

\textbf{\textit{g}Δ^*_\mu – Closed Sets in Generalized Topological Spaces}

P. Jeyanthi, P. Nalayini and T. Noiri

ABSTRACT: In this paper, we introduce some new classes of generalized closed sets called \(\Delta^*_\mu – g\)-closed, \(\Delta^*_\mu – g\),\(\mu\)-closed and \(g\Delta^*_\mu – g\)-closed sets, which are related to the classes of \(g\mu\)-closed sets, \(g\lambda\mu\)-closed sets and \(\lambda\mu – g\)-closed sets. We investigate their properties as well as the relations among these classes of generalized closed sets.

Key Words: Generalized topology, \(\lambda\mu\)-closed, \(\Delta^*_\mu\)-closed, \(\Delta^*_\mu – g\)-closed, \(\Delta^*_\mu – g\mu\)-closed, \(g\Delta^*_\mu\)-closed sets.

\textbf{Contents}

1 Introduction 1
2 \(\Delta^*_\mu – g\)-closed sets 3
3 \(\Delta^*_\mu – g\mu\)-closed sets 5
4 \(g\Delta^*_\mu\)-closed sets 6

\section{1. Introduction}

In 1997, \'{A}.Császár \cite{2} introduced the concept of a generalization of topological spaces, which is called a generalized topological space. A subset \(\mu\) of \(\text{exp}(X)\) is called a generalized topology \cite{4} on \(X\) if \(\emptyset \in \mu\) and \(\mu\) is closed under arbitrary union. Elements of \(\mu\) are called \(\mu\)-open sets. The complement of a \(\mu\)-open set is said to be \(\mu\)-closed. A set \(X\) with a GT \(\mu\) on it is called a generalized topological space (briefly GTS) and is denoted by \((X, \mu)\).

For a subset \(A\) of \(X\), we denote by \(c_{\mu}(A)\) the intersection of all \(\mu\)-closed sets containing \(A\) and by \(i_{\mu}(A)\) the union of all \(\mu\)-open sets contained in \(A\). Then \(c_{\mu}(A)\) is the smallest \(\mu\)-closed set containing \(A\) and \(i_{\mu}(A)\) is the largest \(\mu\)-open set contained in \(A\). A point \(x \in X\) is called a \(\mu\)-cluster point of \(A\) if for every \(U \in \mu\) with \(x \in U\) we have \(A \cap U \neq \emptyset\). \(c_{\mu}(A)\) is the set of all \(\mu\)-cluster points of \(A\) \cite{4}. A GTS \((X, \mu)\) is called a quasi-topological space \cite{3} if \(\mu\) is closed under finite intersections. A subset \(A\) of \(X\) is said to be \(\pi\)-regular \cite{5} (resp. \(\sigma\)-regular) if \(A = i_{\mu}c_{\mu}(A)\) (resp. \(A = c_{\mu}i_{\mu}(A)\)).

\textbf{Definition 1.1.} \cite{6} If \((X, \mu)\) is a GTS and \(A \subseteq X\), then the set \(\wedge_{\mu}(A)\) is defined as follows:

\[\wedge_{\mu}(A) = \begin{cases} \cap\{G : A \subseteq G, G \in \mu\} & \text{if there exists } G \in \mu \text{ such that } A \subseteq G; \\ X & \text{otherwise.} \end{cases}\]

2010 Mathematics Subject Classification: 54A05.
Submitted September 15, 2017. Published March 21, 2018
Definition 1.2. [6] In a GTS (X, μ), a subset B is called a \wedge_{μ}-set if $B = \wedge_{\mu}(B)$.

Definition 1.3. [1] A subset A of a GTS (X, μ) is called a λ_{μ}-closed set if $A = T \cap C$, where T is a Λ_{μ}-set and C is a μ-closed set. The complement of a λ_{μ}-closed set is called a λ_{μ}-open set. We set $\lambda_{\mu}O(X, \mu) = \{U : U$ is λ_{μ}-open in $(X, \mu)\}$.

Definition 1.4. [10] Let (X, μ) be a GTS. A subset A of X is called a $^*\wedge_{\mu}$-set if $A = \ ^*\wedge_{\mu}(A)$, where $^*\wedge_{\mu}(A) = \cap\{U : A \subseteq U, U \in \lambda_{\mu}O(X, \mu)\}$.

Definition 1.5. [9] Let (X, μ) be a GTS. A subset A of X is called a Δ_{μ}-set if $\Lambda_{\mu}(A) = ^*\Lambda_{\mu}(A)$.

