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Splitting 3-plane sub-bundles over the product of two real projective
spaces

Maria Hermı́nia de Paula Leite Mello and Mário Olivero Marques da Silva

abstract: Let α be a real vector bundle of fiber dimension three over the product
IRP (m)× IRP (n) which splits as a Whitney sum of line bundles. We show that the
necessary and sufficient conditions for α to embed as a sub-bundle of a certain
family of vector bundles β of fiber dimension m+n is the vanishing of the last three
Stiefel-Whitney classes of the virtual bundle0 β − α. Among the target bundles β
we consider the tangent bundle.1

Contents

The problem of deciding if a vector bundle α can be realized as a sub-bundle of
another vector bundle β over a manifold M has been considered by several authors.
Immersion problems and also the existence of a k-field frame on a manifold M are
among the applications of this question. The most used techniques to approach
such problems are Postnikov decomposition ([5], [6]) and the singularity method
developed by Ulrich Koschorke [2].

This question can also be formulated as the existence of a monomorphism of
vector bundles from α into β. In this paper the manifold is the product of two real
projective spaces IRP (m)× IRP (n), α is a vector bundle of fiber dimension 3 and
β has the same fiber dimension m + n as the dimension of the manifold and they
are listed below.

α β
1) ε3 1) εm+n

2) γ ⊕ ε2 2) TP (m)⊕ εn

3) γ ⊕ γ ⊕ ε1 3) γ⊥ ⊕ εn

4) γ ⊕ γ ⊕ γ 4) TP (m)⊕ TP (n)
5) ε2 ⊕ ξ 5) γ⊥ ⊕ TP (n)
6) ε1 ⊕ ξ ⊕ ξ 6) γ⊥ ⊕ ξ⊥

7) ξ ⊕ ξ ⊕ ξ 7) εm ⊕ TP (n)
8) γ ⊕ ξ ⊕ ε1 8) εm ⊕ ξ⊥

9) γ ⊕ γ ⊕ ξ 9) TP (m)⊕ ξ⊥

10) γ ⊕ ξ ⊕ ξ

Here εn always represents the trivial vector bundle of dimension n, γ and ξ are
the canonical line bundles over the projective spaces IRP (m) and IRP (n), respec-
tively. The bundles TP (m) and TP (n) are their tangent bundles. We denote by
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γ⊥ and ξ⊥ the orthogonal complement of γ and ξ, respectively. We recall that
γ ⊕ γ⊥ ∼= εm+1 and γ ⊗ γ⊥ ∼= TP (m) over IRP (m) while ξ ⊕ ξ⊥ ∼= εn+1 and
ξ ⊗ ξ⊥ ∼= TP (n) over IRP (n). Let p be the projection of IRP (m) × IRP (n) over
any of the factors. We denote the pullback of any vector bundle under p and the
vector bundle itself by the same notation. We assume m and n to be greater or
equal than 3.

A motivation for considering this list of vector bundles α comes from the fol-
lowing facts:

1. Any vector bundle of fiber dimension two over IRP (m) is isomorphic to either
ε2, ε1 ⊕ γ or γ ⊕ γ.

2. Any vector bundle of fiber dimension three over IRP (m) that is a restriction
of a vector bundle over IRP (∞) is decomposable as a Whitney sum of line
bundles.

Fact 1 can be verified by noticing that oriented vector bundles of fiber dimension
2 over IRP (m) are classified by H2(IRP (m), Z) which is isomorphic to Z2. On the
other hand, nonorientable vector bundles of fiber dimension 2 are classified by
H2(IRP (m), Zw), the cohomology group with coefficients twisted by w = w1(γ)
and for m ≥ 3 this group is trivial [4].

