Some Common Fixed Point Theorems for Four Self-Mappings Satisfying a General Contractive Condition

Manoj Kumar, Rashmi Sharma, Serkan Araci

ABSTRACT: In the paper, we derive a general case for four weakly compatible self maps satisfying a general contractive condition due to the same method introduced by Altun et al. [2]. We make use of such a study to prove common fixed point theorems for weakly compatible maps along with E.A. and (CLR) properties.

Key Words: Common fixed point, Weakly compatible, E.A. property, (CLR) property.

Contents

1 Introduction 1
2 Main Results 2

1. Introduction

The study of common fixed point of mappings satisfying contractive conditions has been a very active field of research during recent years. The most general of the common fixed point theorems pertaining to four mappings A, B, S and T of a metric space (X, d), uses either a Banach-type contractive condition [3] of the form

$$d(Ax, By) \leq km(x, y) \ (0 \leq k < 1),$$

where

$$m(x, y) = \max \{d(Ax, By), d(Sx, Ax), d(Ty, By) \text{ and } \frac{1}{2}(d(Sx, By) + d(Ty, Ax))\},$$

or a Meir - Keeler - type (ε, δ) - contractive condition [6], that is, given $\varepsilon > 0$, there exists a $\delta > 0$ such that or a φ - contractive condition [7] of the form

$$d(Ax, By) \leq \varphi(m(x, y)),$$

involving a contractive gauge function $\varphi : [0, \infty) \rightarrow [0, \infty)$ such that $\varphi(t) < t$ for each $t > 0$. Note that Banach-type contractive condition is a special case of both conditions Meir - Keeler - type (ε, δ) - contractive and φ - contractive. A φ - contractive condition does not guarantee the existence of a fixed point unless some additional condition is assumed. Moreover, a φ - contractive condition, in general, does not imply the Meir - Keeler - type (ε, δ) - contractive condition. In the paper,
we aim to prove a common fixed point theorem for four weakly compatible self-maps satisfying a general contractive condition and also prove common fixed point theorems for weakly compatible maps along with E.A. and (CLR) properties.

We are now in a position to state the following three definitions which is an important to derive our main results.

Definition 1.1. [4] Two self maps \(f \) and \(g \) are said to be weakly compatible if they commute at coincidence points.

Definition 1.2. [1] Two self-mappings \(f \) and \(g \) of a metric space \((X,d)\) are said to satisfy E.A. property if there exists a sequence \(\{x_n\} \) in \(X \) such that

\[
\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t
\]

for some \(t \) in \(X \).

Definition 1.3. [8] Two self-mappings \(f \) and \(g \) of a metric space \((X,d)\) are said to satisfy (CLR) property if there exists a sequence \(\{x_n\} \) in \(X \) such that

\[
\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = fx
\]

for some \(x \) in \(X \).

2. Main Results

Now, we give the following theorems.

Theorem 2.1. Let \(A, B, S \) and \(T \) be self maps of a metric space \((X,d)\) satisfying the followings:

\[
SX \subseteq BX, \quad TX \subseteq AX,
\]

for all \(x \in X \), there exists right continuous functions \(\psi, \phi : \mathbb{R}^+ \to \mathbb{R}^+ \), with

\[
\psi(0) = 0 = \phi(0) \quad \text{and} \quad \psi(s) < s \quad \text{for} \quad s > 0 \quad \text{such that}
\]

\[
\psi(d(Sx,Ty)) \leq \psi(m(x,y)) - \phi(m(x,y)),
\]

where

\[
m(x,y) = \max\{d(Ax,By), d(Sx, Ax), d(Ty, By), \frac{1}{2}(d(Sx, By) + d(Ty, Ax))\}.
\]

