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Why quasi-sets?

Décio Krause

abstract: Quasi-set theory was developed to deal with collections of indistin-
guishable objects. In standard mathematics, there are no such kind of entities,
for indistinguishability (agreement with respect to all properties) entails numeri-
cal identity. The main motivation underlying such a theory is of course quantum
physics, for collections of indistinguishable (’identical’ in the physicists’ jargon) par-
ticles cannot be regarded as ’sets’ of standard set theories, which are collections
of distinguishable objects. In this paper, a rationale for the development of such
a theory is presented, motivated by Heinz Post’s claim that indistinguishability of
quantum entities should be attributed ’right at the start’.
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1. Introduction

I am in glad with the invitation of the editors of this Bulletin to present a
paper to the first volume of this new series. I think it might be a nice opportunity
to submit to a wider mathematical audience some of the ideas involved in the
development of a mathematical theory termed ’quasi-set theory’. Although I cannot
provide all the mathematical details of this theory here, to which I suggest the
reading of the papers listed in the references (specially [23]), I hope the reader will
become aware of some of the insights which have pushed the development of such
a theory.
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Even without providing a precise idea of how quasi-set theory works, the reader
might be convinced that there are some reasons to ask for a mathematical treat-
ment of collections of objects which should be regarded as indiscernible (or indis-
tinguishable) in a sense. Let us begin by posing the problem within a mathematical
context.

2. A problem for present day mathematics

During the International Congress of Mathematicians, held in Paris in 1900, the
great mathematician David Hilbert presented a list of 23 Problems of Mathematics
which in his opinion should occupy the efforts of mathematicians in the century
to come [26]. To solve one of the problems become a way of achieving something
really important in mathematics, and several Fields medals were awarded for this
kind of endeavour, as it is well known. In 1974, the American Mathematical So-
ciety sponsored a meeting to evaluate and to explore the consequences of Hilbert
Problems. One of the interesting implications of the Congress was that a new list,
termed Problems of Present Day Mathematics, was proposed [2].

According to Felix Browder, the editor of the Proceedings, this list was initiated
by Jean Dieudonne through correspondence with mathematicians throughout the
world. The first problem of this new list deals with foundations of mathematics,
and was stated by the mathematician Yuri I. Manin. In the statement of the
problem, we find the following passage:

”We should consider possibilities of developing a totally new language to
speak about infinity. (. . .) I would like to point out that this [the concept
of set] is rather an extrapolation of common-place physics, where we
can distinguish things, count them, put them in some order, etc. New
quantum physics has shown us models of entities with quite different
behaviour. Even ‘sets’ of photons in a looking-glass box, or of electrons
in a nickel piece are much less Cantorian than the ‘set’ of grains of sand.
In general, a highly probabilistic ‘physical infinity’ looks considerably
more complicated and interesting than a plain infinity of ‘things’. ” [29]

When Manin says that ”[w]e should consider possibilities of developing a totally
new language to speak about infinity”, he is obviously talking about a new ’set’
theory, since set theory is usually known as ’the theory of the (actual) infinite’. But
why ’sets’ of (say) electrons cannot be considered as sets of standard set theories?
For sure this is due to their indistinguishability. If such collections are not to be
regarded as sets, which kind of mathematical objects are they? In addition, if
we consider the usual way of presentation of a scientific theory is in terms of set-
theoretical concepts,1 how can we deal with indistinguishable objects within such
a framework? These are problems closely related to Manin’s one. Let us approach
them first sketching how classical logic and standard set theories deal with the
concept of identity.

1 I shall not discuss here other alternatives like category theory, higher-order logics, mereology
etc., but keep with the most usual mathematical framework, namely, set theory.



Why quasi-sets? 75

3. Identity in standard mathematical frameworks

Classical logic and standard mathematics encompass a concept of identity which
resembles Leibniz’s dictum that there are no objects which differ solo numero. If
they are distinct objects, then there exists a qualitative property which makes the
difference. This dictum in encapsuled in his Principle of the Identity of Indis-
cernibles,2 which in second order language has been written as

∀F (F (x) ↔ F (y)) → x = y (1)

where x and y are individual variables and F is a variable ranging over the collection
of the properties of individuals. Here, x = y stands for numerical identity, that is,
if x = y is true, then there are no ’two’ distinct objects, but just one, which can
be referred to indistinctly by either x or y. Intuitively, PII says that if x and y
agree with respect to all their properties (in this case they are indistinguishable,
or indiscernible), then they cannot be distinct objects at all. PII is a theorem of
second order logic.

In first order logic, usually the predicate = of identity is taken as a primitive
symbol, subjected to well known postulates (Reflexivity: ∀x(x = x) and Substi-
tutivity: ∀x∀y(x = y → A(x) → A(y)), with the usual restrictions [31]). The
intended interpretation of the binary symbol ’=’ is the diagonal of the domain
(call it D), that is, the set ∆D = {〈x, x〉 : x ∈ D}.3 In set theory, treated as
a first order theory, as is usual, these axioms must be accompanied by the Ex-
tensionality Axiom, which says that sets with the same elements are identical:
∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y). There are some variants for this axiom if
the theory admits Urelemente, but we shall not give all the details here. The main
lesson is that both classical logic and standard mathematics are ’Leibnizian’ in the
sense that there are not indistinguishable objects, except if we restrict the indis-
tinguishability to a reduced number of properties or course (in this case we should
talk of ’relative indistinguishability’), or if we work within a certain structure, as
we shall see below, but there is not of indistinguishability tout court).

Having said that, let us see now some of the problems involved with these
concepts into the scope of the discussions on the indistinguishability of quantum
objects (henceforth, we will sometimes refer to them simply as ’quanta’).