Fact 2 follows from the fact that there is a bijection between [IRP (∞), BO(3)],
the set of homotopy classes of maps from IRP (∞) to BO(3) and Rep(Z2, O(3)),
the set of equivalence classes of representation Z2 in O(3). This follows from
a result of Dwyer and Zabrodsky ([1] or [3]). Since Rep(Z2, O(3)) is equal to
Hom(Z2, O(3)) / Inn(O(3)) there are four classes, corresponding to the following
four non isomorphic vector bundles: ε3, ε2 ⊕ γ, ε1 ⊕ γ ⊕ γ and γ ⊕ γ ⊕ γ.

Since H1(IRP (m) × IRP (n), Z2) = Z2 ⊕ Z2, the line bundles over IRP (m) ×
IRP (n) are isomorphic to one of the following line bundles: ε1, γ, ξ and γ ⊗ ξ.

In this work we did not consider the line bundle γ⊗ ξ as a splitting component
of α because the very first obstructions to the problem will already break into many
cases.

The first evidence one can get for the existence of a monomorphism from α to β
comes from the Stiefel-Whitney classes. That is, if there is a monomorphism from
α into β, then there is a vector bundle, say ζ, such that β ∼= α⊕ ζ and then

wr−i(ζ) = wr−i(β − α) = 0,

for i = 0, 1, . . . ,dim(α) − 1, where r = dim(β). Then we are facing the task
of computing the three last Stiefel-Whitney classes wi(α − β), i = m + n, m +
n − 1,m + n − 2, for the ninety possibilities of our original setting. This can be
done rather smoothly because of the algebraic simplicity of the cohomology of the
product IRP (m)× IRP (n).

We prove then, in a constructive way in most of the cases, the following theorem:
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Theorem 1 If α = rγ ⊕ sξ ⊕ εt, with r, s, t ≥ 0 and r + s + t = 3 and β =
β1 ⊕ β2, with β1 = εm, TP (m) or γ⊥, β2 = εn, TP (n) or ξ⊥ over the product
RP (m)×RP (n), where m,n ≥ 3, then there is a monomorphism from α into β if,
and only if, wi(β − α) = 0 for i = m + n− 2,m + n− 1 and m + n.

The cases when β = εm⊕TP (n), εm⊕ξ⊥ and TP (m)⊕ξ⊥ are, in a sense, dual
to the cases β = TP (m)⊕ εn, γ⊥ ⊕ εm and γ⊥ ⊕ TP (n), and so we only consider
the first six bundles in the list on the right side.

First we compute the Stiefel-Whitney classes in order to prove the theorem.
Let u and v represent the generators of H1(IRP (m); Z2) and H1(IRP (n); Z2),

respectively. Then, Hk(IRP (m)×IRP (n); Z2) is generated by all possible products
uivj such that i + j = k. In particular, for k = m + n− 2,m + n− 1 and m + n we
can choose the following ordered basis:

{umvn−2, um−1vn−1, um−2vn} for Hm+n−2(IRP (m)× IRP (n); Z2),
{umvn−1, um−1vn} for Hm+n−1(IRP (m)× IRP (n); Z2),
{umvn} for Hm+n(IRP (m)× IRP (n); Z2).
To avoid similar calculations that occurs in more dual cases (as when β =

εm ⊕ ξ⊥ and α = γ ⊕ γ ⊕ ξ or γ ⊕ ξ ⊕ ξ) we consider the total Stiefel-Whitney
classes given below. When α = ε3 and β = εm+n, TP (m) ⊕ εn and γ⊥ ⊕ εn, the
solution is clear.