If one of \(AX, BX, SX \) or \(TX \) is complete subspace of \(X \), then the pair \((A,S)\) or \((B,T)\) have a coincidence point. Moreover, if pairs \((A,S)\) and \((B,T)\) are weakly compatible, then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof: Let \(x_0 \in X \) be an arbitrary point of \(X \). from (2.1), we can construct a sequence \(\{y_n\} \) in \(X \) as follows:

\[
y_{(2n+1)} = Sx_{2n} = Bx_{(2n+1)}, \quad y_{(2n+2)} = Tx_{(2n+1)} = Ax_{(2n+2)},
\]

for all \(n = 0, 1, 2, \ldots \). Define \(d_n = d(y_n, y_{(n+1)}) \). Suppose that \(d_{2n} = 0 \) for some \(n \). Then \(y_{2n} = y_{(2n+1)} \), that is, \(Tx_{(2n-1)} = Ax_{2n}, Sx_{2n} = Bx_{(2n+1)} \), and \(A \) and \(S \) have a coincidence point. Similarly, if \(d_{(2n+1)} = 0 \), then \(B \) and \(T \) have a coincidence point. Assume that \(d_n \neq 0 \) for each \(n \).
from (2.2), we have

$$\psi(d(Sx_{2n}, Tx_{2(n+1)}) \leq \psi(m(x_{2n}, x_{2(n+1)})) - \phi(m(x_{2n}, x_{2(n+1)})), \quad (2.4)$$

where

$$m(x_{2n}, x_{2(n+1)}) = \max\{d(Ax_{2n}, Bx_{2(n+1)}), d(Sx_{2n}, Ax_{2n}),$$

$$d(Sx_{2n}, Bx_{2(n+1)}) + d(Tx_{2(n+1)}, Ax_{2n}) / 2$$

$$d(Tx_{2(n+1)}, Bx_{2(n+1)})\}$$

$$= \max\{d_{2n}, d_{(2n+1)}\} \quad (2.5)$$

Thus, from (2.4), we have

$$\psi(d(Sx_{2n}, Tx_{2(n+1)}) \leq \psi(\max\{d_{2n}, d_{2(n+1)}\}) - \phi(\max\{d_{2n}, d_{2(n+1)}\}). \quad (2.6)$$

Now, if $d_{(2n+1)} \geq d_{2n}$, for some n, then from (2.6), we have

$$\psi(d_{(2n+1)}) \leq \psi(d_{(2n+1)}) - \phi(d_{(2n+1)})$$

$$< \psi(d_{(2n+1)}), \quad (2.7)$$

which is a contradiction. Thus, $d_{2n} > d_{(2n+1)}$ for all n, and so, from (2.6), we have

$$\psi(d_{(2n+1)}) \leq \psi(d_{2n}) - \phi(d_{2n}), \quad \text{for all } n \in \mathbb{N}. \quad (2.8)$$

Similarly,

$$\psi(d_{2n}) \leq \psi(d_{(2n-1)}) - \psi(d_{(2n-1)}),$$

$$\psi(d_{(2n-1)}) \leq \psi(d_{(2n-2)}) - \phi(d_{(2n-2)}).$$

In general, we have for all $n = 1, 2, \ldots$

$$\psi(d_{n}) \leq \psi(d_{(n-1)}) - \phi(d_{(n-1)})$$

$$< \psi(d_{(n-1)}). \quad (2.9)$$

Hence the sequence $\{\psi(d_n)\}$ is monotonically decreasing and bounded below. Thus, there exists, $r \geq 0$, such that

$$\lim_{n \to \infty} \psi(d_n) = r. \quad (2.10)$$

From (9), we deduce that

$$0 \leq \phi(d_{(n-1)}) \leq \psi(d_{(n-1)}) - \psi(d_n).$$

Letting limit as $n \to \infty$ and using (10), we get $\lim_{n \to \infty} \phi(d_{(n-1)}) = 0$ implies that

$$\lim_{n \to \infty} \phi(d_{(n-1)}) = \lim_{n \to \infty} (d(y_{(n-1)}, y_n)) = 0, \quad (2.11)$$
or

\[\lim_{n \to \infty} d_n = \lim_{n \to \infty} d(y_n, y_{n+1}) = 0. \] (2.12)

Now, we show that \(\{y_n\} \) is a Cauchy sequence. For this, it is sufficient to show that \(\{y_{2n}\} \) is a Cauchy sequence. Let, if possible, \(\{y_{2n}\} \) is not a Cauchy sequence. Then there exists an \(\varepsilon > 0 \) such that for each even integer \(2k \) there exists even integers \(2m(k) > 2n(k) > 2k \) such that

\[d(y_{2(n(k))}, y_{2(m(k))}) \geq \varepsilon. \] (2.13)

