \gamma \oplus \gamma \oplus \varepsilon^1$ and $\alpha = \gamma \oplus \gamma \oplus \gamma \oplus \gamma$. We can pull these monomorphisms back over the product $\mathbb{R}P(m) \times \mathbb{R}P(n)$ in order to get $\gamma \oplus \varepsilon^2, \gamma \oplus \gamma \oplus \varepsilon^1, \gamma \oplus \gamma \oplus \gamma \hookrightarrow \varepsilon^{m+3} \oplus \varepsilon^{n-3} \cong \varepsilon^{m+n}$.

Cases 6-8 $(\alpha = \gamma \oplus \varepsilon^2, \ \gamma \oplus \gamma \oplus \varepsilon^1 \text{ and } \gamma \oplus \gamma \oplus \gamma, \ \beta = TP^m \oplus \varepsilon^n)$ Since $TP(m) \oplus \varepsilon^1 \cong \gamma \oplus \cdots \oplus \gamma \ ((m+1)\text{-times}), \text{ then } \gamma \oplus \varepsilon^2, \ \gamma \oplus \gamma \oplus \varepsilon^1, \ \gamma \oplus \gamma \oplus \gamma \hookrightarrow TP(m) \oplus \varepsilon^n \cong (\gamma \oplus \cdots \oplus \gamma) \oplus \varepsilon^{n-1}.$

Cases 9-11 ($\alpha = \varepsilon^2 \oplus \xi$, $\varepsilon^1 \oplus \xi \oplus \xi$ and $\xi \oplus \xi \oplus \xi$, $\beta = TP^m \oplus \varepsilon^n$) If $m \equiv 3(4)$, then $TP(m) \cong \varepsilon^3 \oplus \zeta^{m-3}$ (Lemma 2). Then, $TP(m) \oplus \varepsilon^n \cong \zeta^{m-3} \oplus \varepsilon^{n+3}$. Over the factor $\mathbb{R}P(n)$, $\alpha \hookrightarrow \varepsilon^{n+3}$, for any 3-plane α . In particular, $\varepsilon^2 \oplus \xi$, $\varepsilon^1 \oplus \xi \oplus \xi$ and $\xi \oplus \xi \oplus \xi \hookrightarrow \varepsilon^{n+3}$. We can pull these monomorphisms back over the product $\mathbb{R}P(m) \times \mathbb{R}P(n)$ to get the desired monomorphisms $\varepsilon^2 \oplus \xi$, $\varepsilon^1 \oplus \xi \oplus \xi$ and $\xi \oplus \xi \hookrightarrow \tau P(m) \oplus \varepsilon^n$. For case 9 alone we can use: Over the factor $\mathbb{R}P(n)$, $\varepsilon^{n+1} \cong \xi \oplus \xi^{\perp}$. Taking the pullback of this decomposition we can write $\varepsilon^2 \oplus \xi \hookrightarrow TP(m) \oplus \varepsilon^n \cong (\zeta^{m-3} \oplus \varepsilon^3) \oplus \varepsilon^n \cong \zeta^{m-3} \oplus \varepsilon^2 \oplus \varepsilon^{n+1} \cong \zeta^{m-3} \oplus \varepsilon^2 \oplus \xi \oplus \xi^{\perp}$.

We still have to consider, in case 11 ($\alpha = \xi \oplus \xi \oplus \xi$ and $\beta = TP(m) \oplus \varepsilon^n$), the situation $m \equiv 1(4)$ and $n \equiv 3(4)$. Since $m \equiv 1(4)$, $TP(m) \oplus \varepsilon^n \cong \theta^{m-1} \oplus \varepsilon^{n+1} \cong \theta^{m-1} \oplus \xi \oplus \xi^{\perp}$. Tensorizing with ξ we get $\xi \otimes (TP(m) \oplus \varepsilon^n) \cong (\xi \otimes \theta^{m-1}) \oplus \varepsilon^1 \oplus TP(n) \cong (\xi \otimes \theta^{m-1}) \oplus \varepsilon^1 \oplus \zeta^{n-3} \oplus \varepsilon^3$ because $n \equiv 3(4)$ (Lemma 2). Tensorizing once more with ξ we get $TP(m) \oplus \varepsilon^n \cong \theta^{m-1} \oplus \xi \oplus \xi \oplus \xi \oplus \xi \oplus (\xi \otimes \zeta^{n-3})$. This shows we can get the desired monomorphism.

Cases 15-17 ($\alpha = \gamma \oplus \varepsilon^2$, $\gamma \oplus \gamma \oplus \varepsilon^1$ and $\gamma \oplus \gamma \oplus \gamma$, $\beta = \gamma^{\perp} \oplus \varepsilon^n$) Same argument as in cases 1-3 proves that $\gamma \oplus \varepsilon^2$, $\gamma \oplus \gamma \oplus \gamma \oplus \varepsilon^1$, $\gamma \oplus \gamma \oplus \gamma \oplus \gamma \to \gamma^{\perp} \oplus \varepsilon^n$.