4. Semantics for languages of microphysics

Yuri Manin has also suggested that quantum mechanics has no its ’own’ lan-
guage; generally we use a fragment of standard functional analysis (hence, the
language of set theory) to express its concepts [30, p. 84]. If Manin is right, for
sure we need to explain what we mean by ’semantics of languages of microphysics’.

2 We are of course not guessing that the formula (1) interprets Leibniz’s principle in the context
of his philosophy. It is just an expression given in present day symbology which is associated to
his principle by resemblance.

3 As it is well known, the first order axioms cannot characterize this diagonal without ambi-

guity. See [31], [24].
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But even without a detailed explanation, we may speculate on the formal char-
acterization (in both syntactic and semantic terms) of such a language, which we
believe can be found. So, let us suppose that we have presented a suitable language
for microphysics by usual means, involving logical and mathematical notation and
concepts (which is a pertinent supposition), that is, with primitive symbols and
formation rules, and that we intend to define the corresponding semantic concepts
as we usually do. What kind of problem will we be faced with? Such an analysis
was done by M. L. Dalla Chiara and G. Toraldo di Francia some time ago [10],4

and the points they have amphasised are of course of fundamental importance for
whatever discussion on structure and semantics of physical theories. So, let us
mention some of the basic ideas here in order to see how quasi-set theory may
enter in this discussion.

Suppose we have a language L (at least of first order) and let A be a suitable
structure where L is interpreted. So A involves a domain D of individuals and
an interpretation (or denotation) function ρ which assigns appropriate meaning
to the non-logical constants of L.5 Of course we can think for generality of A as
determining a set of possible worlds for each particular physical situation under
analysis, so that in this case we would have a set of domains Di and a collection
of corresponding interpretation functions ρi. The particular case above happens
when the set of possible worlds is a singleton. Then, as recalled by Dalla Chiara
and Toraldo di Francia, the following situations can be considered in ’standard’
semantics:

(i) Any property P of L (an unary predicate) is related to a subset P ∗ ⊆ Di, while
n-ary predicates are related to subsets of Dn

i as usual.

(ii) For each individual d∗ ∈ Di, the language can be extended to a language
containing a name d and an extended interpretation function ρ′ such that
ρ′(d) = d∗.

(iii) If L is at least of second order, then Leibniz’ Principle of the Identitity of
Indiscernibles holds (individuals can be distinguished by at least one prop-
erty):6

∀x∀y(x 6= y → ∃F (F (x) ∧ ¬F (y)). (2)

(iv) If A refers to a set of possible worlds (physical situations), as in the usual
Kripke semantics we can suppose the existence of a number of world-relations;
a particular one may corresponds to a time-order relation as follows: i < j
iff the situation i temporally precedes the situation j. Of special interest is
the relation ≈, termed the trans-world identity relation, defined on U = ∪iDi

satisfying the following conditions:

4 See also [8], [9], [11], [39].
5 In the particular case of physical theories, it is reasonable to suppose that the domain D

sum up a certain mathematical construction in terms of other sets. In this case, we should talk
of a ’species of structures’ in the sense of Bourbaki, but we are obviously making things easy; see
[7, Chap. 4].

6 This is another formulation of the same principle given by equation (1).
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(a) For any d∗ ∈ Di and any Dj there exists at most one d̂∗ ∈ Dj such that
d∗ ≈ d̂∗

(b) If d is an individual constant of L (a name) which names individuals
in two distinct worlds, say d∗ ∈ Di and d̂∗ ∈ Dj , then d∗ ≈ d̂∗. In
particular, if i < j, the trans-world identity relation between Di and Dj

is usually called genidentity relation.

In what concerns quantum physics, the interesting remark is that all these stan-
dard set-theoretical semantic situations are violated. Dalla Chiara and Toraldo
di Francia provided a detailed analysis of the motives why such standard (set-
theoretical) semantics fails, but here we will only sketch the main ideas of their ar-
gumentation, yet without the technical details. The first motive is that we should be
able to construct a suitable language containing monadic predicates for expressing
’meaningful properties’ of the physical systems (in particular, of elementary parti-
cles), so as to consider names d, d′, . . . which should be associated to these physical
systems at different times. Since indistinguishable quanta cannot be named, for in
general we cannot distinguish a physical system (elementary particle) from another,
our language cannot be extended with ’names’ as indicated at item (ii) above and
so we cannot define a suitable interpretation function ρ that univocally determines
an element of D. As remarked by these mentioned authors, ”the problem is not
’whether or not we are allowed to introduce names a1, . . . , an for the n subsystems
(. . .)’ but rather ’whether or not we are able to introduce a reasonable denotation
function ρ for such names’ ”.

Furthermore, a physical system can be regarded as represented by a pure state
ψ, as usual, and time evolution of the system is governed by the Schrödinger
equation. The problem is that we cannot say that ψ determines a set of n elements
in the standard set theoretical sense, which contradicts condition (i) above. So see
why, let us introduce the concept of vagueness in this context.7 Philosophers usually
say that vagueness is a feature of our languages, and not of the world. For instance,
the predicate ’intelligent’ is vague, for we might be in doubt either our friend John is
or not intelligent. But John is a well defined physical object (a man), an individual
we know very well. That is, John is to be regarded as ’sharp’, while the predicate
’intelligent’ is vague. Then, it has been proposed that a suitable semantics for
such vague predicates should be developed not within standard set theories, but
we should use fuzzy set theory instead. The motive is that within the standard
framework all predicates are ’sharp’ in the sense that they are associated to a subset
of the domain, called its extension (as indicated at (i) above) so that whatever
element of this domain belongs or not to the extension of the predicate, which
means that any individual should be classified as intelligent or as not intelligent
(the tertium non datur applies here). It is easy to see why fuzzy sets provide a
more adequate semantics, for in using fuzzy sets, we can express in a certain way
our ignorance about John’s precise location in the rank of intelligent men. I will
not explain the details here, but let me remark that fuzzy sets can be useful just for