1) w(εm+n − γ ⊕ ε2) = (1 + u)−1

2) w(εm+n − γ ⊕ γ ⊕ ε1) = (1 + u)−2

3) w(εm+n − γ ⊕ γ ⊕ γ) = (1 + u)−3

4) w(εm+n − γ ⊕ ξ ⊕ ε1) = (1 + u)−1(1 + v)−1

5) w(εm+n − γ ⊕ γ ⊕ ξ) = (1 + u)−2(1 + v)−1

6) w(TP (m)⊕ εn − γ ⊕ ε2) = (1 + u)m

7) w(TP (m)⊕ εn − γ ⊕ γ ⊕ ε1) = (1 + u)m−1

8) w(TP (m)⊕ εn − γ ⊕ γ ⊕ γ) = (1 + u)m−2

9) w(TP (m)⊕ εn − ε2 ⊕ ξ) = (1 + u)m+1(1 + v)−1

10) w(TP (m)⊕ εn − ε1 ⊕ ξ ⊕ ξ) = (1 + u)m+1(1 + v)−2

11) w(TP (m)⊕ εn − ξ ⊕ ξ ⊕ ξ) = (1 + u)m+1(1 + v)−3

12) w(TP (m)⊕ εn − γ ⊕ ξ ⊕ ε1) = (1 + u)m(1 + v)−1

13) w(TP (m)⊕ εn − γ ⊕ γ ⊕ ξ) = (1 + u)m−1(1 + v)−1

14) w(TP (m)⊕ εn − γ ⊕ ξ ⊕ ξ) = (1 + u)m(1 + v)−2

15) w(γ⊥ ⊕ εn − γ ⊕ ε2) = (1 + u)−2

16) w(γ⊥ ⊕ εn − γ ⊕ γ ⊕ ε1) = (1 + u)−3

17) w(γ⊥ ⊕ εn − γ ⊕ γ ⊕ γ) = (1 + u)−4

18) w(γ⊥ ⊕ εn − ε2 ⊕ ξ) = (1 + u)−1(1 + v)−1

19) w(γ⊥ ⊕ εn − ε1 ⊕ ξ ⊕ ξ) = (1 + u)−1(1 + v)−2

20) w(γ⊥ ⊕ εn − ξ ⊕ ξ ⊕ ξ) = (1 + u)−1(1 + v)−3

21) w(γ⊥ ⊕ εn − γ ⊕ ξ ⊕ ε1) = (1 + u)−2(1 + v)−1

22) w(γ⊥ ⊕ εn − γ ⊕ γ ⊕ ξ) = (1 + u)−3(1 + v)−1

23) w(γ⊥ ⊕ εn − γ ⊕ ξ ⊕ ξ) = (1 + u)−2(1 + v)−2

24) w(TP (m)⊕ TP (n)− ε3) = (1 + u)m+1(1 + v)n+1

25) w(TP (m)⊕ TP (n)− γ ⊕ ε2) = (1 + u)m(1 + v)n+1
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26) w(TP (m)⊕ TP (n)− γ ⊕ γ ⊕ ε1) = (1 + u)m−1(1 + v)n+1