Case 24 $(\alpha = \varepsilon^3, \beta = TP^m \oplus TP^n)$ If $m \equiv 3(4)$ or $n \equiv 3(4)$, then $\varepsilon^3 \hookrightarrow TP(m) \oplus TP(n)$.

Cases 25, 26 $(\alpha = \gamma \oplus \varepsilon^2 \text{ and } \gamma \oplus \gamma \oplus \varepsilon^1, \ \beta = TP^m \oplus TP^n)$ If $n \equiv 3(4)$, $TP(m) \oplus TP(n) \cong TP(m) \oplus (\varepsilon^3 \oplus \eta^{n-3}) \cong (TP(m) \oplus \varepsilon^1) \oplus (\varepsilon^2 \oplus \eta^{n-3}) \cong (\gamma \oplus \cdots \oplus \gamma) \oplus \varepsilon^2 \oplus \eta^{n-3}, ((m+1)\text{-copies})$. So $\gamma \oplus \varepsilon^2, \ \gamma \oplus \gamma \oplus \varepsilon^1 \hookrightarrow (\gamma \oplus \cdots \oplus \gamma) \oplus \varepsilon^2 \oplus \eta^{n-3} \cong TP(m) \oplus TP(n)$.

Case 27 $(\alpha = \gamma \oplus \gamma \oplus \gamma, \beta = TP^m \oplus TP^n)$ If $n \equiv 1(2), TP(m) \oplus TP(n) \cong TP(m) \oplus \varepsilon^1 \oplus \theta^{n-1} \cong \gamma \oplus \cdots \oplus \gamma \oplus \theta^{n-1}, ((m+1)\text{-copies}).$ Then $\gamma \oplus \gamma \oplus \gamma \hookrightarrow TP(m) \oplus TP(n).$

Case 30 $(\alpha = \varepsilon^3, \beta = \gamma^{\perp} \oplus TP(n))$ If $n \equiv 3(4)$ then $TP(n) \cong \varepsilon^3 \oplus \eta^{n-3}$ and then $\varepsilon^3 \hookrightarrow \gamma^{\perp} \oplus TP(n)$ (Lemma 2).

Case 31 ($\alpha = \gamma \oplus \varepsilon^2$, $\beta = \gamma^{\perp} \oplus TP(n)$) For any 3-plane bundle α , there is a monomorphism $\alpha \hookrightarrow \gamma^{\perp} \oplus \varepsilon^3$ over $\mathbb{R}P(m)$. If $n \equiv 3(4)$, then we can pullback over the product $\mathbb{R}P(m) \times \mathbb{R}P(n)$ the existent monomorphism $\gamma \oplus \varepsilon^2 \hookrightarrow \gamma^{\perp} \oplus \varepsilon^3$ to get $\gamma \oplus \varepsilon^2 \hookrightarrow \gamma^{\perp} \oplus \varepsilon^3 \oplus \eta^{n-3} \cong \gamma^{\perp} \oplus TP(n)$.

Case 32 $(\alpha = \gamma \oplus \gamma \oplus \varepsilon^1, \beta = \gamma^{\perp} \oplus TP(n))$ If $n \equiv 3(4)$, the same argument as in case 31 gives a monomorphism $\gamma \oplus \gamma \oplus \varepsilon^1 \hookrightarrow \gamma^{\perp} \oplus TP(n)$. If $n \equiv 1(4)$ and $m \equiv 3(4)$ we can do the following: $\gamma^{\perp} \oplus TP(n) \cong \gamma^{\perp} \oplus \varepsilon^1 \oplus \theta^{n-1}$. Tensorizing with γ we get $(\gamma \otimes \gamma^{\perp}) \oplus \gamma \oplus (\gamma \otimes \theta^{n-1}) \cong TP(m) \oplus \gamma \oplus (\gamma \otimes \theta^{n-1}) \cong (\varepsilon^3 \oplus \zeta^{m-3}) \oplus \gamma \oplus (\gamma \otimes \theta^{n-1})$. Tensorizing with γ once more we get $\gamma^{\perp} \oplus TP(n) \cong \gamma \oplus \gamma \oplus \gamma \oplus (\gamma \otimes \zeta^{n-3}) \oplus \varepsilon^1 \oplus \theta^{n-1}$, and then there is a monomorphism $\gamma \oplus \gamma \oplus \varepsilon^1 \hookrightarrow \gamma^{\perp} \oplus TP(n)$.