Definition 1.6. [9] A subset of a GTS (X, μ) is called a Δ^*_{μ}-closed set if $A = T \cap F$, where T is a Δ_{μ}-set and F is a μ-closed set. The complement of a Δ^*_{μ}-closed set is said to be Δ^*_{μ}-open.

Definition 1.7. A subset A of GTS (X, μ) is said to be g_{μ}-closed [11] (resp. $g - \lambda_{\mu}$-closed [8], $\lambda_{\mu} - g$-closed [8]) if $c_{\mu}(A) \subseteq U$ (resp. $c_{\lambda_{\mu}}(A) \subseteq U$, $c_{\mu}(A) \subseteq U$) whenever $A \subseteq U$ and U is μ-open (resp. U is μ-open, U is λ_{μ}-open) in (X, μ).

Lemma 1.1. [7] For a GTS (X, μ) and $S, T \subseteq X$, the following properties hold:
(i) $i_{\mu}(S \cap T) \subseteq i_{\mu}(S) \cap i_{\mu}(T)$.
(ii) $c_{\mu}(S) \cup c_{\mu}(T) \subseteq c_{\mu}(S \cup T)$.

Remark 1.8. [7] In general, for subsets S and T of a GTS (X, μ), $i_{\mu}(S \cap T) \supseteq i_{\mu}(S) \cap i_{\mu}(T)$ is not true.

Lemma 1.2. [5] Let (X, μ) be a quasi-topological space. Then $c_{\mu}(A \cup B) = c_{\mu}(A) \cup c_{\mu}(B)$ for every A and B of X.

Lemma 1.3. [1,6,9] For a subset of a GTS (X, μ), the following implication hold:

μ-open \Rightarrow Λ_{μ}-set \Rightarrow Δ_{μ}-set \Downarrow

μ-closed \Rightarrow λ_{μ}-closed \Rightarrow Δ^*_{μ}-closed \Downarrow

For $A \subseteq X$, we denote by $c_{\Delta^*_{\mu}}(A)$ [9] (resp. $c_{\lambda_{\mu}}(A)$ [1]) the intersection of all Δ^*_{μ}-closed (resp. λ_{μ}-closed) subsets of X containing A. Then we have

$c_{\Delta^*_{\mu}}(A) \subseteq c_{\lambda_{\mu}}(A) \subseteq c_{\mu}(A)$

for every $A \subseteq X$.

The purpose of this present paper is to define some new classes of generalized closed sets called $\Delta^*_{\mu} - g$-closed, $\Delta^*_{\mu} - g_{\mu}$-closed and $g_{\Delta^*_{\mu}}$-closed and to obtain some basic properties of these closed sets. Further, we establish the relation between these classes of sets.
2. $\Delta^*_\mu - g-$closed sets

In this section, we introduce the notion of $\Delta^*_\mu - g-$closed sets and discuss its properties.

Definition 2.1. Let (X, μ) be a GTS. A subset A of X is called a $\Delta^*_\mu - g-$closed set if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is a $\Delta^*_\mu-$open set in X. The complement of a $\Delta^*_\mu - g-$closed set is called a $\Delta^*_\mu - g-$open set.

Theorem 2.2. Every $\mu-$closed set is a $\Delta^*_\mu - g-$closed set.

Proof: Let A be a $\mu-$closed set and U be any $\Delta^*_\mu-$open set containing A. Since A is $\mu-$closed, we have $c_{\mu}(A) = A$. Therefore $c_{\mu}(A) \subseteq U$. Thus A is $\Delta^*_\mu - g-$closed.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{c\}$ is $\Delta^*_\mu - g-$closed but not $\mu-$closed.

Theorem 2.4 shows that every $\Delta^*_\mu - g-$closed set is a $g_\mu-$closed set (a $g - \lambda_\mu-$closed set, a $\lambda_\mu - g-$closed set) and Example 2.5 shows that converses are not true.

Theorem 2.4. Let (X, μ) be a GTS. Then the following hold:

(i) Every $\Delta^*_\mu - g-$closed set is a $g_\mu-$closed set.

(ii) Every $g_\mu-$closed set is a $g - \lambda_\mu-$closed set.

(iii) Every $\Delta^*_\mu - g-$closed set is a $\lambda_\mu - g-$closed set.

(iv) Every $\lambda_\mu - g-$closed set is $g - \lambda_\mu-$closed.

