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Derivation Alternator Rings with S(a,b,¢) =0

Dr. P. Sarada Devi, Dr. K. Hari Babu, Dr. Y. Suresh Kumar

ABSTRACT: In this paper, we discuss about the derivation alternator rings which are nonassociative but
not (-1,1) rings. By assuming some additional conditions, we prove that derivation alternator rings are (-1,1)
rings. Here we validate a semiprime derivation alternator ring with commutators in the left nucleus satisfies the
identity S(a,b,c) = 0. By using this we show that a semiprime derivation alternator ring with commutators
in the left nucleus is a (-1,1) ring.
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1. Introduction

Hentzel [3] studied about derivation alternator rings. Thedy [6] proved that the rings R satisfy-
ing the identifies ((R,R),R,R) = 0,((a,b,a),b) = 0 for all a,b in R, and also (R,(R,R),R) = 0 or
(R, R, (R, R)) = 0. The main solution is that prime rings following these identities are also commutative
or associative. Kleinfeld [4] proved the same result by considering the rings with (a, b, a) and commutators
in the left nucleus. In [1] the rings with ((R, R), R, R) = 0 and ((a, b, a), R) = 0 have been studied. Here
we validate that semiprime derivation alternator ring with commutators in the left nucleus is a (-1,1)
ring.

2. Preliminaries

A 2-divisible nonassociative ring is said to be a derivation alternator ring if it satisfies the following
properties [3]

(a,a,a) =0 (2.1)
(be,a,a) =b(c,a,a) + (b,a,a)c (2.2)

and
(a,a,bc) =b(a,a,c)+ (a,a,b)c (2.3)

A (-1,1) ring is a nonassociative ring in which the right alternative law [2] (a,b,b) = 0,i.e., (a,b,c) +
(a,c,b) =0 and (a,b,c) + (b,c,a) + (¢,a,b) = 0 hold. The left nucleus N; of a ring R is defined as N; =
n € R/(n, R, R) = 0. Throughout this paper, R denotes a derivation alternator ring with commutators
in the left nucleus. That is,

(R,R),R,R)=0 (2.4)
Using (2),( 3) and linearized (1) that such rings also satisfy
(a,bc,a) =b(a,c,a) + (a,b,a)c (2.5)
By using Teichmuller identity [2]
(da,b,c)"(d,ab, c) + (d,a,bc) = d(a,b,c) + (d,a,b)c (2.6)
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As in [3] the identity (6) along with (5),(3) and (1) gives
(a%,b,a) = (a,ab,a)”(a,a,ba) + a(a,b,a) + (a,a,b)a
a(a,b,a)(a,a,b)a+ a(a,b,a) + (a,a,b)a
= 2a(a, b, a).
Thus we have proved
(a2, b,a) = 2a(a,b,a) (2.7)

Also we know that (7) becomes
(a,b,a*) = 2(a,b,a)a (2.8)

In [5] the properties of flexile derivation alternator rings have been studied. It is shown that a derivation
alternator ring follows the flexible law,

(a,b,a) =0 (2.9)

The following properties hold in an arbitrary ring: [2]

(ab,¢)"a(b,c)”(a,c)b = (a,b,¢) + (b,a,c)”(a,c,b) (2.10)
(ab, ¢) + (be,a) + (ca,b) = S(a, b, c) (2.11)

and
((a,b),c)+ ((b,¢),a) + ((¢,a),b) = S(a,b,¢)”S(a,c,b) (2.12)

where S(a,b,c) = (a,b,c) + (b, c,a) + (c,a,b).
Using (R, R) C N, in the identity (11), we get S(a,b,c) C N; (2.13)
Moreover, in all ring we have the identity
(a,b,¢) = a(b,c)+ (a,c)b+ S(a,b,c)”(a,c,b)” (b, c,a). (2.14)

A linearization of (9) implies (a,b,c) + (¢,b,a) = 0. Then connecting this with (14), (13) and (4) we
obtain
a(b,c) + (a,c)b C N; (2.15)