For every even integer \(2k \), suppose that \(2m(k) \) be the least positive integer exceeding \(2n(k) \) satisfying (13) such that

\[d(y_{2(n(k))}, y_{2(m(k))}) < \varepsilon. \] (2.14)

from (2.13), we have

\[
\varepsilon \leq d(y_{2(n(k))}, y_{2(m(k))}) \\
\leq d(y_{2(n(k))}, y_{2(m(k)) - 2}) + d(y_{2(m(k)) - 2}, y_{2(m(k)) - 1}) + d(y_{2(m(k)) - 1}, y_{2m(k)}).
\]

Using (12) and (14) in the above inequality, we get

\[\lim_{k \to \infty} d(y_{2(n(k))}, y_{2(m(k))}) = \varepsilon. \] (2.15)

Also, by the triangular inequality,

\[
|d(y_{2(n(k))}, y_{2(m(k)) - 1}) + d(y_{2(n(k))}, y_{2(m(k))})| \leq d(2(m(k)) - 1),
\]

\[
|d(y_{2(n(k)) + 1}, y_{2(m(k)) - 1}) + d(y_{2(n(k))}, y_{2(m(k))})| \leq d(2(m(k)) - 1) + d_{2m(k)}.
\] (2.16)

Using (12), we get

\[\lim_{k \to \infty} d(y_{2(n(k))}, y_{2(m(k)) - 1}) = \lim_{k \to \infty} d(y_{2(n(k)) + 1}, y_{2(m(k)) - 1}) = \varepsilon. \] (2.17)

from (2.2), we have

\[
\psi(d(Sx_{2n(k)}, Tx_{2m(k) - 1})) \leq \psi(m(x_{2(n(k))}, x_{2(m(k)) - 1})) \\
- \phi(m(x_{2(n(k))}, x_{2(m(k)) - 1})),
\] (2.18)

where

\[
m(x_{2(n(k))}, x_{2(m(k)) - 1}) = \max\{d(Ax_{2n(k)}, Bx_{2n(k)}) + d(Sx_{2n(k)}, Ax_{2n(k)}), \}
\]

\[
(d(Sx_{2n(k)}, Bx_{2(m(k)) - 1}) + d(Tx_{2n(k)}, Ax_{2(m(k)) - 1)})^2,
\]

\[
d(Tx_{2(m(k) - 1)}, Bx_{2(m(k) - 1)})^2
\]

\[
= \max\{d(y_{2(n(k))}, y_{2(m(k) - 1)}), d(y_{2(n(k))}, y_{2(n(k) + 1)}) \}
\]

\[
(d(y_{2(n(k)) + 1}, y_{2(m(k) - 1)}) + d(y_{2(n(k))}, y_{2(m(k)) - 1}))^2,
\]

\[
d(y_{2(m(k) - 1)}); y_{2m(k)})}.\]
Letting limit as $k \to \infty$ and using (17), we get
\[
\psi(\varepsilon) \leq \psi(\varepsilon) - \phi(\varepsilon),
\]
which is a contradiction, since $\varepsilon > 0$. Thus, $\{y_{2n}\}$ is a Cauchy sequence and so $\{y_n\}$ is a Cauchy sequence. Now, suppose that $A(X)$ is complete. Note that $\{y_{2n}\}$ is contained in $A(X)$ and has a limit in $A(X)$, say v, that is, $\lim_{n \to \infty} y_{2n} = v$. Let $v \in A^{(-1)} u$. Then $Av = u$. Now, we shall prove that $Sv = u$. Let, if possible, $Sv \neq u$, that is, $d(Sv, u) = p > 0$.