7 This is not considered by the mentioned authors, but of course can be related to their ideas.
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expressing the situation when a well defined individual (like our friend John) has or
not a certain (vague) property –such a semantics express a certain ’epistemological
ignorance’ only. But in quantum physics, there are certain ’predicates’ which are
sharp in the sense that physicist know quite well the conditions an individual should
obey to have the property ascribed by the predicate, but there are ’vague objects’
instead, which induce the consideration of a kind of ’ontological ignorance’ in this
realm.8 This shows that the relationship between the predicates themselves (which
stand for the intensions of certain concepts) and their corresponding extensions
(the set of the individuals which have the property ascribed by the predicate)
becomes distinct from standard semantics. In such cases, it seems clear that we
should ask for a semantics which deal with ’imprecise’ or ’vague’ objects, and
indistinguishable objects of course are good candidates for that. As an example of
this situation, let us quote a passage from [12]:

”[P]hysical kinds and compound systems in QM [quantum mechanics]
seem to share some features that are characteristic of intensional en-
tities. Further, the relation between intensions and extensions turns
out to behave quite differently from the classical semantic situations.
Generally, one cannot say that a quantum intensional notion uniquely
determines a corresponding extension. For instance, take the notion
of electron, whose intension is well defined by the following physical
property: mass = 9.1 × 10−28g, electron charge = 4.8 × 10−10e.s.u.,
spin = 1/2. Does this property determine a corresponding set , whose
elements should be all and only the physical objects that satisfy our
property at a certain time interval? The answer is negative. In fact,
physicists have the possibility of recognizing, by theoretical or experi-
mental means, whether a given physical system is an electron system
or not [as we have said, the predicate is sharp]. If yes, they can also
enumerate all the quantum states available within it. But they can do
so in a number of different ways. For example, take the spin. One can
choose the x-axis and state how many electrons have spin up and how
many have spin down. However, we could instead refer to the z-axis or
any other direction, obtaining different collections of quantum states,
all having the same cardinality. This seems to suggest that microobject
systems present an irreducibly intensional behaviour: generally they do
not determine precise extensions and are not determined thereby.”

Situations like these ones obviously violate condition (i) of standard semantics,
that is, that one developed within classical set theories, and reinforce the problem
posed by Manin seen above, for such collections of quanta should not be regarded as
’sets’ (as in standard set theories) but as legitimate collections of indistinguishable
objects instead. Concerning (iii), it has been shown elsewhere that PII is violated
in the quantum domain (and there are of course ’set-theoretical’ versions of this

8 This idea was developed in a series of papers [14], [15], [16], [18], where the details are
presented.
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principle), for we may consider (absolutely) indistinguishable quanta (having all
their quantum parameters in common) which of course are not the very same
object (see [13], [19]). As for (iv), we would need much space for providing the
details; so, we shall just say that Dalla Chiara and Toraldo di Francia have shown
that in this ’land of anonymity’, as they refer to the quantum world, standard
forms of Kripke semantics fail, for there are no trans-world identity and the notion
of rigid designator cannot be applied [39], among other interesting ’deviations’ from
classical situations.

All of this suggest that we should ask for a mathematical theory encompassing
’collections’ which could stand for ’sets’ of indistinguishable objects, where no
names can be used, no individuation of these objects can be given, but even so
they should be considered in aggregates, having a cardinal number, although not
an associated ordinal. This is what quasi-set theory intends to do. The applications
of this theory to the above situations have been suggested in some of the papers
listed in the references, but there is still much to be done in this direction.9

But instead of showing just now how we could provide the grounds for such use
of quasi-sets, let us first turn to the nature of quantum entities to see more on the
motivations for a better understanding of Manin’s problem.

5. The standard ways of dealing with indistinguishability

Within classical mathematics, it is possible to consider indistinguishable ob-
jects, but this has a price. From the physicist’s point of view, the price can be
payed without any restriction, for physics works. This is more or less what hap-
pens with a mathematician who proves α→ β by assuming α as an hypothesis and
(using it) deduces β, without any questioning on what lies behind this ’innocent’
procedure (the Deduction Theorem, of course). This is a problem for the philoso-
pher, one may say, or to the mathematician interested in foundations. So, let us
discuss it a little bit.

George Mackey, in his very important book The Mathematical Foundations of
Quantum Mechanics [28, pp. 109ff], treats the problem of indiscernibility in a way
that can be understood by means of an analogy, suggested by Mackey himself (the
mathematical details will be not mentioned). Suppose Peter and Paul think of two
numbers whose sum is 7 and whose squares sum 25. It is quite easy to solve the two
equations x+y = 7 and x2+y2 = 25 to show that one of then has thought of 3 while
the another one has thought of 4. But there is no way of knowing who thought of
which number. This is what happens with elementary particles, Mackey seen to
suggest. According to him, they are indistinguishable in this sense. Mackey still
suggests that ”identity manifests itself through the appearance of anti-symmetric
subspaces . . .” (op. cit., p. 111); here, suffices to say that anti-symmetric states can
have just one quanta, and this should be the motive for then to have identity, at
least is what seems.