Proof:

(i) Let A be a $\Delta^*_\mu - g-$closed set and U be any $\mu-$open set containing A in (X, μ). Since every $\mu-$open set is $\Delta^*_\mu-$open, we have U is $\Delta^*_\mu-$open. Since A is $\Delta^*_\mu - g-$closed, $c_{\mu}(A) \subseteq U$. Therefore A is $g_\mu-$closed.

(ii) Let A be a $g_\mu-$closed set and U be any $\mu-$open set containing A in (X, μ). Since A is $g_\mu-$closed, $c_{\mu}(A) \subseteq U$. Since $c_{\lambda_\mu}(A) \subseteq c_{\mu}(A)$, $c_{\lambda_\mu}(A) \subseteq U$ and hence A is $g - \lambda_\mu-$closed.

(iii) Let A be a $\Delta^*_\mu - g-$closed set and U be a $\lambda_\mu-$open set containing A in (X, μ). Since every $\lambda_\mu-$open set is $\Delta^*_\mu-$open and A is $\Delta^*_\mu - g-$closed, then $c_{\mu}(A) \subseteq U$. Therefore A is $\lambda_\mu - g-$closed.

(iv) Suppose that A is a $\lambda_\mu - g-$closed set. Let $A \subseteq U$ and U be $\mu-$open. Then U is $\lambda_\mu-$open and A is $\lambda_\mu - g-$closed. Therefore, $c_{\mu}(A) \subseteq U$ and hence $c_{\lambda_\mu}(A) \subseteq c_{\mu}(A) \subseteq U$. Hence A is $g - \lambda_\mu-$closed.

Form Theorem 2.4, we have the following diagram:

\[
\begin{array}{c}
\Delta^*_\mu - g-$closed \\
\downarrow \\
\lambda_\mu - g-$closed
\end{array}
\Rightarrow
\begin{array}{c}
g_\mu-$closed \\
\downarrow \\
g - \lambda_\mu-$closed
\end{array}\]
Example 2.5. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then $\{a, c\}$ is both g_μ-closed and $\lambda_\mu - g$-closed but not $\Delta^*_\mu - g$-closed. Further $\{b, c\}$ is $g - \lambda_\mu$-closed but neither $\lambda_\mu - g$-closed nor g_μ-closed.

Theorem 2.6 gives a characterization of $\Delta^*_\mu - g$-closed sets.

Theorem 2.6. Let (X, μ) be a GTS. A subset A of X is a $\Delta^*_\mu - g$-closed set if and only if $F \subseteq c_\mu(A) \setminus A$ and F is Δ^*_μ-closed implies that F is empty.

Proof: Let A be $\Delta^*_\mu - g$-closed. Suppose that F is a subset of $c_\mu(A) \setminus A$ and F is Δ^*_μ-closed. Then $A \subseteq X \setminus F$ and $X \setminus F$ is Δ^*_μ-open. Since A is $\Delta^*_\mu - g$-closed, we have $c_\mu(A) \subseteq X \setminus F$. Consequently $F \subseteq X \setminus c_\mu(A)$. Hence F is empty. Conversely, Suppose $A \subseteq U$, where U is Δ^*_μ-open. If $c_\mu(A) \not\subseteq U$, then $c_\mu(A) \cap (X - U)$ is a non-empty Δ^*_μ-closed subset of $c_\mu(A) \setminus A$. Therefore A is $\Delta^*_\mu - g$-closed.

Theorem 2.7. If A is a $\Delta^*_\mu - g$-closed set in a GTS (X, μ), then $c_\mu(A) \setminus A$ does not contain any non-empty λ_μ-closed $(\mu$-open / μ-closed) subset of X.

Proof: Suppose $c_\mu(A) \setminus A$ contains a non-empty λ_μ-closed $(\mu$-open / μ-closed) subset of X. Since every λ_μ-closed $(\mu$-open / μ-closed) set is Δ^*_μ-closed, a non-empty Δ^*_μ-closed set is contained in $c_\mu(A) \setminus A$, which is contrary to Theorem 2.6.

Example 2.8 shows that the converse of the above theorem is not true.

Example 2.8. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{a, d\}, \{b, c, d\}, X\}$. If $A = \{a, b, d\}$, then $c_\mu(A) \setminus A = \{c\}$, which does not contain any nonempty λ_μ-closed $(\mu$-open / μ-closed) set but A is not a $\Delta^*_\mu - g$-closed set.