Putting $x = v$ and $y = x_{(2n-1)}$ in (1.2), we have
\[
\psi(d(Sv, Tx_{(2n-1)})) \leq \psi(m(v, x_{(2n-1)})) - \phi(m(v, x_{(2n-1)})).
\]
Letting limit as $n \to \infty$, we have
\[
\lim_{n \to \infty} \psi(d(Sv, Tx_{(2n-1)})) \leq \lim_{n \to \infty} \psi(m(v, x_{(2n-1)})) - \lim_{n \to \infty} \phi(m(v, x_{(2n-1)})), \quad (2.19)
\]
where,
\[
\lim_{n \to \infty} m(v, x_{(2n-1)}) = \lim_{n \to \infty} \left[\max\{d(u, y_{(2n-1)}), d(Sv, u), d(y_{2n}, y_{(2n-1)})\}, \right. \frac{(d(Sv, y_{(2n-1)}) + d(y_{2n}, u))}{2} \left. \right]
\]
\[
= \max\{d(u, u), d(Sv, u), d(u, u), \frac{1}{2}(d(Sv, u) + d(u, u))\}
\]
\[
= d(Sv, u) = p.
\]
Thus, from (2.19), we have
\[
\psi(d(Sv, u)) \leq \psi(p) - \phi(p),
\]
that is
\[
\psi(p) \leq \psi(p) - \phi(p),
\]
which is a contradiction, since $p > 0$. Thus, $Sv = u = Av$. Hence u is the coincidence point of the pair (A, S). Since $SX \subseteq BX$, $Sv = u$, implies that, $u \in BX$. Let $w \in B^{(-1)} u$. Then $Bw = u$. By using the same arguments as above, one can easily verify that, $Tw = u = Bw$, that is, u is the coincidence point of the pair (B, T). The same result holds, if we assume that BX is complete instead of AX. Now, if TX is complete, then by (1), $u \in TX \subseteq AX$. Similarly, if SX is complete, then $u \in SX \in BX$. Now, since the pairs (A, S) and (B, T) are weakly compatible, so
\[
u = Sv = Av = Tw = Bw,
\]
then
\[
Au = ASv = Sav = Su,
Bu = BTw = TBw = Tu. \quad (2.20)
\]
Now, we claim that \(Tu = u \). Let, if possible, \(Tu \neq u \).

From (2.2), we have

\[
\psi(d(u,Tu)) = \psi(d(Sv,Tu)) \\
\leq \psi(m(v,u)) - \phi(m(v,u)),
\]

where

\[
m(v,u) = \max\{d(Av,Bu), d(Sv,Av), d(Tu,Bu), \frac{1}{2}(d(Sv,Bu) + d(Tu,Av))\}
\]

\[
= \max\{d(u,Tu), d(u,u), 0, \frac{1}{2}(d(u,u) + d(Tu,u))\}
\]

\[
= d(u,Tu).
\]

Thus, we have

\[
\psi(d(u,Tu)) \leq \psi(d(u,Tu)) - \phi(d(u,Tu))
\]

\[
< \psi(d(u,Tu)),
\]

which is a contradiction. So, \(Tu = u \). Similarly, \(Su = u \). Thus, we get \(Au = Su = Bu = Tu = u \). Hence \(u \) is the common fixed point of \(A, B, S \) and \(T \). For the uniqueness, let \(z \) be another common fixed point of \(A, B, S \) and \(T \).

Now, we claim that \(u = z \). Let, if possible, \(u \neq z \).

From (2.2), we have

\[
\psi(d(u,z)) = \psi(d(Su,Tz)) \\
\leq \psi(m(u,z)) - \phi(m(u,z)) \\
= \psi(d(u,z)) - \phi(d(u,z)),
\]

since

\[
m(u,z) = d(u,z) \\
< \psi(d(u,z)),
\]

a contradiction. Thus, \(u = z \), and the uniqueness follows.

Theorem 2.2. Let \(A, B, S \) and \(T \) be self mappings of a metric space \((X,d)\) satisfying (1), (2) and the followings:

- pairs \((A,S)\) and \((B,T)\) are weakly compatible, \((2.21)\)
- pair \((A,S)\) or \((B,T)\) satisfy the E.A. property. \((2.22)\)

If any one of \(AX, BX, SX \) and \(TX \) is a complete subspace of \(X \), then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof: Suppose that \((A,S)\) satisfies the E.A. property. Then there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z \), for some \(z \) in
X. Since $SX \subseteq BX$, there exists a sequence \(\{y_n\} \) in \(X \) such that \(Sx_n = By_n \). Hence \(\lim_{n \to \infty} By_n = z \). We shall show that \(\lim_{n \to \infty} Ty_n = z \). Let, if possible, \(\lim_{n \to \infty} Ty_n = t = z \).