9 Even the cardinal of a quasi-set may change with time, as shown in [17]. This is motivated

by Toraldo di Francia’s discussion on virtual particles [37], [38].
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Such a solution (of course given by him mathematically) might be criticised as
follows. Firstly, if we add to the two equations above the information that Peter
has thought of an odd number, it will be easy to know that Peter’s number is 3.
But in quantum physics there are no such ’hidden’ information (variables) at dis-
posal, according to the standard interpretations which refuse hidden variables. The
physical laws which ’define’ the nature of quantum objects give all their essential
properties: they are nomological objects, given by physical law [37]. Furthermore,
in the anti-symmetric case, we should remember that what are distinguishable are
the states, and not the quanta (Schrödinger insisted on this point [34]). So, the
situation is of course not as Mackey suggests, despite his way of dealing with the
problem satisfies the needs of physics.

Most of the proposals for dealing with indistinguishable objects involve the in-
troduction of some symmetry condition.10 In short, we need to label quanta in
order to write the relevant equations (as Schrödinger’s) but then we select ade-
quate solutions (or alternatively, vectors in the relevant Hilbert space) which obey
symmetry conditions, which make the desired result that ’permutations are not
regarded as observable’. In my opinion, this is a mathematical trick. From the
philosophical (and foundational) point of view, it should be interesting to pursue
Manin’s suggestion of looking for a theory which consider indistinguishable entities
taken as such from the bottom. This idea is endorsed by Heinz Post, who have
said that indistinguishability should be attributed to elementary quanta ”right at
the start” [33]. So, we may say (although here so roughly) that these ’standard
solutions’ have a common feature, which can be summed up by what we call Weyl’s
strategy : the mathematical considerations are always supplied by some extra pos-
tulate which enable us to work as if the relevant objects were indistinguishable,
but they are not. Let us be more explicit on this point.

In considering ‘aggregates of individuals’ for discussions on the foundations of
quantum theory, Hermann Weyl intended to treat the case where the elements of a
certain collection may be in certain ‘states’ but only the quantity of them in each
one of these states could be known [40, App. B]. This is of course what happens in
quantum physics. As he says,

”[i]n physics one aims at making division into classes so fine that no re-
finement is possible; in other words, one aims at a complete description
of state. Two individuals in the same ‘complete state’ are indiscernible
by any intrinsic characters –although they may not be the same thing”.
(Op. cit., p. 245.)

To realize that, Weyl considers a set S (let us emphasize that S is a set, hence
a collection of discernible objects) with n elements, say xp1 , . . . , xpn

, endowed with
an equivalence relation ∼. The intuitive interpretation is that a ∼ b means that
a and b are of the same kind, or nature, and in this case they are said to belong
to the same state. The equivalence classes C1, . . . , Ck of the quotient set S/∼
stand for these ‘states’. An aggregate S is “a set of elements each of which is in

10 For details, see [20].
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a definite state; hence, the term aggregate is used in the sense of ‘set of elements
with equivalence relation’ ” (op. cit., p. 239). So, an aggregate is a pair 〈S,∼〉,
where ∼ is an equivalence relation on the non-empty set S. A certain individual
state of the aggregate is then achieved when “it is known, for each of the n marks
p, to which of the k classes the element marked p belongs”. If the elements of S are
distinct from one another, then of course there are kn possible individual states of
the aggregate, but, as Weyl remarked,

”[i]f, however, no artificial differences between elements are introduced
by the labels p and merely the intrinsic differences of state are made
use of, then the aggregate is completely characterized by assigning to
each class Ci (i = 1, . . . , k) the number ni of elements of S that belong
to each class Ci. These numbers, the sum of which equals n, describe
what may conveniently be called the visible or effective state of the
system S. Each individual state of the system is connected with an
effective state, and any two individual states are connected with the
same effective state if and only if one may be carried into the other by
a permutation of the labels” (op. cit., pp. 239-40).

In other words, since each equivalence class has a cardinal ni, i = 1, . . . , k,
the effective state of the aggregate is characterized by the ordered decomposition
n1 + · · ·+ nk = n. Then, if the individuality of the elements of S is forgotten for a
moment and only this ordered decomposition is considered, we arrive at a formula
which expresses the number of different effective states, which is the well known
formula for Bose-Einstein statistics, namely,

(n+ k − 1)!
n!(k − 1)!

. (3)

Although adequate for mathematical purposes, Weyl’s suggestion of considering
a set endowed with an equivalence relation does not deal with indistinguishability
solo numero of the elements of S, but only mimics indistinguishability, for the
basic objects are not taken as indistinguishable from the start, as required by Post
(who follows the intuitions involving quantum objects). Of course, in order to
arrive at the above formula, that is, to the situation where only the permutation
of the labels are given (according to the above quotation), one has to suppose
that certain elements of some class Ci were permuted with elements of a class Cj
(i 6= j), preserving their cardinalities, so that the ordered decomposition keeps the
same. But the permutation of course changes the classes, due to the Axiom of
Extensionality of set theory; in other words, after the permutation (of discernible
elements), the ‘states’ are no longer the same! (more on this below). For the
mathematical description of physics, perhaps this is not important, for it satisfies
what Weyl called the Principle of Relativity, according to which “[o]nly relations
and statements [we should say, physical laws] have objective significance as are not
affected by any change in the choice of the labels p”.11

11 Op. cit., p. 240. The effective state of an aggregate helps in stating that “the principle of
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This line of thought is the basis for the use of group theory in quantum mechan-
ics, and we should recall that Weyl was one of the founders of this application.12

But philosophically we require a more precise mathematical mechanism which en-
ables us to consider not only that the permutations of the particles (the above
‘change of labels’) do not change physical laws, but a general procedure which
expresses the fact, mentioned by R. Penrose, that

”[a]ccording to quantum mechanics, any two electrons must necessarily
be completely identical [in the physicist’s jargon, that is, indistinguish-
able], and the same holds for any two protons and for any two particles
whatever, of any particular kind. This is not merely to say that there
is no way of telling the particles apart; the statement is considerably
stronger than that. If an electron in a person’s brain were to be ex-
changed with an electron in a brick, then the state of the system would
be exactly the same state as it was before, not merely indistinguishable
from it! The same holds for protons and for any other kind of particle,
and for the whole atoms, molecules, etc. If the entire material content
of a person were to be exchanged with the corresponding particles in
the bricks of his house then, in a strong sense, nothing would be hap-
pened whatsoever. What distinguishes the person from his house is the
pattern of how his constituents are arranged, not the individuality of
the constituents themselves” [32, p. 32].