27) w(TP (m)⊕ TP (n)− γ ⊕ γ ⊕ γ) = (1 + u)m−2(1 + v)n+1

28) w(TP (m)⊕ TP (n)− γ ⊕ ξ ⊕ ε1) = (1 + u)m(1 + v)n

29) w(TP (m)⊕ TP (n)− γ ⊕ γ ⊕ ξ) = (1 + u)m−1(1 + v)n

30) w(γ⊥ ⊕ TP (n)− ε3) = (1 + u)−1(1 + v)n+1

31) w(γ⊥ ⊕ TP (n)− γ ⊕ ε2) = (1 + u)−2(1 + v)n+1

32) w(γ⊥ ⊕ TP (n)− γ ⊕ γ ⊕ ε1) = (1 + u)−3(1 + v)n+1

33) w(γ⊥ ⊕ TP (n)− γ ⊕ γ ⊕ γ) = (1 + u)−4(1 + v)n+1

34) w(γ⊥ ⊕ TP (n)− ε2 ⊕ ξ) = (1 + u)−1(1 + v)n

35) w(γ⊥ ⊕ TP (n)− ε1 ⊕ ξ ⊕ ξ) = (1 + u)−1(1 + v)n−1

36) w(γ⊥ ⊕ TP (n)− ξ ⊕ ξ ⊕ ξ) = (1 + u)−1(1 + v)n−2

37) w(γ⊥ ⊕ TP (n)− γ ⊕ ξ ⊕ ε1) = (1 + u)−2(1 + v)n

38) w(γ⊥ ⊕ TP (n)− γ ⊕ γ ⊕ ξ) = (1 + u)−3(1 + v)n

39) w(γ⊥ ⊕ TP (n)− γ ⊕ ξ ⊕ ξ) = (1 + u)−2(1 + v)n−1

40) w(γ⊥ ⊕ ξ⊥ − ε3) = (1 + u)−1(1 + v)−1

41) w(γ⊥ ⊕ ξ⊥ − γ ⊕ ε2) = (1 + u)−2(1 + v)−1

42) w(γ⊥ ⊕ ξ⊥ − γ ⊕ γ ⊕ ε1) = (1 + u)−3(1 + v)−1

43) w(γ⊥ ⊕ ξ⊥ − γ ⊕ γ ⊕ γ) = (1 + u)−4(1 + v)−1

44) w(γ⊥ ⊕ ξ⊥ − γ ⊕ ξ ⊕ ε1) = (1 + u)−2(1 + v)−2

45) w(γ⊥ ⊕ ξ⊥ − γ ⊕ γ ⊕ ξ) = (1 + u)−3(1 + v)−2

Since we want to compute the last three Stiefel-Whitney classes, we only have
to know the three last terms of each factor of (1+u)i where i = −1,−2,−3,−4,m+
1,m, m− 1 and m− 2, where m,n ≥ 3. These are given by the following table:

(1 + u)−1 = 1 + u + u2 + · · ·+ um−2 + um−1 + um, ∀m,

(1 + u)−2 =

{
1 + u2 + u4 + · · ·+ um−2 + 0 + um, m ≡ 0(2)

1 + u2 + u4 + · · ·+ 0 + um−1 + 0, m ≡ 1(2),

(1 + u)−3 =


1 + u + u4 + u5 + · · ·+ 0 + 0 + um, m ≡ 0(4)

1 + u + u4 + u5 + · · ·+ 0 + um−1 + um, m ≡ 1(4)

1 + u + u4 + u5 + · · ·+ um−2 + um−1 + 0, m ≡ 2(4)

1 + u + u4 + u5 + · · ·+ um−2 + 0 + 0, m ≡ 3(4),

(1 + u)−4 =


1 + u4 + u8 + · · ·+ 0 + 0 + um, m ≡ 0(4)

1 + u4 + u8 + · · ·+ 0 + um−1 + 0, m ≡ 1(4)

1 + u4 + u8 + · · ·+ um−2 + 0 + 0, m ≡ 2(4)

1 + u4 + u8 + · · ·+ 0 + +0 + 0, m ≡ 3(4),
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(1 + u)m+1 =


1 + · · ·+ 0 + 0 + um, m ≡ 0(4)

1 + · · ·+ 0 + um−1 + 0, m ≡ 1(4)

1 + · · ·+ um−2 + um−1 + um, m ≡ 2(4)
1 + · · ·+ 0 + +0 + 0, m ≡ 3(4),

(1 + u)m =


1 + · · ·+ 0 + 0 + um, m ≡ 0(4)

1 + · · ·+ 0 + um−1 + um, m ≡ 1(4)

1 + · · ·+ um−2 + 0 + um, m ≡ 2(4)

1 + · · ·+ um−2 + um−1 + um, m ≡ 3(4),

(1 + u)m−1 =

{
1 + · · ·+ um−2 + um−1 + 0, m ≡ 0(2)

1 + · · ·+ 0 + um−1 + 0, m ≡ 1(2),

(1 + u)m−2 = 1 + · · ·+ um−2 + 0 + 0, ∀m.