Theorem 2.9. Let (X, μ) be a quasi-topological space. Then $A \cup B$ is a $\Delta^*_\mu - g$-closed set whenever A and B are $\Delta^*_\mu - g$-closed sets.

Proof: Let U be a Δ^*_μ-open set such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are $\Delta^*_\mu - g$-closed, we have $c_\mu(A) \subseteq U$ and $c_\mu(B) \subseteq U$. Hence by Lemma 1.2 $c_\mu(A \cup B) = c_\mu(A) \cup c_\mu(B) \subseteq U$ and the proof follows.

Example 2.10. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then μ is a GT but not a quasi-topology. If $A = \{a\}$ and $B = \{c\}$, then A and B are $\Delta^*_\mu - g$-closed sets but their union is not a $\Delta^*_\mu - g$-closed set.

Example 2.11. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. If $A = \{b, d\}$ and $B = \{a, c, d\}$, then A and B are $\Delta^*_\mu - g$-closed sets but $A \cap B = \{d\}$ is not a $\Delta^*_\mu - g$-closed set.

Theorem 2.12. Let (X, μ) be a GTS. If A is Δ^*_μ-open and $\Delta^*_\mu - g$-closed, then A is μ-closed.

Proof: Since A is Δ^*_μ-open and $\Delta^*_\mu - g$-closed, $c_\mu(A) \subseteq A$ and hence A is μ-closed.
3. \(\Delta^*_\mu - g\mu - closed \) sets

In this section, we introduce the concept of \(\Delta^*_\mu - g\mu - closed \) sets and study its properties.

Definition 3.1. Let \((X, \mu)\) be a GTS. A subset \(A\) of \(X\) is called a \(\Delta^*_\mu - g\mu - closed \) set if \(c_{\lambda\mu}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is a \(\Delta^*_\mu - open \) set in \(X\). The complement of a \(\Delta^*_\mu - g\mu - closed \) set is called a \(\Delta^*_\mu - g\mu - open \) set.

Theorem 3.2. For a GTS \((X, \mu)\), every \(\lambda\mu - closed \) set is \(\Delta^*_\mu - g\mu - closed \).

Proof: Let \(A\) be a \(\lambda\mu - closed \) set and \(U\) be any \(\Delta^*_\mu - open \) set containing \(A\). Since \(A\) is \(\lambda\mu - closed\), we have \(c_{\lambda\mu}(A) = A \). Therefore \(c_{\lambda\mu}(A) \subseteq U \) and hence \(A\) is \(\Delta^*_\mu - g\mu - closed \).

Corollary 3.3. For a GTS \((X, \mu)\), the following hold:

(i) Every \(\mu - closed \) set is \(\Delta^*_\mu - g\mu - closed \).

(ii) Every \(\mu - open \) set is \(\Delta^*_\mu - g\mu - closed \).

Example 3.4. Let \(X = \{a, b, c, d\}\) and \(\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}\). If \(A = \{c\}\), then \(A\) is \(\Delta^*_\mu - \mu - closed \) but not \(\lambda\mu - closed \) \((\mu - closed, \mu - open) \).

Theorem 3.5. Let \((X, \mu)\) be a GTS and \(A \subseteq X\). If \(A\) is a \(\Delta^*_\mu - g\mu - closed \) set, then \(A\) is a \(g - \lambda\mu - closed \) set.

Proof: Let \(U\) be a \(\mu - open \) set containing \(A\) in \((X, \mu)\). Since every \(\mu - open \) set is \(\Delta^*_\mu - open \) and \(A\) is \(\Delta^*_\mu - g\mu - closed\), \(c_{\lambda\mu}(A) \subseteq U \). Therefore \(A\) is \(g - \lambda\mu - closed \).

Theorem 3.6 shows that the relation between \(\Delta^*_\mu - g - closed \) set and \(\Delta^*_\mu - g\mu - closed \) set.

Theorem 3.6. In a GTS \((X, \mu)\), every \(\Delta^*_\mu - g - closed \) set is \(\Delta^*_\mu - g\mu - closed \).

Proof: Let \(A\) be a \(\Delta^*_\mu - g - closed \) set and \(U\) be a \(\Delta^*_\mu - open \) set containing \(A\) in \((X, \mu)\). Then \(c_{\mu\mu}(A) \subseteq U \). Since \(c_{\mu\mu}(A) \subseteq c_{\mu}(A)\), we have \(c_{\mu\mu}(A) \subseteq U \). Therefore \(A\) is \(\Delta^*_\mu - g\mu - closed \).