But, in the usual strategies, the (in principle) ‘identifiable’ characteristics of
the elements of S are masked by a trick of ‘forgetting’ that they are elements
of a set and only their role as elements of certain equivalence classes are taken
into account. This is the ’Weyl’s strategy’. The selection of symmetric and anti-
symmetric solutions of the Schrödinger equation or, alternatively, symmetric and
anti-symmetric vectors in certain Hilbert spaces, have the same aim.13

An alternative approach is to work within a certain mathematical structure, so
that indistinguishable objects can be defined, say, as those elements of the domain
which are invariant by the automorphisms of the structure [24]. But even in this
case there is no truly indistinguishability (or ’philosophical’ indistinguishability),
for these elements can always be distinguished from the outside of the structure, say
in the well-founded universe 〈V,∈〉. When we look to the real aspect of the ground
elements of the structure, we realise that they are sets. Even if we admit atoms in
our pantheon, these usually ’indistinguishable’ Urelemente (they are invariant by
automorphisms) can be seen as sets of the same rank in 〈V,∈〉 (hence being always
distinguishable). In short: ’standard’ set theories like ZF, ZFC, NBG, KM and the
like encompass a Cantorian concept of set; as said Cantor, a set is ”a collection
into a whole of distinct objects of or intuition or of our thought” (my emphasis)

relativity finds expression in the postulate of invariance with respect to the group of all permu-
tations” (ibid.).

12 The another being Wigner, as it is well known [3].
13 The role of permutational symmetries is explained in details in [20].
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[4, p. 85]. So, there are no truly indistinguishable objects in set theory, for every one
of them can be individualised by its singleton (it is a theorem of all these theories
that x 6= y → ∃z(x ∈ z ∧ y /∈ z) – take z = {x}); so it is not possible to consider
Post’s claim within such a framework.

So, after having an idea of why to look for a ’set’ theory of collections of in-
distinguishable objects makes sense, let us see why quantum objects have such a
strange behaviour. We shall consider something on this point next.

6. Quantum non-individuality

In this section I shall sketch the main ideas which render quantum parti-
cles as ’non-individuals’ and explain how this non-individuality has been under-
stood within quasi-set theory.14 There is a huge literature on the topic of non-
individuality to which we cannot do justice here. But let us just pose the problem
once more with few technical details.

We usually agree that people, rocks and chairs can be regarded as ’individuals’.
The problem of how this ’individuality’ is to be understood is an old problem
in philosophy. A first attempt in answering this question runs in the direction
of saying that they are individuals because they can be distinguished from one
another, and this distinguishability is usually understood in terms of differences
in the properties of the objects. But, is it possible for two pencils, say, to have
all their characteristics in common? And, if not, why not? It became famous
that Leibniz said that this is not possible; his famous ’Principle of the Identity of
Indiscernibles’ says that two objects which are indistinguishable, in the sense of
possessing all properties in common, cannot, in fact, be two objects at all, as we
have seen earlier. But this is a metaphysical principle, and it seems to be of course
true for our everyday objects, since (at least we believe) they will always possess
some distinguishing property, some scratch that will distinguish them even from
similar objects of the same shape, colour, etc. But the problem continues: why is
it not possible for two such objects – our two pencils – to possess not only the same
shape and colour, but even the same scratches? If this were possible, how they can
be regarded as ’two’ individual pencils and not as just one? In answer this issue we
might point to some property which cannot be shared by them, such as location in
space-time. Clearly –or so it would seem– our two pencils cannot occupy the same
space at the same time, since they are impenetrable.

Pushing this line of thought, one might seek for some ground for this impene-
trability in the stuff, the substance, of which the objects are, in some sense, ’made’
off. This brings a different answer to our initial question: the individuality of the
objects is then to be understood not in terms of some property or set of properties
which also render them distinguishable, but in something else, underlying or ’tran-
scending’ their properties, such as some form of substantial substratum, famously
characterised by John Locke as the ’something we know not what’ (since it cannot
be described in terms of properties; for details in all these points, see [17]).

14 The full explanations are given in [17].
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The philosophical literature on this topic presents various attempts to answer
these and related questions and provides a discussion on what is often referred to
as the ‘principle’ of individuality. Let us consider now a particular but related
question: can the above considerations involving macroscopic objects be extended
to the fundamental objects posited by current physical theories, such as electrons,
protons, neutrons etc.? If these ones can be indistinguishable and also are not
’impenetrable’, for their state functions can overlap, how our physical theories do
not count them as just one? Can they be regarded as individuals, like our pencils?
Is there some principle of individuation in this case?

In trying to answer these questions we must turn to the relevant physics, namely
quantum theory, and, in particular, we must consider what this physics tells us
about the aggregate behaviour of these objects, as Hans Reichenbach has taught
us. Do they behave, in aggregate, like rocks or people? Since this behaviour is
described by the relevant statistical mechanics, we shall of course need to consider
the implications of them.