We denote: wk(ζi) = wk(β−α) where i = 1, 2, . . . , 45, and we use the ordered basis
choosen before. The cases where the last three Stiefel-Whitney classes vanish are:

Cases 1, 2, 3, 6, 7, 8, 15, 16, 17, for any n, m.
If i = 9, 10, 43, for m ≡ 3(4) and any n.
If i = 11, for m ≡ 1(4) and n ≡ 3(4) or m ≡ 3(4) and any n.
If i = 24, for m ≡ 3(4) or n ≡ 3(4).
If i = 25, 26, 30, 31, for any m and n ≡ 3(4).
If i = 27, for any m and n ≡ 1(2).
If i = 32, for any m and n ≡ 3(4) or m ≡ 3(4) and n ≡ 1(4).
If i = 33, for m ≡ 2(4) and n ≡ 1(4) or m ≡ 3(4) or n ≡ 3(4).
If i = 45, for m ≡ 3(4) and n ≡ 1(2). Otherwise at least one of the three last

Stiefel-Whitney classes is not zero. Therefore there is no monomorphism. We use
some basic results:
Lemma 1 If m ≡ 1(2) then TP (m) ∼= ε1 ⊕ θm−1.

Proof This follows from the Poincaré-Hopf Theorem.

Lemma 2 If m ≡ 3(4) then TP (m) ∼= ε3 ⊕ ζm−3.

Proof If m ≡ 3(4) then
(
m+1

2

)
≡ 0(2) and so IRP (m) is a spin manifold. Then

we can use the following fact due to Emery Thomas: If M is a spin manifold with
dim M ≡ 3(4), then span(M) ≥ 3. See [5], corollary 1.2.

Lemma 3 If α and β are smooth vector bundle of dimensions a and b, respectively,
over a closed connected n-dimensional manifold M . If n + a ≤ b, then there exists
a monomorphism α ↪→ β.

Proof This can be obtained by singularity approach due to Ulrich Koschorke.
See [2], exercise 1.13.

Recall that TP (m)⊕ ε1 ∼= γ ⊕ γ ⊕ · · · ⊕ γ ((m + 1)− times).
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Cases 1-3 (α = γ⊕ε2, γ⊕γ⊕ε1 and γ⊕γ⊕γ, β = εm+n) For any 3-plane bundle
α there is a monomorphism α ↪→ εm+3 over IRP (m) (Lemma 3). In particular for
α = γ ⊕ ε2, γ ⊕ γ ⊕ ε1 and α = γ ⊕ γ ⊕ γ. We can pull these monomorphisms back
over the product IRP (m)× IRP (n) in order to get γ ⊕ ε2, γ ⊕ γ ⊕ ε1, γ ⊕ γ ⊕ γ ↪→
εm+3 ⊕ εn−3 ∼= εm+n.

Cases 6-8 (α = γ ⊕ ε2, γ ⊕ γ ⊕ ε1 and γ ⊕ γ ⊕ γ, β = TPm ⊕ εn) Since
TP (m) ⊕ ε1 ∼= γ ⊕ · · · ⊕ γ ((m + 1)-times), then γ ⊕ ε2, γ ⊕ γ ⊕ ε1, γ ⊕ γ ⊕ γ ↪→
TP (m)⊕ εn ∼= (γ ⊕ · · · ⊕ γ)⊕ εn−1.

Cases 9-11 (α = ε2 ⊕ ξ, ε1 ⊕ ξ ⊕ ξ and ξ ⊕ ξ ⊕ ξ, β = TPm ⊕ εn) If m ≡
3(4), then TP (m) ∼= ε3 ⊕ ζm−3 (Lemma 2). Then, TP (m) ⊕ εn ∼= ζm−3 ⊕ εn+3.
Over the factor IRP (n), α ↪→ εn+3, for any 3-plane α. In particular, ε2 ⊕ ξ,
ε1 ⊕ ξ ⊕ ξ and ξ ⊕ ξ ⊕ ξ ↪→ εn+3. We can pull these monomorphisms back over
the product IRP (m)× IRP (n) to get the desired monomorphisms ε2⊕ ξ, ε1⊕ ξ⊕ ξ
and ξ ⊕ ξ ⊕ ξ ↪→ TP (m) ⊕ εn. For case 9 alone we can use: Over the factor
IRP (n), εn+1 ∼= ξ ⊕ ξ⊥. Taking the pullback of this decomposition we can write
ε2⊕ξ ↪→ TP (m)⊕εn ∼= (ζm−3⊕ε3)⊕εn ∼= ζm−3⊕ε2⊕εn+1 ∼= ζm−3⊕ε2⊕ξ⊕ξ⊥.