From (2.2), we have
\[
\psi(d(Sx, Ty)) \leq \psi(m(x, y)) - \phi(m(x, y)).
\]
Letting limit as \(n \to \infty \), we have
\[
\lim_{n \to \infty} \psi(d(Sx, Ty)) \leq \lim_{n \to \infty} \psi(m(x, y)) - \lim_{n \to \infty} \phi(m(x, y)),
\]
where,
\[
\lim_{n \to \infty} m(x, y_n) = \lim_{n \to \infty} \max \{d(Ax_n, By_n), d(Sx_n, Ax_n), d(Ty_n, By_n), \frac{1}{2}(d(Sx_n, By_n) + d(Ty_n, Ax_n))\}
\]
\[
= \max \{d(z, z), d(z, z), d(t, z), \frac{1}{2}(d(z, z) + d(t, z))\}
\]
\[
= d(t, z).
\]
Thus, from (2.23), we get
\[
\psi(d(z, t)) \leq \psi(d(z, t)) - \phi(d(z, t))
\]
\[
< \psi(d(z, t)),
\]
which is a contradiction. Therefore, \(t = z \), that is, \(\lim_{n \to \infty} Ty_n = z \). Suppose that \(BX \) is a complete subspace of \(X \). Then \(z = Bu \) for some \(u \) in \(X \). Subsequently, we have
\[
\lim_{n \to \infty} Ty_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} By_n = z = Bu.
\]
Now, we shall show that \(Tu = Bu \). Let, if possible, \(Tu \neq Bu \).

From (2.2), we have
\[
\psi(d(Sx, Tu)) \leq \psi(m(x, u)) - \phi(m(x, u)).
\]
Letting limit as \(n \to \infty \), we have
\[
\lim_{n \to \infty} \psi(d(Sx, Tu)) \leq \lim_{n \to \infty} \psi(m(x, u)) - \lim_{n \to \infty} \phi(m(x, u)),
\]
where
\[
\lim_{n \to \infty} m(x, u) = \lim_{n \to \infty} \max \{d(Ax_n, Bu), d(Sx_n, Ax_n), d(Tu, Bu), \frac{1}{2}(d(Sx_n, Bu) + d(Tu, Ax_n))\}
\]
\[
= \max \{d(z, z), d(z, z), d(Tu, z), \frac{1}{2}(d(z, z) + d(Tu, z))\}
\]
\[
= d(Tu, z).
\]
Thus, from (2.24), we have
\[
\psi(d(z, Tu) \leq \psi(d(z, Tu)) - \phi(d(z, Tu))
\]
\[
<\psi(d(z, Tu)),
\]
which is a contradiction. Therefore, \(Tu = z = Bu \). Since \(B \) and \(T \) are weakly compatible, therefore, \(BTu = TBu \), implies that, \(TTu = TBu = BTu = BBu \).

Since \(TX \subseteq AX \), there exists \(v \in X \), such that, \(Tu = Av \).

Now, we claim that \(Av = Sv \). Let, if possible, \(Av \neq Sv \).

from (2.2), we have
\[
\psi(d(Sv, Tu) \leq \psi(m(v, u)) - \phi(m(v, u)),
\]
(2.25)

where
\[
m(v, u) = \max \{d(Av, Bu), d(Sv, Av), d(Tu, Bu), \frac{1}{2}(d(Sv, Bu) + d(Tu, Av))\}
\]
\[
=d(Sv, Av) = d(Sv, Tu).
\]

Thus, from (2.25), we have
\[
\psi(d(Sv, Tu) \leq \psi(d(Sv, Tu)) - \phi(d(Sv, Tu))
\]
\[
<\psi(d(Sv, Tu)),
\]
which is a contradiction. Therefore, \(Sv = Tu = Av \). The weak compatibility of \(A \) and \(S \) implies that \(ASv = SAv = SSv = AAu \).

Now, we claim that \(Tu \) is the common fixed point of \(A, B, S \) and \(T \). Suppose that, \(TTu \neq Tu \).

from (2.2), we have
\[
\psi(d(Tu, TTu) = \psi(d(Tu, TTu))
\]
\[
\leq \psi(m(v, T u)) - \psi(m(v, T u)),
\]
(2.26)

where
\[
m(v, Tu) = \max \{d(Av, BTu), d(Sv, Av), d(BTu, TTu),
\]
\[
\frac{1}{2}(d(Sv, BTu) + d(TTu, Av))\}
\]
\[
= \max \{d(Tu, TTu), 0, 0, d(Tu, TTu)\}
\]
\[
=d(Tu, TTu).
\]