Let us consider only particles of the same ‘kind’, which possess the same ‘intrin-
sic’ or state-dependent properties (termed ‘indistinguishable’ –although physicists
seem to prefer to call them ‘identical’) and then we take into account the distribu-
tion of these particles over states –say two particles over two one-particle states–
and it is also assumed that each resulting arrangement is accorded equal probabil-
ity. This generates four possibilities:

(1) |aA1 〉 ⊗ |aA2 〉 (2) |aB1 〉 ⊗ |aB2 〉

(3) |aA1 〉 ⊗ |aB2 〉 (4) |aB1 〉 ⊗ |aA2 〉.

In this Dirac’s ’bra’ and ’ket’ notation, the superscripts (labels) A and B in the
states mean that they can be distinguished, since different states are characterised
by different state functions. The subscripts were introduced just to specify which
particles are in which states.

In classical statistical mechanics (Maxwell-Boltzmann), (3) and (4) are counted
as distinct and given equal weight in the assignment of probabilities. This infor-
mally means that the situation where we have one particle in each state is given
a weight of two, corresponding to the two arrangements or complexions that may
be formed by a permutation of the particles. Since they are ’indistinguishable’
in the above sense, the difference in the states imply that the particles are to be
regarded as individuals in a sense, that is, the difference in the states should be
attributed to something ’transcending’ the particles’ properties, sometimes spelled
out in terms of some underlying ‘haecceity’ or ‘primitive thisness’ or, more typically,
the spatio-temporal location of the particles.

In the quantum case the situation goes as follows.15 situations, (3) and (4)
must be counted as one and the same, while the arrangement of one particle in
each state is given a weight of one. This is standardly taken to reflect the fact

15 We shall restrict our attention to the two standard forms of statistics –Bose-Einstein and
Fermi-Dirac.
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that arrangements obtained by a permutation of the particles do not feature in the
relevant counting in quantum statistics.

More formally, states of quantum systems (single or many-particle systems) are
represented by unitary vectors Ψ in a Hilbert space H. For many particle systems
the Hilbert space is constructed by forming the tensor product of the component
particles’ Hilbert spaces. For a system consisting of two indistinguishable particles,
the Hilbert space is Htwo = H1 ⊗ H2, where the subscripts ‘1’ and ‘2’ label the
particles, and H1 = H2 = H for they are indistinguishable. If the particles are in
the pure states φ and ψ respectively, then the composite system is in the (pure) state
Ψ = φ⊗ψ. The observables Ô of a quantum system are represented by Hermitian
operators acting upon that system’s Hilbert space. A permutation of the particles
over states is represented by an operator and these ’permutation operators’ form
a group known ever since Hermann Weyl as the Permutation Group [3]. These
permutation operators are projections (hence have eigenvalues ±1) and act upon
Ψ as follows: (1) P̂id(Ψ) = (φ⊗ ψ) and (2) P̂φψ(Ψ) = (ψ ⊗ φ).

The Hamiltonian operator, ĤΨ = Ĥ(φ⊗ψ), of the composite system is symmet-
ric with respect to φ and ψ. Hence, ĤΨ is invariant under the action of the permu-
tation group of permutations of the composite particles’ labels, that is, [Ĥ, P̂ ] = 0,
for any P̂ . The ’fact’ that particle permutations are not counted is understood in
terms of there being no measurement that we could perform which would result in
a discernible difference between permuted (final) and unpermuted (initial) states.
This is represented in the formalism by insisting that every physical observable Ô
commutes with every permutation operator P̂ , that is, [Ô, P̂ ] = 0, ∀Ô∀P̂ . Express-
ing this formally, we have the so-called ’Indistinguishability Postulate’ (IP), that
is, for any arbitrary state ψ, Hermitian operator Ô, and permutation operator P̂ ,

〈ψ | Ô | ψ〉 = 〈P̂ψ | Ô | P̂ψ〉 = 〈ψ | P̂−1ÔP̂ | ψ〉. (4)

Since (IP) allows for the possibility of forms of quantum statistics which are dif-
ferent from the ’standard’ Bose-Einstein and Fermi-Dirac kind, if one wants to
restrict the formalism to the latter kinds only, then a further condition, known as
the ’Symmetrisation Postulate’ (SP) must be applied (this corresponds to a form
of ’symmetry conditions’ as indicated above) [20]. Put simply this dictates that,
states of indistinguishable particle systems must be either symmetrical or anti-
symmetrical under the action of the permutation operators (corresponding to the
Bose-Einstein and Fermi-Dirac cases respectively). The difference between (SP)
and (IP) can be expressed as follows (ibid.): (SP) expresses a restriction on the
states for all observables, Ô; whereas (IP) expresses a restriction on the observables,
Ô, for all states.

Now, (IP) seems to run counter to the point of regarding the particles as individ-
uals and labelling them; from the point of view of the statistics, the particle labels
are otiose. The implication, then, is that the particles can no longer be considered
to be individuals, that they are, in some sense, ‘non-individuals’. This conclu-
sion expresses what S. French calls ’the Received View’, an idea that came from
Schrödinger, Born, Heisenberg, Weyl, Hesse and Post at least (see [17] for historical
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facts): classical particles are individuals but quantum particles are not. Post, for
instance, drew on the distinction between form and substance, arguing that what
quantum statistics indicates is the ontological primacy of the former over the latter.
The interesting remark to be made here is that we can go beyond mere metaphors
and underpin the Received View with an appropriate logico-mathematical frame-
work, namely, quasi-set theory.16

7. Quasi-sets: general ideas

As we have said, intuitively speaking a quasi-set is a collection of indistinguish-
able (but not identical) objects. This of course is not a strict ’definition’ of a
quasi-set, acting more or less as Cantor’s ’definition’ mentioned above, giving no
more than an intuitive account of the concept. But we should realise that it seems
reasonable, due to the above argumentation (which of course does not cover all the
situations presented by modern physics),17 to search for a mathematical theory
which considers, without dodges, collections of truly indistinguishable objects. In
characterizing such collections (quasi-sets), we have followed Erwing Schrödinger’s
opinion that the concept of identity cannot be applied to elementary particles and
developed the theory by posing that the expression x = y is not generally a well-
formed formula (and likewise for the negation x 6= y). This enable us to consider
logico-mathematical systems in which identity and indistinguishability are sepa-
rated concepts; that is, these concepts do not reduce to one another as in standard
set theories.