We still have to consider, in case 11 (α = ξ ⊕ ξ ⊕ ξ and β = TP (m)⊕ εn), the
situation m ≡ 1(4) and n ≡ 3(4). Since m ≡ 1(4), TP (m) ⊕ εn ∼= θm−1 ⊕ εn+1 ∼=
θm−1 ⊕ ξ ⊕ ξ⊥. Tensorizing with ξ we get ξ ⊗ (TP (m)⊕ εn) ∼= (ξ ⊗ θm−1)⊕ ε1 ⊕
TP (n) ∼= (ξ ⊗ θm−1) ⊕ ε1 ⊕ ζn−3 ⊕ ε3 because n ≡ 3(4) (Lemma 2). Tensorizing
once more with ξ we get TP (m) ⊕ εn ∼= θm−1 ⊕ ξ ⊕ ξ ⊕ ξ ⊕ ξ ⊕ (ξ ⊗ ζn−3). This
shows we can get the desired monomorphism.

Cases 15-17 (α = γ ⊕ ε2, γ ⊕ γ ⊕ ε1 and γ ⊕ γ ⊕ γ, β = γ⊥ ⊕ εn) Same
argument as in cases 1-3 proves that γ ⊕ ε2, γ ⊕ γ ⊕ ε1, γ ⊕ γ ⊕ γ ↪→ γ⊥ ⊕ εn.

Case 24 (α = ε3, β = TPm ⊕ TPn) If m ≡ 3(4) or n ≡ 3(4), then ε3 ↪→
TP (m)⊕ TP (n).

Cases 25, 26 (α = γ ⊕ ε2 and γ ⊕ γ ⊕ ε1, β = TPm ⊕ TPn) If n ≡ 3(4),
TP (m)⊕TP (n) ∼= TP (m)⊕ (ε3⊕ηn−3) ∼= (TP (m)⊕ε1)⊕ (ε2⊕ηn−3) ∼= (γ⊕· · ·⊕
γ)⊕ε2⊕ηn−3, ((m+1)-copies). So γ⊕ε2, γ⊕γ⊕ε1 ↪→ (γ⊕· · ·⊕γ)⊕ε2⊕ηn−3 ∼=
TP (m)⊕ TP (n).

Case 27 (α = γ ⊕ γ ⊕ γ, β = TPm ⊕ TPn) If n ≡ 1(2), TP (m) ⊕ TP (n) ∼=
TP (m) ⊕ ε1 ⊕ θn−1 ∼= γ ⊕ · · · ⊕ γ ⊕ θn−1, ((m + 1)-copies). Then γ ⊕ γ ⊕ γ ↪→
TP (m)⊕ TP (n).

Case 30 (α = ε3, β = γ⊥ ⊕ TP (n)) If n ≡ 3(4) then TP (n) ∼= ε3 ⊕ ηn−3 and
then ε3 ↪→ γ⊥ ⊕ TP (n) (Lemma 2).

Case 31 (α = γ ⊕ ε2, β = γ⊥ ⊕ TP (n)) For any 3-plane bundle α, there is a
monomorphism α ↪→ γ⊥ ⊕ ε3 over IRP (m). If n ≡ 3(4), then we can pullback over
the product IRP (m) × IRP (n) the existent monomorphism γ ⊕ ε2 ↪→ γ⊥ ⊕ ε3 to
get γ ⊕ ε2 ↪→ γ⊥ ⊕ ε3 ⊕ ηn−3 ∼= γ⊥ ⊕ TP (n).