Remark 3.7. \(\Delta^*_\mu - g\mu - closed \) sets and \(g\mu - closed \) (resp. \(\lambda\mu - g - closed \)) sets are independent of each other.

Example 3.8. Let \(X = \{a, b, c, d\}\) and \(\mu = \{\emptyset, \{a, b\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, X\}\). Then \(\{a, b, d\} \) is \(g\mu - closed \) but not \(\Delta^*_\mu - g\mu - closed \) and \(\{c\} \) is \(\Delta^*_\mu - g\mu - closed \) but not \(g\mu - closed \).

Example 3.9. Let \(X = \{a, b, c\}\) and \(\mu = \{\emptyset, \{a\}\}\). Then \(\{b\} \) is \(\lambda\mu - g - closed \) but not \(\Delta^*_\mu - g\mu - closed \) and \(\{a\} \) is \(\Delta^*_\mu - g\mu - closed \) but not \(\lambda\mu - g - closed \).

Remark 3.10. By Theorems 3.5 and 3.6, the following diagram holds:

\[
\begin{align*}
\Delta^*_\mu - g - closed & \Rightarrow \Delta^*_\mu - g\mu - closed & \Rightarrow & g - \lambda\mu - closed
\end{align*}
\]

The converses of all implications in DIAGRAM II are not true.
Theorem 3.11 gives a characterization of $\Delta^*_\mu - g_\mu$-closed sets.

Theorem 3.11. Let (X, μ) be a GTS. A subset A of X is a $\Delta^*_\mu - g_\mu$-closed set if and only if $F \subseteq c_{\lambda_\mu}(A) \setminus A$ and F is Δ^*_μ-closed implies that F is empty.

Proof: The proof is similar to Theorem 2.6.

Theorem 3.12. If A is a $\Delta^*_\mu - g_\mu$-closed set in a GTS (X, μ), then $c_{\lambda_\mu}(A) \setminus A$ does not contain any non-empty λ_μ-closed (μ-open / μ-closed) subset of X.

Proof: The proof is similar to Theorem 2.7.

Example 3.13 shows that the converse of Theorem 3.12 is not true.

Example 3.13. Let $X = \{a, b, c\}$ and $\mu = \emptyset, \{a, b\}, X$. If $A = \{b, c\}$, $c_{\lambda_\mu}(A) \setminus A = \{a\}$, which does not contain any non-empty λ_μ-closed (resp. μ-open, μ-closed) sets but A is not $\Delta^*_\mu - g_\mu$-closed.

Theorem 3.14. Let (X, μ) be a GTS and A and B be subsets of X. If $A \subseteq B \subseteq c_{\lambda_\mu}(A)$ and A is a $\Delta^*_\mu - g_\mu$-closed set, then B is $\Delta^*_\mu - g_\mu$-closed.

Proof: If F is a Δ^*_μ-closed set such that $F \subseteq c_{\lambda_\mu}(B) \setminus B$, then $F \subseteq c_{\lambda_\mu}(A) \setminus A$. By Theorem 3.11, $F = \emptyset$ and so B is $\Delta^*_\mu - g_\mu$-closed.

Theorem 3.15. Let A be a $\Delta^*_\mu - g_\mu$-closed set in a quasi-topological space (X, μ). Then the following hold:

(i) If A is a π-regular set, then $i_\pi(A)$ and $c_\sigma(A)$ are $\Delta^*_\mu - g_\mu$-closed sets.

(ii) If A is a σ-regular set, then $c_\sigma(A)$ and $i_\sigma(A)$ are $\Delta^*_\mu - g_\mu$-closed sets.

Proof:

(i) Since A is a π-regular set, $c_\sigma(A) = A \cup i_\mu c_\mu(A) = A$ and $i_\pi(A) = A \cap i_\mu c_\mu(A) = A$. Thus $i_\pi(A)$ and $c_\sigma(A)$ are $\Delta^*_\mu - g_\mu$-closed sets.

(ii) Since A is a σ-regular set, $c_\sigma(A) = A$ and $i_\pi(A) = A$. Thus $c_\sigma(A)$ and $i_\pi(A)$ are $\Delta^*_\mu - g_\mu$-closed sets.

Remark 3.16. The union (resp. intersection) of two $\Delta^*_\mu - g_\mu$-closed sets need not be a $\Delta^*_\mu - g_\mu$-closed set.