Assume that n € N;. Then with d = n in (6), we obtain (na, b, c) = n(a,b,c). Combining this with (4)
leads
(na,b,c) =n(a,b,c) = (an,b, c) (2.16)

A combination of (15) and (16) yields
(b,c)(a,r,s) = —(a,c)(b,r,s) (2.17)
If we substitute a commutator v for b and using (8), we get
(v,¢)(a,r,s) =0 (2.18)

If we linearize (a,a,a) = 0, we get
S(a,b,a)+ S(a,c,b) =0. (2.19)

By multiplying (12) and (19) with (p, ¢, ) and using (18) we obtain,

S(a7 ba C)(p7 q, T)VS(G‘) ¢, b)(pa q, T) =0

S(a7 b) C)(p7 q) T) + S(a7 C, b)(p7 q) T) = O

By adding the above two equations, we have 2S5(a, b, ¢)(p, g,r) = 0. Since R is 2-divisible,

S(a,b,c)(p,q,r) =0 (220)
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3. Main Results
Lemma 3.1. Let T =t € N;/t(R,R,R) =0. Then T is an ideal of R and T(R, R, R) = 0.
Proof. By substituting ¢ for n in (16), we get
(ta,b,c) =t(a,b,c) = (at,b,c) = 0.

Thus tR € N; and Rt € N;. First note that td.(a, b, c) = t.d(a,b,c). But (6) multiplied on left by ¢ yields
t.d(a,b,c) = —t.(d,a,b)c = —t(d,a,b)c = 0. Thus tw.(a,b,c¢) = 0. However (17) yields wt.(a,b,c) = 0.
Thus, T is an ideal of R and obviously T'(R, R, R) = 0.

Let A be the associator ideal of R. We know that A is the set of all finite sums of associators and right
multiples of associators. We know that R is semiprime, if the only ideal of R which squares to zero is the
zero ideal. ]

Lemma 3.2. In a semiprime derivation alternator ring R with commutators in the left nucleus S(a, b, c) =
0.

Proof. By using lemma (1) and equation (6) we establish readily that T.A = 0.
But then 7'N A is an ideal of R which squares to zero. Since R is semiprime, then TN A = 0.
From (13) and (20), we obtain S(a,b,c) € T.

Also

S(a,b,c) is in A. (3.1)
Thus S(a,b,c) = 0. Let I be the ideal generated by {(b,a,a)/a,b € R} and we know that the linear span
I of the alternators is an ideal. g

Theorem 3.3. A semiprime derivation alternator ring R with commutators in the left nucleus is a (-1,1)
7ing.

Proof. Since (a,b,a) = 0, from (7) we have (aa?,b,a) = 0.

This means that by definition a flexible derivation alternator ring is non-commutative Jordan, and non-
commutative Jordan rings satisfy

(b,a?,¢) = ao(b,a,c).. (3.2)
Next from the identity (6)
(a®,b,¢)"(a,ab, c) + (a,a,bc) = ala, b, c) + (a,a,b)c. (3.3)
Likewise (6) implies
(¢b,a,a)”(c,ba,a) + (¢,b,a?) = c(b,a,a) + (c,b,a)a. (3.4)

By taking this into our previous equation leads to 2(a?,b,c) ao(a,b,c) = 0. Since R is 2-divisible, we
have
(a®,b,¢) = ao(a, b, c). (3.5)

Flexibility and (25) imply
(b,c,a®) = ao(b, ¢, a). (3.6)

Linearzing (1) and using (9), we get (b, a,a) + (a,a,b) = 0.

This implies that (b, a,a) = —(a,a,b).

Then ((b,a,a),a,a) = —((a,a,b),a,a) = ((a,a,a),a,b) =0.

Applying (25), we write

0 =((b%,a,a),a,a) = (bo(b,a,a),a,a)

= bo((b,a,a),a,a)+ (b,a,a)o(b,a,a)

= 2(b,a,a)?.

Since R is 2-divisible, , we get that (b,a,a)? = 0. Since I is an ideal and R is semiprime, we have
(b,a,a) = 0.

From lemma (2) and (b,a,a) =0, R is a (-1,1) ring. O
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