Thus, from (2.26), we have
\[
\psi(d(Tu, TTu) \leq \psi(d(Tu, TTu)) - \phi(d(Tu, TTu))
\]
\[
<\psi(d(Tu, TTu)),
\]
which is a contradiction. Therefore, \(Tu = TTu = BTu \). Hence \(Tu \) is the common fixed point of \(B \) and \(T \). Similarly, we prove that \(Sv \) is the common fixed point of
A and S. Since \(Tu = Sv \), \(Tu \) is the common fixed point of \(A, B, S \) and \(T \). The proof is similar when \(AX \) is assumed to be a complete subspace of \(X \). The cases in which or \(SX \) is a complete subspace of \(X \) are similar to the cases in which \(AX \) or \(BX \), respectively is complete subspace of \(X \), since \(TX \subseteq AX \) and \(SX \subseteq BX \).

Now, we shall prove that the common fixed point is unique. If possible, let \(p \) and \(q \) be two common fixed points of \(A, B, S \) and \(T \), such that, \(p \neq q \).

from (2.2), we have
\[
\psi(d(p, q)) = \psi(d(Sp, Tq))
\leq \psi(m(p, q)) - \phi(m(p, q)),
\]
(2.27)
where
\[
m(p, q) = \max\{d(Ap, Bq), d(Sp, Aq), d(Bq, Tq), \frac{1}{2}(d(Sp, Bq) + d(Tq, Ap))\}
\]
\[
= \max\{d(p, q), 0, 0, d(p, q)\}
= d(p, q).
\]
Thus, from (2.27), we have
\[
\psi(d(p, q)) \leq \psi(d(p, q)) - \phi(d(p, q))
< \psi(d(p, q)),
\]
which is a contradiction. Therefore, \(p = q \), and the uniqueness follows.

Theorem 2.3. Let \(A, B, S \) and \(T \) be self maps of a metric space \((X, d) \) satisfying (2), (21) and the following:
\[
SX \subseteq BX \quad \text{and the pair } (A, S) \text{ satisfies } (CLR_A) \text{ property or } \quad TX \subseteq AX \quad \text{and the pair } (B, T) \text{ satisfies } (CLR_B) \text{ property.}
\]
(2.28)
Then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof: Without loss of generality, assume that \(SX \subseteq BX \) and the pair \((A, S) \) satisfies \((CLR_A) \) property, then there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = Ax \), for some \(x \) in \(X \). Since \(SX \subseteq BX \), there exists a sequence \(\{y_n\} \) in \(X \) such that \(Sx_n = By_n \). Hence \(\lim_{n \to \infty} By_n = Ax \). We shall show that \(\lim_{n \to \infty} Ty_n = Ax \). Let, if possible, \(\lim_{n \to \infty} Ty_n = z \neq Ax \).

from (2.2), we have
\[
\psi(d(Sx_n, Ty_n)) \leq \psi(m(x_n, y_n)) - \phi(m(x_n, y_n)).
\]
Letting limit as \(n \to \infty \), we have
\[
\lim_{n \to \infty} \psi(d(Sx_n, Ty_n)) \leq \lim_{n \to \infty} \psi(m(x_n, y_n)) - \lim_{n \to \infty} \phi(m(x_n, y_n)),
\]
(2.29)
where
\[
\lim_{n \to \infty} m(x_n, y_n) = \lim_{n \to \infty} \left[\max\{d(Ax_n, By_n), d(Sx_n, Ax_n), d(Ty_n, By_n), \frac{1}{2}(d(Sx_n, By_n) + d(Ty_n, Ax_n))\} \right] \\
= \max\{d(Ax, Ax), d(Ax, Ax), d(z, Ax), \frac{1}{2}(d(z, z) + d(z, Ax))\} \\
= d(z, Ax).
\]
Thus, from (2.29), we get
\[
\psi(d(Ax, z) \leq \psi(d(Ax, z)) - \phi(d(Ax, z)) < \psi(d(Ax, z)),
\]
which is a contradiction. Therefore, \(Ax = z\), that is, \(\lim_{n \to \infty} Ty_n = Ax\). Subsequently, we have
\[
\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} By_n = \lim_{n \to \infty} Ty_n = Ax = z.
\]
Now, we shall show that \(Sx = z\). Let, if possible, \(Sx \neq z\). from (2.2), we have
\[
\psi(d(Sx, Ty_n) \neq \psi(m(x, y_n)) - \phi(m(x, y_n)).
\]
Letting limit as \(n \to \infty\), we have
\[
\lim_{n \to \infty} \psi(d(Sx, Ty_n) \leq \lim_{n \to \infty} \psi(m(x, y_n)) - \lim_{n \to \infty} \phi(m(x, y_n)),
\]
where
\[
\lim_{n \to \infty} m(x, y_n) = \lim_{n \to \infty} \left[\max\{d(Ax, By_n), d(Sx, Ax), d(Ty_n, By_n), \frac{1}{2}(d(Sx, By_n) + d(Ty_n, Ax_n))\} \right] \\
= \max\{d(z, z), d(Sx, z), d(z, z), \frac{1}{2}(d(Sx, z) + d(z, z))\} \\
= d(Sx, z).
\]
Thus, from (2.30), we get
\[
\psi(d(Sx, z) \leq \psi(d(Sx, z)) - \phi(d(Sx, z)) < \psi(d(Sx, z)),
\]
which is a contradiction. Therefore, \(Sx = z = Ax\). Since, the pair \((A, S)\) is weakly compatible, it follows that \(Az = Sz\). Also, since \(SX \subseteq BX\), there exists some \(y\) in \(X\) such that \(Sx = By\), that is, \(By = z\). Now, we show that \(Ty = z\). Let, if possible, \(Ty \neq z\).
from (2.2), we have
\[\psi(d(Sx, Ty) \leq \psi(m(x, y)) - \phi(m(x, y)). \]