Example 3.17. Let $X = \{a, b, c, d\}$ and $\mu = \emptyset, \{c\}, \{a, b, c\}, \{b, c, d\}, X$. Then \{a\} and \{c\} are $\Delta^*_\mu - g_\mu$-closed sets but their union is not a $\Delta^*_\mu - g_\mu$-closed set. Further \{a, b, c\} and \{a, c, d\} are $\Delta^*_\mu - g_\mu$-closed sets but their intersection is not a $\Delta^*_\mu - g_\mu$-closed set.

4. $g\Delta^*_\mu$-closed sets

In this section, we introduce the notion of $g\Delta^*_\mu$-closed sets and discuss its properties.

Definition 4.1. Let (X, μ) be a GTS. A subset A of X is called a $g\Delta^*_\mu$-closed set if $c_{\lambda_\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is a Δ^*_μ-open set in X. The complement of a $g\lambda_\mu$-closed set is called a $g\Delta^*_\mu$-open set.

Theorem 4.2. For a GTS (X, μ), every Δ^*_μ-closed set is $g\Delta^*_\mu$-closed.
Proof: Let A be a Δ^*_μ-closed set and U be any Δ^*_μ-open set containing A. Since A is Δ^*_μ-closed, $c\Delta^*_\mu(A) = A$. Therefore $c\Delta^*_\mu(A) \subseteq U$ and hence A is $g\Delta^*_\mu$-closed.

Corollary 4.3. For a GTS (X, μ), the following hold:
(i) Every λ_μ-closed set is $g\Delta^*_\mu$-closed.
(ii) Every μ-closed set is $g\Delta^*_\mu$-closed.
(iii) Every μ-open set is $g\Delta^*_\mu$-closed.

Example 4.4 shows that the converses of Theorem 4.2 and Corollary 4.3 are not true.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{c\}, \{a, b, c\}, \{b, c, d\}, X\}$. Then $\{b, c\}$ is a $g\Delta^*_\mu$-closed set but it is not Δ^*_μ-closed (resp. λ_μ-closed, μ-closed, μ-open).

Remark 4.5. $g\Delta^*_\mu$-closed sets and λ_μ-g-closed (resp. μ-closed) sets are independent of each other.

Example 4.6. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}\}$. Then $\{b, c\}$ is λ_μ-g-closed but not $g\Delta^*_\mu$-closed and $\{a\}$ is $g\Delta^*_\mu$-closed but neither λ_μ-g-closed nor g_μ-closed.

Example 4.7. Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a, b\}, \{c, d\}, \{b, c, d\}, X\}$. Then $\{a, c\}$ is g_μ-closed but not $g\Delta^*_\mu$-closed.

Theorem 4.8 shows the relation between $g\Delta^*_\mu$-closed set and $\Delta^*_\mu - g_\mu$-closed set.

Theorem 4.8. For a GTS (X, μ), every $\Delta^*_\mu - g_\mu$-closed set is $g\Delta^*_\mu$-closed.

Proof: Let A be a $\Delta^*_\mu - g_\mu$-closed set and U be a Δ^*_μ-open set containing A in (X, μ). Then $c\lambda_\mu(A) \subseteq U$. Since $c\Delta^*_\mu(A) \subseteq c\lambda_\mu(A)$, we have $c\Delta^*_\mu(A) \subseteq U$. Therefore A is $g\Delta^*_\mu$-closed.

Example 4.9 shows that the converse of Theorem 4.8 is not true.

Example 4.9. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a, b\}, X\}$. Then $\{a\}$ is $g\Delta^*_\mu$-closed but not $\Delta^*_\mu - g_\mu$-closed.

Remark 4.10. By Theorems 3.6 and 4.8, the following diagram holds:
\[
\Delta^*_\mu - g_\mu \text{- closed} \Rightarrow \Delta^*_\mu - g_\mu \text{- closed} \Rightarrow g\Delta^*_\mu \text{- closed}
\]

References

P. Jeyanthi, P. Nalayini,
Research Centre
Department of Mathematics,
Govindammal Aditanar College for Women
Tiruchendur-628 215, Tamil Nadu, India.
E-mail address: jeyajeyanthi@rediffmail.com,nalayini4@gmail.com

and

T. Noiri,
Shiokita - cho
Hinagu, Yatsushiro-shi
Kumamoto - ken, 869-5142 Japan.
E-mail address: t.noiri@nifty.com