Case 32 (α = γ⊕γ⊕ε1, β = γ⊥⊕TP (n)) If n ≡ 3(4), the same argument as in
case 31 gives a monomorphism γ⊕γ⊕ε1 ↪→ γ⊥⊕TP (n). If n ≡ 1(4) and m ≡ 3(4)
we can do the following: γ⊥⊕TP (n) ∼= γ⊥⊕ ε1⊕ θn−1. Tensorizing with γ we get
(γ⊗γ⊥)⊕γ⊕ (γ⊗θn−1) ∼= TP (m)⊕γ⊕ (γ⊗θn−1) ∼= (ε3⊕ζm−3)⊕γ⊕ (γ⊗θn−1).
Tensorizing with γ once more we get γ⊥⊕TP (n) ∼= γ⊕γ⊕γ⊕(γ⊗ζn−3)⊕ε1⊕θn−1,
and then there is a monomorphism γ ⊕ γ ⊕ ε1 ↪→ γ⊥ ⊕ TP (n).



Splitting 3-plane sub-bundles over the product... 7

Case 33 (α = γ⊕γ⊕γ, β = γ⊥⊕TP (n)) If n ≡ 3(4), then the argument used in
case 31 shows that there is a monomorphism γ⊕γ⊕γ ↪→ γ⊥⊕TP (n). If m ≡ 3(4),
the double tensorization argument given in case 32 shows that γ⊥ ⊕ TP (n) ∼=
γ ⊕ γ ⊕ γ ⊕ (γ ⊗ ζn−3)⊕ TP (n). Then γ ⊕ γ ⊕ γ ↪→ γ⊥ ⊕ TP (n).

Suppose m ≡ 2(4) and n ≡ 1(4). Then TP (n) ∼= ε1 ⊕ θn−1. It suffices to
prove that γ ⊕ γ ⊕ γ ↪→ γ⊥ ⊕ ε1 over the factor IRP (m). There exists a bundle
monomorphism ε3 ↪→ TP (m + 1) ∼= γ ⊗ γ⊥ over IRP (m + 1) by Lemma 2. Tensor
product with γ yields γ ⊕ γ ⊕ γ ↪→ γ⊥ over IRP (m + 1). Restriction of this bundle
monomorphism under the inclusion i : IRP (m) → IRP (m + 1) gives γ ⊕ γ ⊕ γ ↪→
i∗γ⊥ ∼= γ⊥ ⊕ ε1 on IRP (m).

Case 43 (α = γ ⊕ γ ⊕ γ, β = γ⊥ ⊕ ξ⊥) If m ≡ 3(4) the double tensorizing
argument shows that there is a monomorphism from γ ⊕ γ ⊕ γ into γ⊥ ⊕ ξ⊥.

Case 45 (α = γ ⊕ γ ⊕ ξ, β = γ⊥ ⊕ ξ⊥) If m ≡ 3(4) and n ≡ 1(2) then
γ⊗ (γ⊥⊕ ξ⊥) ∼= (γ⊗ γ⊥)⊕ (γ⊗ ξ⊥) ∼= TP (m)⊕ (γ⊗ ξ⊥) ∼= ε3⊕ ζm−3⊕ (γ⊗ ξ⊥).
Tensorizing with γ once more gives γ⊥ ⊕ ξ⊥ ∼= γ ⊕ γ ⊕ γ ⊕ (γ ⊗ ζm−3)⊕ ξ⊥. Now,
tensorizing twice with ξ gives γ⊥ ⊕ ξ⊥ ∼= γ ⊕ γ ⊕ γ ⊕ (γ ⊗ ζm−3)⊕ ξ ⊕ (ξ ⊗ θn−1).
Then there is a monomorphism from γ ⊕ γ ⊕ ξ into γ⊥ ⊕ ξ⊥.

Remark 1 In same cases, the geometric arguments show that we can embed
more copies of γ (or ξ) than the ones we claimed. Also, some proofs work for
smaller m or n, as long as m + n ≥ 3.
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Tese de Doutorado,Pontif́ıcia Universidade Católica,(1985)
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