Letting limit as \(n \to \infty \), we have
\[\lim_{n \to \infty} \psi(d(Sx, Ty) \leq \lim_{n \to \infty} \psi(m(x, y)) - \lim_{n \to \infty} \phi(m(x, y)), \tag{2.31} \]

where
\[\lim_{n \to \infty} m(x, y) = \lim_{n \to \infty} [\max\{d(Ax, By), d(Sx, Ax), d(Ty, By), \]
\[\frac{1}{2}(d(Sx, By) + d(Ty, Ax))\}]
\[= \max\{d(z, z), d(z, z), d(z, Ty), \frac{1}{2}(d(z, z) + d(Ty, z))\}
\[= d(z, Ty). \]

Thus, from (2.31), we get
\[\psi(d(z, Ty) \leq \psi(d(z, Ty)) - \phi(d(z, Ty)) \]
\[\leq \psi(d(z, Ty)), \]

which is a contradiction. Thus, \(z = Ty = By \). Since the pair \((B, T) \) is weakly compatible, it follows that \(Tz = Bz \). Now, we claim that \(Sz = Tz \). Let, if possible, \(Sz \neq Tz \).

from (2.2), we have
\[\psi(d(Sz, Tz) \leq \psi(m(z, z)) - \phi(m(z, z)), \tag{2.32} \]

where
\[m(z, z) = \max\{d(Az, Bz), d(Sz, Az), d(Bz, Tz), \frac{1}{2}(d(Sz, Bz) + d(Tz, Az)\}
\[= d(Sz, Tz). \]

Thus, from (2.32), we have
\[\psi(d(Sz, Tz) \leq \psi(d(Sz, Tz)) - \phi(d(Sz, Tz)) \]
\[< \psi(d(Sz, Tz)), \]

which is a contradiction. Therefore, \(Sz = Tz \), that is, \(Az = Sz = Tz = Bz \). Now, we shall show that \(z = Tz \). Let, if possible, \(z \neq Tz \).

from (2.2), we have
\[\psi(d(Sx, Tz) \leq \psi(m(x, z)) - \phi(m(x, z)), \tag{2.33} \]
where
\[
m(x, z) = \max\{d(Ax, Bz), d(Sx, Ax), d(Bz, Tz), \frac{1}{2}(d(Sx, Bz) + d(Tz, Ax))\}
\]
\[
= d(Sx, Tz) = d(z, Tz).
\]

Thus, from (2.33), we have
\[
\psi(d(z, Tz)) \leq \psi(d(z, Tz)) - \phi(d(z, Tz))
\]
\[
< \psi(d(z, Tz)),
\]
which is a contradiction. Therefore, \(z = Tz = Bz = Az = Sz \). Hence \(z \) is the common fixed point of \(A, B, S \) and \(T \). Now, we shall prove that the common fixed point is unique. Let \(u \) be another common fixed point of \(A, B, S \) and \(T \). Let, if possible, \(z \neq u \).

from (2.2), we have
\[
\psi(d(u, z)) = \psi(d(Su, Tz))
\]
\[
\leq \psi(m(u, z)) - \phi(m(u, z))
\]
\[
= \psi(d(u, z)) - \phi(d(u, z)), \text{ since } m(u, z) = d(u, z)
\]
\[
< \psi(d(u, z)),
\]
which is a contradiction. Thus, \(u = z \), and hence the uniqueness follows.