In particular, forms of logic –called Schrödinger logics– have been introduced
for which ‘a = a’ cannot be inferred for certain objects a [5], [6]. For all other
entities classical logic is maintained.18 Correspondingly, quasi-set theory is the
’set-theoretical’ version of this idea.

Quasi-set theory Q ( [23]) allows two kinds of Urelemente: the m-atoms, whose
intended interpretation are the quanta, and the M -atoms, which stand for macro-
scopic objects, to which classical logic is supposed to apply.19 Quasi-sets are the col-
lections obtained by applying ZFU-like (Zermelo-Fraenkel plus Urelemente) axioms
to a basic domain composed of m-atoms, M -atoms and aggregates of them.20 The
theory still admits a primitive concept of quasi-cardinal which intuitively stands for
the ‘quantity’ of objects in a collection. The main idea is that the quasi-cardinal of
a quasi-set cannot be associated (in the sense of this association being something
described in the ‘classical’ part of Q) to a particular ordinal due to the (absolute)
indistinguishability of the m-atoms, and this is the motive for taking this concept

16 But this of course will not be made here; see [17].
17 The interested reader should have a look in the papers by Dalla Chiara listed in our refer-

ences.
18 This is a characteristic of these systems, but in principle it is possible to define Schrödinger

logics associated with other non-classical logics. In [6], a system encompassing modal operators
is considered.

19 But see the previous footnote were we have suggested that other kinds of logic could also be
used.

20 A similar remark is in order here. Perhaps for some applications it would be interesting to
have, say, ’quasi-classes’, and use NBG-like axioms instead. This shall be mentioned again below.
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Figure 1: The Quasi-Set Universe

as primitive (but see below). This point notwithstanding, it is possible to define a
translation from the language of ZFU into the language of Q in such a way so that
there is a ‘copy’ of ZFU in Q (the ‘classical’ part of Q). In this copy, all the usual
mathematical concepts can be defined, and the ‘sets’ (in reality, the ‘Q-sets’) turn
out to be those quasi-sets whose transitive closure (this concept is like the usual
one) does not contain m-atoms (see the Figure 1).21

In Q there may exist quasi-sets whose elements are m-atoms only, called ‘pure’
quasi-sets whose elements are indistinguishable (in the sense of partaking the prim-
itive indistinguishability relation ≡) and the axioms provide the grounds for saying
that nothing in the theory can distinguish the elements of such an x from one
another. Within the theory the idea that there is more than one entity in x is
expressed by an axiom which states that the quasi-cardinal of the power quasi-set
of x (the concept of subquasi-set is like that of standard set theory)22 has quasi-
cardinal 2qc(x), where qc(x) is the quasi-cardinal of x (which is a cardinal obtained
in the ‘copy’ of ZFU just mentioned). Now, what exactly this supposition means?

Consider the three protons and the four neutrons in the nucleus of a 7Li atom.
As far as quantum mechanics goes, nothing distinguishes these three protons. If
we regard these protons as forming a quasi-set, its quasi-cardinal should to be 3,
and there is no apparent contradiction in saying that there are also 3 subquasi-sets

21 So, we can make sense to the primitive concept of quasi-cardinal of a quasi-set x (written
qc(x)) as being a cardinal defined in the ’classical’ part of the theory. The reason to take qc as a
primitive concept will appear below, when we make reference to the distinction between cardinals
and ordinals.

22 This is what makes a basic difference with fuzzy sets. In fuzzy set theory, as it is well-known,
the counter-domains of the characteristic functions are not {0, 1}, but [0, 1].
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with 2 elements each, despite we can’t distinguish their elements, and so on. So,
it is reasonable to postulate that the quasi-cardinal of the power quasi-set of x is
2qc(x). Whether we can distinguish among these subquasi-sets is a matter which
does not concern logic.

In other words, we may consistently (with the axiomatics of Q) reason as if
there are three entities in our quasi-set x, but x must be regarded as a collection
for which it is not possible to discern its elements as individuals. The theory does
not enable us to form the corresponding singletons. The grounds for such kind of
reasoning has been delineated by Dalla Chiara and Toraldo di Francia as partly
theoretical and partly experimental. Speaking of electrons instead of protons, they
note that in the case of the helium atom we can say that there are two electrons
because, theoretically, the appropriate wave function depends on six coordinates
and thus “. . . we can therefore say that the wave function has the same degrees of
freedom as a system of two classical particles” (op. cit., p. 268).23 Dalla Chiara
and Toraldo di Francia have also noted that, “[e]xperimentally, we can ionize the
atom (by bombardment or other means) and extract two separate electrons . . .”
(ibid.).

Of course, the electrons can be counted as two only at the moment of measure-
ment; as soon as they interact with other electrons (in the measurement apparatus,
for example) they enter into entangled states once more. It is on this basis that
one can assert that there are two electrons in the helium atom or six in the 2p level
of the sodium atom or (by similar considerations) three protons in the nucleus of
a 7Li atom (and it may be contended that the ‘theoretical’ ground for reasoning
in this way also depends on these experimental considerations, together with the
legacy of classical metaphysics). On this basis it is stated the axiom of ‘weak ex-
tensionality’ of Q, which says that those quasi-sets that have the same quantity of
elements of the same sort (in the sense that they belong to the same equivalence
class of indistinguishable objects) are indistinguishable.