Case 33 $(\alpha = \gamma \oplus \gamma \oplus \gamma, \beta = \gamma^{\perp} \oplus TP(n))$ If $n \equiv 3(4)$, then the argument used in case 31 shows that there is a monomorphism $\gamma \oplus \gamma \oplus \gamma \to \gamma^{\perp} \oplus TP(n)$. If $m \equiv 3(4)$, the double tensorization argument given in case 32 shows that $\gamma^{\perp} \oplus TP(n) \cong \gamma \oplus \gamma \oplus \gamma \oplus \gamma \oplus (\gamma \otimes \zeta^{n-3}) \oplus TP(n)$. Then $\gamma \oplus \gamma \oplus \gamma \oplus \gamma \to \gamma^{\perp} \oplus TP(n)$.

Suppose $m \equiv 2(4)$ and $n \equiv 1(4)$. Then $TP(n) \cong \varepsilon^1 \oplus \theta^{n-1}$. It suffices to prove that $\gamma \oplus \gamma \oplus \gamma \hookrightarrow \gamma^{\perp} \oplus \varepsilon^1$ over the factor $\mathbb{R}P(m)$. There exists a bundle monomorphism $\varepsilon^3 \hookrightarrow TP(m+1) \cong \gamma \otimes \gamma^{\perp}$ over $\mathbb{R}P(m+1)$ by Lemma 2. Tensor product with γ yields $\gamma \oplus \gamma \oplus \gamma \hookrightarrow \gamma^{\perp}$ over $\mathbb{R}P(m+1)$. Restriction of this bundle monomorphism under the inclusion $i: \mathbb{R}P(m) \to \mathbb{R}P(m+1)$ gives $\gamma \oplus \gamma \oplus \gamma \hookrightarrow i^* \gamma^{\perp} \cong \gamma^{\perp} \oplus \varepsilon^1$ on $\mathbb{R}P(m)$.

Case 43 ($\alpha = \gamma \oplus \gamma \oplus \gamma, \beta = \gamma^{\perp} \oplus \xi^{\perp}$) If $m \equiv 3(4)$ the double tensorizing argument shows that there is a monomorphism from $\gamma \oplus \gamma \oplus \gamma$ into $\gamma^{\perp} \oplus \xi^{\perp}$.

Case 45 $(\alpha = \gamma \oplus \gamma \oplus \xi, \ \beta = \gamma^{\perp} \oplus \xi^{\perp})$ If $m \equiv 3(4)$ and $n \equiv 1(2)$ then $\gamma \otimes (\gamma^{\perp} \oplus \xi^{\perp}) \cong (\gamma \otimes \gamma^{\perp}) \oplus (\gamma \otimes \xi^{\perp}) \cong TP(m) \oplus (\gamma \otimes \xi^{\perp}) \cong \varepsilon^3 \oplus \zeta^{m-3} \oplus (\gamma \otimes \xi^{\perp})$. Tensorizing with γ once more gives $\gamma^{\perp} \oplus \xi^{\perp} \cong \gamma \oplus \gamma \oplus \gamma \oplus (\gamma \otimes \zeta^{m-3}) \oplus \xi^{\perp}$. Now, tensorizing twice with ξ gives $\gamma^{\perp} \oplus \xi^{\perp} \cong \gamma \oplus \gamma \oplus \gamma \oplus (\gamma \otimes \zeta^{m-3}) \oplus \xi \oplus (\xi \otimes \theta^{n-1})$. Then there is a monomorphism from $\gamma \oplus \gamma \oplus \xi$ into $\gamma^{\perp} \oplus \xi^{\perp}$.

Remark 1 In same cases, the geometric arguments show that we can embed more copies of γ (or ξ) than the ones we claimed. Also, some proofs work for smaller m or n, as long as $m + n \ge 3$.

References

- 1. W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Lecture Notes in Math., 1298(1986), 106-119.
- 2. U. Koschorke, Vector Fields and Other Vector Bundle Morphisms A Singularity Approach, Lecture Notes in Math., Springer Verlag, 847(1980)
- 3. J. R. Martino, Classifying spaces and their maps., Contemporary Math., 188(1995), 153-190
- 4. M. H. de P. L. Mello, Sobre a existência de sub-fibrados de planos em fibrados não orientáveis, Tese de Doutorado,Pontifícia Universidade Católica,(1985)
- 5. E. Thomas, Real and Complex Vector Fields on Manifolds, Journal of Mathematics and Mechanics, 16(1967)
- 6. E. Thomas, Fields of tangent 2-planes on even-dimensional manifolds, Ann. of Math., $2\cdot1986(1967)$

Mário Olivero Marques da Silva Universidade Federal Fluminense - UFF Instituto de Matemática Niterói, RJ, BRASIL olivero@mat.uff.br

Maria Hermínia de Paula Leite Mello Universidade Estadual do Rio de Janeiro - UERJ Instituto de Matemática Rio de Janeiro, RJ, BRASIL mhplmello@ime.uerj.br