Example 2.4. Let \(X = [0, 1] \) be endowed with the Euclidean metric \(d(x, y) = |x - y| \). Let the self maps \(A, B, S \) and \(T \) be defined by
\[
Sx = \frac{x}{8}, Bx = \frac{x}{4}, Tx = \frac{x}{2}, Ax = x.
\]

Clearly,
\[
SX = [0, \frac{1}{8}] \subseteq [0, \frac{4}{1}] = BX,
\]
\[
TX = [0, \frac{1}{2}] \subseteq [0, 1] = AX.
\]

Also \(AX \) is complete subspace of \(X \) and pairs \((A, S), (B, T)\) are weakly compatible. Now,
\[
d(Sx, Ty) = |\frac{x}{8} - \frac{y}{2}| = \frac{x}{8}|x - 4y|.
\]
\[
d(Ax, By) = |x - \frac{y}{4}| = \frac{1}{4}|4x - y|.
\]
\[
d(Sx, Ax) = |\frac{x}{8} - x| = \frac{7}{8}x.
\]
\[
d(By, Ty) = |\frac{y}{4} - \frac{y}{2}| = \frac{y}{4}.
\]
\[
\frac{(d(Sx, By) + d(Ty, Ax))}{2} = \frac{1}{2}[|\frac{x}{8} - \frac{y}{4}| + |\frac{y}{2} - x|]
\]
\[
= \frac{1}{16}|x - 2y| + 4|y - 2x|.
\]
Let $\psi(t) = \frac{t}{3}$ and $\phi(t) = \frac{t}{6}$. Thus, we have
\[
\psi(d(Sx, Ty)) = \frac{1}{24}|x - 4y|.
\]

\[
m(x, y) = \max\{d(Ax, By), d(Sx, Ax), d(Ty, By), \frac{1}{2}(d(Sx, By) + d(Ty, Ax))\}
\]
\[= d(Sx, Ax).
\]
Therefore,
\[
\psi(d(Sx, Ax)) = \frac{1}{3}\left(\frac{7}{8}\right) = \frac{7}{24}x,
\]
\[
\phi(d(Sx, Ax)) = \frac{1}{6}\left(\frac{7}{8}\right) = \frac{7}{48}x.
\]
Thus, we have
\[
\psi(m(x, y)) - \phi(m(x, y)) = \frac{7}{24}x - \frac{7}{48}x = \frac{7}{48}x.
\]
Therefore,
\[
\psi(d(Sx, Ty)) \leq \psi(m(x, y)) - \phi(m(x, y)).
\]
Hence condition (2) is satisfied. If, we consider the sequence $\{x_n\} = \{\frac{1}{n}\}$, then
\[
\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0.
\]
\[
\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} x_{\frac{n}{8}} = \lim_{n \to \infty} \frac{1}{8n} = 0.
\]
Therefore,
\[
\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = 0, \text{ where } 0 \in X.
\]
So the pair (A, S) satisfies the $E.A.$ property. Also,
\[
\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Ax_n = 0 = A(0).
\]
So the pair (A, S) satisfies the (CLR_A) property. Hence all the conditions of above Theorems are satisfied. Here 0 is the unique common fixed point of A, S, B and T.

References

Manoj Kumar (Corresponding Author),
Department of Mathematics,
School of Physical Sciences,
Starex University, Gurugram,
India.
E-mail address: manojantil18@gmail.com, manoj.19564@lpu.co.in

and

Rashmi Sharma,
Department of Mathematics,
Lovely Professional University, Phagwara, Punjab,
India.
E-mail address: rashmisharma.lpu@gmail.com

and

Serkan Araci,
Faculty of Economics,
Administrative and Social Sciences, Department of Economics,
Hasan Kalyoncu University, TR-27410 Gaziantep,
Turkey.
E-mail address: mtsrk@hotmail.com