This axiom has interesting consequences. As we have said, there is no space
here for the details, but let us mention just one of them which is related to the
above discussion on the non observability of permutations in quantum physics,
which is one of the most basic facts regarding indistinguishable quanta (recall
Penrose’s quotation given above). In standard set theories, if w ∈ x , then of
course (x−{w})∪{z} = x iff z = w. That is, we can ’exchange’ (without modifying
the original arrangement) two elements iff they are the same elements, by force of
the axiom of extensionality. But in Q we can prove the theorem below, where z′

(and similarly w′) stand for a quasi-set with quasi-cardinal 1 whose only element
is indistinguishable from z (respectively, from w –the reader shouldn’t think that
this element is identical to either z or w, for the relation of equality shouldn’t
apply here; the set theoretical operations can be understood according to their
usual definitions):

23 This might be associated to the legacy of Schrödinger, who says that this kind of formulation
“gets off on the wrong foot” by initially assigning particle labels and then permuting them before

extracting combinations of appropriate symmetry [34].
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Theorem 1 [Unobservability of Permutations] Let x be a finite quasi-set such that
x does not contains all indistinguishable from z, where z is an m-atom such that
z ∈ x. If w ≡ z and w /∈ x, then there exists w′ such that

(x− z′) ∪ w′ ≡ x

Supposing that x has n elements, then if we ‘exchange’ their elements z by cor-
respondent indistinguishable elements w (set theoretically, this means performing
the operation (x− z′) ∪ w′), then the resulting quasi-set remains indistinguishable
from the original one. In a certain sense, it is not important whether we are dealing
with x or with (x − z′) ∪ w′. This of course gives a ’set-theoretical’ sense to Pen-
rose’s claim mentioned above. So, within Q we can express that ’permutations are
not observable’, without necessarily introducing ad hoc postulates like IP (equation
(4)) above.

The theory has other applications, for instance in deriving quantum statistics
without the needs of postulating certain symmetry conditions [25], but these de-
velopments shall be not mentioned here. To end this outline, let us make reference
only to a certain detail involving the relationship between ordinals and cardinals,
which is relevant for the above discussion, as we have seen.

Jonathan Lowe has characterised individuality in terms of countability [27].
This is one of the common ways of doing that. In considering it, a question arises:
how are we to understand a ‘countable plurality’ of individuals about which we
cannot deny that it is indeterminate whether they are identical to themselves or
not? In particular, in what sense can such a plurality be said to be countable?
Countability is precisely what is problematic about quantum entities. Teller, for
example, has emphasised that ‘quanta’ cannot be counted but only aggregated, and
invokes the analogy of money in a bank account to exemplify his claims [36]. In
this sense, I can say that I have 100 reais (the Brazilian currency) in my current
account but I can’t go in and point to a particular real and say, ‘that’s mine’.
This offers a further perspective on the way in which quantum particles might be
regarded as non-individuals.

How might we represent this distinction between a ‘countable plurality’ and an
aggregate? One way is to note that it corresponds to which holds between ordinality
and cardinality respectively. Hence an ‘aggregate’ of quanta would have the latter
but not the former, since we can say on experimental and theoretical grounds
that there are, say, seven electrons in an atom, but we cannot count them, in the
sense of putting them in a series and establishing an ordering. This distinction
between ordinality and cardinality is interesting in several aspects; recently, Michel
Bitbol has suggested that in understanding Jean-Louis Destouches’ transcendental
structuralism, one should acknowledge such a distinction (and he mentioned the
possible use of quasi-sets in this realm [1]). But we should realise that there are
some technical details involved in this question.

The main reason is that Q is based on ZF-like axioms, and the concept of
cardinal is introduced a la von Neumann, as particular ordinals. So, if a quasi-set
has a quasi-cardinal (which is a cardinal, as given by the axioms of the theory), then
it is an ordinal, and hence the quasi-set has an associated ordinal, although this
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being contrary to the basic idea that indistinguishable m-atoms cannot be ordered.
The explanation of this fact is as follows, and resembles in much the solution given
by T. Skolem to his famous ’paradox’: the mapping (a ’quasi-function’) which
’orders’ a quasi-set of indistinguishable m-atoms is not something that can be
described by the axioms of Q. In other words, it may exist but outside the universe
Q (see Figure 1 again). In fact, we can prove that no order relation can be defined
on a quasi-set of indistinguishable m-atoms [23].

Anyway, it remains the problem of finding a ’more natural’ way of expressing
that a quasi-set has a (quasi-)cardinal but not an ordinal. One of the possibilities
could be to use NBG-like axioms instead of axioms based on ZF, and then to
introduce the concept of cardinal in the Frege-Russell sense, by means of the so-
called ’Tarski’s axiom’ (the axiom says that two sets have the same cardinal iff
they are equinumerous; in this case, as it is well known, except for the cardinal 0,
which is the cardinal of the empty set, all cardinals are proper classes [35]). But
this is still something to be done, perhaps by someone who intend to push Bitbol’s
suggestion of studying Destouches’ philosophy of physics.

8. Final remarks

Although quasi-set theory has been dealt with in some directions, of course
there remain lots of details to be cleaned up, as the cardinal/ordinal discussion
shows. Also in what respects applications we can find interesting insights; Bitbol’s
suggestion is just one of them, but it seems that something of this kind could be
useful in the foundational aspects of quantum field theory as well, since in this field
one do not deal with ’individuals’ at all [36]. Anyway, we certainly can’t anticipate
anything in this sense.
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